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Abstract

Percolation models are infinite random graph models which have applications
to phase transitions and critical phenomena. In the site percolation model, each
vertex in an infinite graph G is retained independently with probability p and
deleted otherwise. The percolation threshold is the critical probability p.(G)
such that if p > p.(G) there is positive probability that the random subgraph
induced by the retained vertices has an infinite connected component, while the
probability that all of its components are finite is one if p < p.(G). There are
few lattice graphs for which the site percolation threshold is exactly known, and
rigorous bounds for unsolved lattices are very imprecise. The substitution method
for computing bounds for the more common class of bond percolation models must
be modified to apply to site models. Some modifications will be illustrated with
an application to the (4,8%) Archimedean lattice, which is a vertex-transitive
tiling of the plane by squares and regular octagons. An improved upper bound,
piite(4,8%) < 0.785661, is obtained.

1 Introduction

Percolation models were introduced in the 1950s to explain aspects of fluid flow
in a random medium. By associating the randomness with the medium, they
provide an alternate perspective to diffusion models, which associate the random-
ness with the fiuid. The physical and biological sciences have found percolation
models particularly valuable in studying phemomena in which a threshold value
of a parameter separates regimes with substantially different qualitative behavior,
such as solid versus liquid phases, conduction or insulation of heat or electricity,
or epidemic or quarantine of a disease. Consequently, many variations of the
model have been created for a variety of applications. The mathematical theory
of percolation models mainly employs concepts from probability, graph theory,
and combinatorics. For comprehensive references on aspects of mathematical
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percolation theory, see the monographs by Grimmett [4], Bollobds and Riordan
[3], and Hughes [6]

1.1 Site and Bond Percolation Models

The two classical types of percolation models are site models and bond models.
Given an infinite graph G, the site percolation model on G retains each vertex in
G stochastically independently with probability p. Traditionally, retained vertices
are called “open.” The object of study is the random subgraph G, of G induced
by the set of open vertices. In the bond percolation model on an infinite graph G,
each edge is open with probability p, and the random subgraph G, consisting of
the set of open edges and their endpoints is studied.

For both site percolation models and bond percolation models, the focus is on
connectivity properties of the random subgraph G,. Of particular interest is the
set of retention probability parameter values p for which an infinite component ex-
ists. As a consequence of the stochastic independence in the model, Kolmogorov’s
zero-one law implies that there exists a percolation threshold p.(G) such that all
components of G, are finite with probability one if p < p.(G), while there exists
an infinite component of Gp with probability one if p > p.(G). The interpreta-
tion of the percolation threshold as a phase transition point, corresponding to a
melting or freezing temperature, for example, is a reason for the intense interest
in percolation models in science and engineering research and applications.

The value of the percolation threshold is highly dependent on the infinite
graph, and, unfortunately, is exactly known for a very small set of common graphs.
The bond percolation thresholds of the square, triangular, and hexagonal lattices
[7, 16] are 1/2, 2sin(mr/18), and 1 — 2sin(7/18), respectively, and the site perco-
lation threshold of the triangular lattice [8] is 1/2. Although a few other common
lattices are exactly solved, most knowledge of percolation threshold values is in
the form of estimates derived in extensive simulation studies in the physics litera-
ture. This article is focused on issues relating to the derivation of mathematically
rigorous bounds for site percolation thresholds, about which even less is known
than for bond percolation thresholds.

Motivated by applications to atomic lattice structures, typical infinite graphs
that are considered have substantial symmetries in structure. A well-studied class
is the set of eleven Archimedean lattices, which are vertex-transitive tilings of the
plane by regular polygons. A naming system for these lattices lists the number
of edges in the sequence of polygons around a vertex in the lattice, with expo-
nents indicating successive repetitions. As examples, the square lattice is the
(4%) lattice, and the lattice considered in this article is the (4, 8%) lattice. (For
a discussion of the eleven Archimedean lattices, see the beautiful monograph by
Griinbaum and Shephard [5].) The most familiar Archimedean lattices are the
square, triangular, and hexagonal lattices mentioned above. Bounds for unsolved
bond percolation thresholds of Archimedean lattices typically provide intervals of
length less than 0.07, and in two cases determine the leading 2 and 3 digits. In
comparison, all bounds for unsolved Archimedean lattice site percolation thresh-
olds provide intervals longer than 0.09. We will discuss some issues related to
this disparity, illustrate them with the (4,8%) Archimedean lattice, and derive a



slightly improved upper bound for its site percolation threshold.

