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Abstract

A rigid vertex is a vertex with a prescribed cyclic order of its
incident edges. An embedding of a rigid vertex graph preserves such
a cyclic order in the surface at every vertex. A cellular embedding of
a graph has the complementary regions homeomorphic to open disks.
The genus range of a 4-regular rigid vertex graph I is the set of genera
of closed surfaces that I' can be cellularly embedded into. Inspired
by models of DNA rearrangements, we study the change in the genus