1.2 Substitution Method

Nearly all of the most accurate percolation threshold bounds have been derived
by the substitution method. The method has been quite successfully applied to
bond percolation models [17, 18, 21, 22, 24, 27, 28, 30, 31, 32], but less progress
has been made for site percolation models [19, 22]. Section 2 will discuss reasons
why bounding site percolation thresholds is more difficult in principle, and discuss
difficulties applying the substitution method to site percolation models.

The substitution method derives upper and lower bounds for the percolation
threshold of an unsolved lattice by comparing probabilities of connections in finite
subgraphs with those of a percolation model on another lattice for which the
percolation threshold is exactly known or precisely bounded. The two percolation
models are compared using stochastic ordering. In the remainder of this section,
we give a description of the basic ideas of the method needed later in this article,
and a brief summary of computational reductions that make the computations
more efficient. For more extensive summaries of the substitution method, see
(26, 32

For]bond percolation models, the two lattices that are to be compared must be
decomposed into isomorphic edge-disjoint subgraphs, called substitution regions,
to provide independence of their connection probabilities. For site percolation
models, the substitution regions must be vertex-disjoint. For both types of mod-
els, all substitution regions must have the same number of boundary vertices, ie.,
vertices which are adjacent to at least one vertex outside the substitution region.
Figure 1 illustrates two substitution regions to be considered for a comparison
later in this article.

Figure 1: Substitution regions with eight boundary vertices for a comparison
considered later in this article. The boundary vertices are indicated by open
circles,

A configuration of a bond percolation model is a designation of every edge
as open or closed. Each configuration on a substitution region partitions the set
of boundary vertices into blocks which are connected by open paths within the
substitution region. By summing the probabilities of configurations that produce
a partition, a probability is obtained, in the form a polynomial function of the
retention probability parameter, for each partition in each of the two percolation
models. Thus, the connection probabilities in each substitution region form a
probability measure on the set of partitions of boundary vertices.
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A partition is a refinement of another if all its blocks are contained in blocks
of the other. The set of partitions can be partially ordered by refinement, forming
the partition lattice.

The probability measures are compared by stochastic ordering, i.e., inequali-
ties between probabilities of upsets in the partition lattices. Since the upset prob-
abilities of the unsolved model are increasing functions, while the upset probabili-
ties for the comparison model are constant (evaluated at its percolation threshold
or the value of a bound), the problem can be reduced to solving upset proba~
bility equations. The upper and lower bounds for the percolation threshold are
the largest and smallest solutions, respectively, of the set of upset probability
equations.

Carrying out the neceassary calculations to derive rigorous bounds would at
first glance appear to be impossible, since the number of upset probability equa-~
tions to solve grows super-exponentially. For example, for eight boundary vertices,
there are at least 2'7%! ~ 1,127 x 10°*? equations to solve. To modify a colloquial
expression, the problem might be called “finding two needles in a haystack.” The
haystack is the set of equations, while the needles are the two that produce the
extremal solutions. The solution method is to “throw away large parts of the
haystack,” i.e., prove that the solutions cannot come from large sets of upsst
probability equations.

Several computational reductions have been developed to allow the calcula-
tions to be completed. An efficient “graph-welding” technique allows the proba-
bilities for the equations to be calculated recursively [10]. If the lattice graphs are
planar, consideration can be restricted to non-crossing partitions [12]. Symme-
try considerations allow partitions to be grouped together into classes, and it is
proved that the desired solutions must be determined by upsets that consist only
of entire classes [11]. Determining stochastic ordering can be converted into a
network flow problem, which can be solved symbolically in MATLAB [10]. With
these reductions, bounds can be computed for planar bond percolation threshold
bounds for substitution regions with eight boundary vertices.

2 Diferences Between Site and Bond Models

There has been considerably more success at finding exact solutions and accurate
rigorous bounds for bond percolation models than for site percolation models. In
this section, we provide numerical results to show this, and discuss theoretical
reasons as possible explanations for the difference in results.

Bond percolation threshold values are generally more accurately known than
site percolation threshold values. For example, while the square lattice is perhaps
the lattice most well-studied in percolation theory, its bond percolation threshold
is exactly known to be 1/2, while the best bounds for its site percolation threshold

are
0.556 < p2**(square) < 0.679492.

Similarly, the bond percolation threshold of the hexagonal lattice is known to
be 1 — 2sin(n7/18) = 0.652703..., but the best bounds for the site percolation
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threshold are _
0.652703 < pi'i®(hexzagonal) < 0.743359,

which are the most accurate bounds for any unsolved Archimedean lattice site
model. In contrast, much more accurate bond model threshold bounds have been
obtained for two Archimedean lattices:

0.522551 < p2°™(3, 6, 3,6) < 0.526490

and
0.740084 < p2°™¥(3,12%) < 0.740761.

These bounds disprove two conjectures of Tsallis [15] and determine the leading
two and three digits, respectively, of the bond percolation thresholds.

There are theoretical reasons why site models are more difficult to deal with
than bond models. By a bond-to-site transformation, the bond percolation model
on a graph G is equivalent to a site percolation model on the line graph of G.
Since there exist graphs that are not line graphs, by Beinecke’s theorem (1], not
every site model is equivalent to a bond model. Thus, site models are more general
than bond models. Consequently, bond models have some additional structure to
exploit than site models. While the nature of this additional structure is unclear,
most exact percolation threshold solutions have been obtained for planar bond
percolation models using properties involving graph duality.

More specifically, to apply the substitution method to site percolation models,
there are several difficulties:

[1] There are fewer “useful” exactly-solved site models to use as comparisons.
Although every solved bond model is equivalent to a site model, which therefore is
also solved, the line graphs of the bond models are typically nonplanar. Inability
to apply the reduction to non-crossing partitions may increase the computational
effort tremendously.

[2] Vertex-disjoint substitution regions are needed to apply the substitution
method. In practice, it is often difficult to decompose an unsolved lattice into iso-
morphic vertex-disjoint substitution regions that are appropriate for a comparison
with an exactly-solved lattice.

[3] To achieve vertex-disjoint substitution regions, edges between the regions
must be subdivided by inserting “ghost vertices” which are considered to be al-
ways open. The ghost vertices serve as the boundary vertices. Typically, the
number of boundary vertices for a substitution region for a site model is larger
than that for the same region in a bond model on the same lattice, which could
greatly increase the computational burden to complete the substitution method
calculations.

[4] Since there are fewer vertices than edges in a typical subgraph, there are
fewer random elements in the corresponding site model than in the corresponding
bond model. For this reason, larger substitution regions are needed for site mod-
els than for bond models to have comparable randomness to obtain comparably
accurate bounds. However, use of larger substitution regions further increases the
number of boundary vertices.
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While substitution method calculations for site percolation models have not
become efficient, some adaptations have been found to help circumvent some of
the difficulties mentioned above. These will be applied to the Archimedean (4, 8%)
lattice in Section 3.

[1] Multiple-stage substitutions may be used. This approach helps deal with
non-planarity, by removing different diagonal edges from faces in stages to pro-
duce a planar comparison lattice or to produce the line graph of a solved bond
percolation model. However, it is difficult to discover multi-stage comparisons
that will be likely to provide accurate bounds.

[2] The set of ghost boundary vertices that are adjacent to a specific vertex in
the substitution region are either all connected to each other (if the vertex is open)
or completely disconnected (if the vertex is closed). This allows us to consider only
partitions of the vertices in the “internal boundary” of the substitution region,
except that for blocks of size one we must distinguish between open and closed
vertices. The structure of this augmented partition lattice currently needs to be
analyzed on a case-by-case basis. However, it does have the advantage that, by
considering partitions of fewer vertices, it has a smaller number of upsets, making
substitution method calculations less extensive.

3 The (4,8%) Lattice

3.1 Previous Results

The (4, 8°%) lattice, which is often called the “bathroom tile” lattice, is one of the
eleven Archimedean tilings. The notation (4, 8%) refers to the fact that a square
and two octagons meet at each vertex. The (4, 8%) lattice is illustrated in Figure
2. Note that the lattice is not a line graph, since it contains the three-star as an
induced subgraph, which is forbidden by Beinecke's theorem.

Figure 2: An induced subgraph of the (4,8?) lattice.

Two methods for deriving bounds have been applied previcusly to the site
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percolation threshold of the (4,8%) lattice.

The grouping method [9] provided an upper bound: The endpoints of each
edge between squares in the (4, 8°) lattice can be viewed as a single vertex in a
new graph, and is considered to be open if and only if both original vertices are
open, producing a square lattice. If there is an infinite open component in this
square lattice site percolation model, then there is an infinite open component in
the (4, 8?) lattice site model. Therefore,

pi*e(4,8%) < \/paite(square).

The smallest upper bound for the square lattice site percolation threshold [19] is
0.679492, so

paie(4,8%) < 0.824313.

Note that Suding and Ziff [14] estimated p;**°(square) to be 0.5927460 by Monte
Carlo simulation, so if the exact value were determined to be near this value, the
bound for the (4,8%) lattice by this method could not be lowered to less than
0.7698. Since their simulation estimate for p2'*c(4, 82) is 0.729724, this method is
unlikely to produce a very sharp upper bound.

The line graph of a square lattice with each edge subdivided has a bond
percolation threshold equal to 1/ V2. The resulting graph is a (4, 8%) lattice with
diagonals inserted in every square. By comparing this graph with the (4,82)
lattice using the substitution method, [20] obtained the best numerical bounds:

1 it 2
0.707106 < — < pi""°(4,8%) < 0.79997.
\/i' - pc ( )

However, an improved upper bound for the square lattice site percolation thresh-
old could provide a smaller upper bound than 0.79997 for p3<(4, 82).

3.2 An Improved Upper Bound

In this subsection, we illustrate the issues mentioned above by applying the sub-
stitution method to derive bounds for the site percolation threshold of the (4, 8%)
lattice. The first issue is to find a useful comparison lattice, i.e., a lattice with
somewhat similar structure for which the site percolation threshold is exactly
known or accurately bounded. Since the (4,8%) lattice has four-fold rotational
symmetry, a natural choice is the line graph of the square lattice, which consists
of a square lattice with diagonal edges inserted in half of the squares in a checker-
board pattern. By the bond-to-site transformation, its site percolation threshold
is exactly 1/2.

We use a two-stage substitution process to obtain the (4, 8?) lattice from the
line graph of the square lattice. The first stage removes diagonal edges from
half of the squares containing diagonals in the line graph, while the second stage
replaces the diagonal edges from the other half of such squares with a subgraph
that converts the graph into the (4, 8%) lattice.
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3.2.1 The First-Stage

Each of the two lattice graphs must be decomposed into isomorphic vertex-disjoint
substitution regions, with all substitution regions having the same number of
boundary vertices. Figure 3 shows a decomposition of the line graph of the
square lattice, denoted L, which may be visualized as a square lattice with both
diagonal edges inserted in alternating squares in a checkerboard pattern. By the
bond-to-site transformation, the site percolation threshold of L is equal to the
bond percolation threshold of the square lattice, which is exactly 1/2. L is to
be compared to an intermediate graph, denoted H. Figure 3 also shows H, in
which some of the diagonal edges have been deleted from L, decomposed into
substitution regions.

In order to decompose I. and H into vertex-disjoint substitution regions, a
ghost vertex is inserted to subdivide each edge that crosses the boundary of a
substitution region. The two substitution regions, with their boundary vertices,

PSRN
N
kos

Figure 3: An illustration of the first stage of the substitution. Dashed lines
indicate the decomposition of the lattices into vertex disjoint substitution
regions. Left: The line graph of the square lattice, drawn with squares of
different edge-lengths so vertex locations correspond to those in the (4,82)
lattice. Right: Diagonal edges have been removed from the small squares in
the line graph of the square lattice.

Notice that each of the substitution regions has 12 boundary vertices, so the
partition lattice of boundary vertices is extremely large. However, we may con-
sider a much smaller augmented partition lattice based on partitions of the four
vertices in the internal boundary, ie., the non-boundary vertices which are ad-
jacent to boundary vertices. The reduction to the internal boundary is possible
because the boundary vertices are grouped in triples, with each triple adjacent
to only one internal boundary vertex. Consequently, the boundary vertices in a
triple are either all connected to each other or completely disconnected.

To describe the augmented partition lattice, we introduce the following no-
tation. Suppose that the internal boundary vertices are labeled A, B, C, and
D, in cyclic order. In our notation for a partition, let the upper case letter for a
vertex indicate that the vertex is open, and the lower case letter indicate that it is
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Figure 4: Substitution regions for the first-stage of the calculation of the
bounds. Left: A subgraph of the intermediate graph. Right: A subgraph of
the matching graph of the square lattice.

closed. A partition is denoted by a sequence of letters and vertical bars, where the
bars separate sets of vertices (called blocks) which are connected by open paths
in the substitution region. If two or more vertices are connected, they must be
open. However, if a vertex is not connected to any other, it may be either open
or closed, which is indicated by an upper or lower case letter, respectively. Thus,
in general, the elements of the augmented partition lattice are all set partitions of
{A, B,C, D} augmented by partitions in which any block of size one may indicate
that the vertex is closed. For example, for a general substitution region with
four internal boundary vertices, in addition to AB|C|D, the augmented partition
lattice could also contain AB|C|d, AB|c|D, and AB|c|d.

We now apply the substitution method to derive an upper bound for p2t*(H).
The substitution regions are illustrated in Figure 4. Each includes a square with
three ghost vertices added as boundary vertices at each corner of the square. The
substitution region for L also includes both diagonals of the square.

Since there are four vertices in the regions, there are only 2* = 16 configura-
tions. A further simplification is that there are only six symmetry classes which
have positive probability. Instead of considering partitions of the 12 boundary
vertices, we consider the augmented partitions of four vertices. The augmented
partitions are grouped into symmetry classes by rotation. The probability mea-
sure on the augmented partitions for L is given by:

P|ABCD)] = p*.
P{ABC|d] = P|[ABD|C] = P[ACD|B] = P[A|BCD] = p*(1 — p).
PlAC|b|d] = Pla|BD]d = p*(1 - p)*.
P[A}b|C|d] = Pla|B|c|D] = .
P|AB|c|d] = Pla|BC|d] = P[a|b|CD] = P[AD|bld] = p*(1 — p)*.
P[Alblc|d] = Pla|B|c|d] = Pla|b|C|d] = Plalblc| D] = p(1 — p)°.
Plalblcld] = (1 - p)".
The probability measure on the augmented partitions for H is given by:

P[ABCD] = p*.
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P[ABC|d) = P[ABD|d = P[ACD|b] = P[a|BCD)] = p*(1 —p).
P[AJb|C|d] = Pla|Ble|D] = p"(1 - p)*.

P[ABl|c|d] = Pla|BC|d] = P[a}b|CD] = P[AD|blc] = p*(1 — p)*.
P[Ablcld] = Pla|Blc|d] = Plalb|Cld] = Plalble| D] = p(1 - p)°.
Plalblcld] = (1 - p)*.

Define the class lattice to be the set of symmetry classes, partially ordered by
refinement, in which one class is a refinement of a second class if any partition
in the first class is a refinement of any class in the second. By the symmetry
reduction in [11], the upsets which provide the largest and smallest solutions are
upsets in the class lattice. Figure 7 (on the left) provides the Hasse diagram of

the class lattice of the augmented partitions on four vertices which have a positive
probability in one or both of the probability measures.

We are now prepared to determine an upper bound for p:*¢(H). Notice that
the only difference between the two probability measures is for the two classes
represented by AC|b|d and A|b|C|d. From this fact, we see that the two probability
measures give equal probabilities for the four upsets generated by class ABCD,
by class ABC|d, by class AB|c|d, and by class Albjc|d. Since we fix the parameter
of the site percolation model on L at its percolation threshold, 1/2, and the
upset probabilities for H are increasing functions, 1/2 is the solution to the upset
probability equations for all four of these upsets.

There are only four other upsets in the class lattice, generated by class AC|b|d,
by class Alb|C|d, by classes AC|bld and AB|c|d, and by classes AJb|C|d and
AB|cld. The upset probability functions for the upsets generated by the sec-
ond and fourth of these are equal, so again have the solution 1/2. The upset
probability equations for the first and third upsets, respectively, are

p'+4p°(1 —p) = 7/16

and

p' +4p°(1 —p) + 4p°(1 - p)* = 11/16.
Their solutions (rounded up) are 0.577962 and 0.586668, respectively. Therefore,
the smallest and largest solutions produce the bounds

0.500000 < pi*¢(H) < 0.586668.

3.2.2 The Second Stage

In the second stage of the upper bound derivation, we compare the (4, 8%) lattice
to the intermediate lattice H, setting the vertex-retention parameter of H at the
upper bound value that was calculated during the first stage.

The intermediate lattice H may be decomposed into vertex-disjoint substi-
tution regions in a different way, with each substitution region replaced by a
different substitution region that produced the (4, 82) lattice. Figure 5 shows the
decompositions of the two lattices, with the generic substitution regions shown

146



Figure 5: A different decomposition of the lattice graphs. Dashed lines par-
tition the lattices into vertex disjoint regions. Left: The intermediate lattice

H. Right: The (4, 82) lattice.

8s

Figure 6: Substitution regions for the second stage of the calculation of the
bounds. Left: A subgraph of the intermediate graph H. Right: A subgraph
of the (4, 82) lattice.

in Figure 6. The probability measure for the substitution region in H was cal-
culated in the first stage. The probability measure for the substitution region in
the (4, 8?) lattice is somewhat more complicated, but can be calculated relatively
easily from the 2® configurations on its eight internal vertices.

The probability distribution for the substitution region of the (4,8%) lattice
is:

PJABCD] = p°.

P[ABC|D] = P[BCDI|A] = P[CDA|B] = P[DAB|C] = p’(1 - p).

P[ABC|d] = P[BCD|a] = P[CDA|b = P[DAB|c] = p*(1 — p).
P{AB|c|D] = P|BC|d|A] = P[CD|a|B] = P[DA|b|C]

= P[ABI|C|d] = P|BC|Dla] = P[CD|AJ}| = P[DA|BId.
=p"(1 ~p)°.
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P[ABIcld] = Pla|BC|d] = PlalblCD] = PIDAJbld = p(1 — )",

P[AB|C|D] = P|A|BC|d] = P[A|B|CD] = P[DA|B|d = p*(1 - p)*.

P[AC|B|d) = P[a|BD|C] = P[D|ACIb] = P[A|BD|d] = p°(1 —p)*.
P{ACb|d] = Pla|BD|d] = p°(1 — p)* + 20°(1 - p)°.
P[A|BIC|D] = p*[(1 - p)* + 4p(1 - p)* + 20°(1 - p)"].

P[A|B|C|d] = P[a|B|C|D] = P[A[]b|C|D] = P[A|B|c|D]
=p’(1 = p)[(1 —p)* + (1 - p)* + 9°(1 - p)°].
PIA|B|cld) = P{alBICld] = Plalb|C|D] = P{AcD]
=p*(1 —p)*[(1 - p)* + 4p(1 - p)* + 5p°(1 — p)* + 20°(1 - p)].
P[Ab|C|d] = Pl[a| B|c| D]
=p°(1 - p)’[(1 - p)* +4p(1 —p)* + 6p°(1 — p)* + 20°(1 — p)].

P[Alb|c|d] = Pla|B|c|d] = Pla|b|C|d] = Plalblc| D] = p(1 ~ p)°.

Plajbleld] = (1~ p)*.

The class lattice for the augmented partitions that have positive probability
in either the model for H or the model for the (4, 8?) lattice is shown in Figure 7.

Since we do not know the exact site percolation threshold of H, we must
evaluate the probability measure for site percolation on H at its lower bound
of 1/2 to derive a lower bound for the (4,8%) lattice and at its upper bound
of 0.586668 to derive an upper bound for the (4,8%) lattice. While there are
considerably more upsets in this class lattice than for the first stage, we can
reduce consideration to a small number of upsets for each bound.

It is sufficient to consider only one upset to determine that this comparison
does not improve the best previous lower bound for the (4, 8%) lattice. The class
represented by Albjc|d is simply the event that at least one of the vertices 4, B,
C, or D is open. In both models, this probability is 1 — (1 — p)*. Thus, when
substituting 1/2 in the probability measure corresponding to H, the corresponding
upset equation is 1 — (1 — p)* =1 — (1/2)*. The solution 1/2 is smaller that the
previous lower bound of 0.707106, so the smallest solution is also.

We now show that we may reduce consideration to only six upsets to derive
an upper bound for the (4,8%) lattice. From the first stage, recall that only
six classes have positive probability in the probability measure corresponding to
H. An upset U that has a minimal class other than one of these six classes
will have the same probability in the model for H as some upset V' generated
by a subset of these classes. However, in the probability measure for the (4, 8%)
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ABC|d : e
PP \ ABCld }.. =
. ABlc|D| |A|B|C|d
AC|bld AC|Bld |c] i IE I
aB ¢ [ [4B|ca| [aiB|C)d
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Alble|d i }ﬂ
Afblcld

1
alblcld a|blcld

Figure 7: Hasse diagrams for the class lattices for the two stages of substitu-
tions, in which one representative partition is shown, while the others in the
class are obtained by rotations, Left: The Hasse diagram for the partitions in
the first stage substitution. Right: The Hasse diagram for the partitions in
the second stage. Bold rectangles indicate partitions with positive probability
in both models.

lattice, the probability of U will be larger than that of V. Hence, upset U will
have a smaller solution than upset V. Since we seek the largest upset probability
equation solution, consideration can be reduced to upsets generated by the six
classes.

The six classes generate only six non-trivial upsets. We list the representatives
of the classes which generate these upsets, along with the solutions to their upset
probability equations. Since we are deriving an upper bound, the solutions are
rounded up.

ABCD 0.765943
ABC|d 0.765943
AC|bld 0.780963
AB|c|d 0.765943
AClbld and AB|c|d 0.785661
Alblcld. 0.586668

Selecting the largest solution, we have established that p***(4, 8%) < 0.785661,
which is slightly smaller than the previous upper bound .79997 of [20]. Together
with the previous lower bound of [20], we have

0.707106 < pi**°(4,8%) < 0.785661.

The length of the interval between the bounds was reduced by 15%. Furthermore,
the interval is shorter than that for the hexagonal lattice, so provides the most
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accurate bounds for any unsolved Archimedean lattice site percolation threshold.

4 Summary and Further Research Directions

The substitution method has mainly been developed with bond percolation mod-
els in mind. In particular, it may have been tailored to be more applicable to
bond models in the attempt to disprove the conjectured exact values by Tsallis.
In order to adapt the method to derive improved percolation threshold bounds
for site percolation models, there are several issues to consider. There is a need
to determine the useful structure of the augmented partition lattice. Developing
approaches for discovering two-stage comparisons that will be computationally
feasible and produce more accurate bounds would be useful. It would be helpful to
determine reductions that produce a small class of equations that are sufficient to
determine the percolation threshold bounds. Finally, one would like to understand
when bounds will and will not improve for larger substitution regions. Knowledge
regarding these issues could be exploited to improve site percolation threshold
bounds first for other Archimedean lattices and then for broader classes of lattices.

Acknowledgment: The author gratefully acknowledges financial and travel sup-
port from the Acheson J. Duncan Fund for Research in Statistics at Johns Hopkins
University to conduct this research.

References

{1] Beineke, L. W. (1968) Derived graphs and digraphs. Beitrige zur Graphen-
theorie, (H. Sachs, H.-J. Voss, and H.-J. Walter, eds.), Teubner, Leipzig,
17-33.

[2] van den Berg, J. and Ermakov, A. (1996) A new lower bound for the critical
probability of site percolation on the square lattice. Random Structures &
Algoritms 8, 199-212.

[3] Bollob4s, B. and Riordan, O. (2006) Percolation, Cambridge University
Press.

[4] Grimmett, G. (1999) Percolation, Springer.
[6] Griinbaum, B. and Shephard, G. C. (1987) Patterns and Tilings, W. H.
Freeman.

[6] Hughes, B. (1996) Random Walks and Random Environments, Volume 2:
Random Environments, Oxford University Press.

[7] Kesten, H. (1980) The critical probability of bond percolation on the square
lattice equals 1/2. Communications in Mathematical Physics 74, 41-59.

[8] Kesten, H. (1982) Percolation Theory for Mathematicians, Birkhiuser.

[9] Luczak, T. and Wierman, J. C. (1988) Critical probability bounds for two-
dimensional site percolation models, Joumnal of Physics A: Mathematical and
General 21, 3131-3138.

150



[10] May, W. D. and Wierman, J. C. (2003) Recent improvements to the substitu-
tion method for bounding percolation thresholds. Congressus Numerantium
162, 5-25.

[11] May, W. D. and Wierman, J. C. (2005) Using symmetry to improve per-
colation threshold bounds. Combinatorics, Probability and Computing 14,
549566,

[12] May, W. D. and Wierman, J. C. (2007) The application of non-crossing parti-
tions to improving percolation threshold bounds. Combinatorics, Probability
and Computing 17, 285-307.

[13] Riordan, O. and Walters, M. (2007) Rigorous confidence intervals for critical
probabilities. Phys. Rev. E 76, 011110.

[14] Suding, P. N. and Ziff, R. M. (1999) Site percolation thresholds for
Archimedean lattices. Physical Review E 60, 275-283.

[15] Tsallis, C. (1982) Phase diagram of anisotropic planar Potts ferromagnets:
A new conjecture. Journal of Physics C 15, L757-L764.

[16] Wierman, J. C. (1981) Bond percolation on honeycomb and triangular lat-
tices, Advances in Applied Probability 13, 203-313.

[17] Wierman, J. C. (1990) Bond percolation critical probability bounds for the
kagomé lattice by a substitution method. Disorder in Physical Systems (G
Grimmett and D J A Welsh, eds.), Oxford University Press, 349-360.

[18] Wierman, J. C. (1992) Equality of the bond percolation critical exponents
for two pairs of dual lattices, Combinatorics, Probability & Computing 1,
95-105.

[19] Wierman, J. C. (1995) Substitution method critical probability bounds for
the square lattice site percolation model. Combinatorics, Probability and
Computing 4, 181-188.

[20] Wierman, J. C. (2001) Site percolation critical probability bounds for the
(4,8%) and (4,6, 12) lattices. Congressus Numerantium 150, 117-128.

[21] Wierman, J. C. (2002) Bond percolation critical probability bounds for three
Archimedean lattices, Random Structures and Algorithms 20, 507-518.

[22] Wierman, J. C. (2002) An improved upper bound for the hexagonal lattice
site percolation critical probability. Combinatorics, Probability and Comput-
ing 11, 629-643.

[23] Wierman, J. C. (2003) Upper and lower bounds for the kagome lattice bond
percolation critical probability, Combinatorics, Probability and Computing
12, 95-111.

[24] Wierman, J. C. (2015) An improved upper bound for the bond percolation
threshold of the cubic lattice. Proceedings of the 2015 Joint Statistics Meet-
ings, American Statistical Association, 3610-3620.

[25] Wierman, J. C. and Yu, G. (2016) Rigorous bounds relating bond percolation
thresholds of two three-dimensional lattices, Congressus Numerantium 227,
157-176.

151



[26] Wierman, J. C. (2016} Tight bounds for the bond percolation threshold of
the (3,12%) lattice, Journal of Physics A: Mathematical and Theoretical 49,
475002.

[27) Wierman, J. C. (2017) Bounds for bond percolation thresholds of
Archimedean lattices with degree three, Journal of Physics A: Mathemat-
ical and Theoretical 50, 295001.

[28] Wierman, J. C. (2017) Strict inequalities between bond percolation thresh-
olds of Archimedean lattices. Congressus Numerantium 229, 231-244.

[29] Wierman, J. C. (2017) On bond percolation threshold bounds for
Archimedean lattices with degree three, Journal of Physics A: Mathemat-
teal and Theoretical 50, 295001.

[30] Wierman, J. C.; Nathan, A.; and Lim, E. (2012) Bond percolation thresh-
old bounds for planar lattices with generators with four boundary vertices.
Congressus Numerantium 213, 169-183.

[31] Wierman, J. C. and McCarthy, S. (2015) An upper bound for the bond
percolation threshold of the cubic lattice. Congressus Numerantium 224, 135~
146.

[32] Wierman, J. C.; Yu, G.; and Huang, T. (2015) A disproof of Tsallis’ bond
percolation threshold conjecture for the kagome lattice. Electronic Journal
of Combinatorics 22, P2.52.

152



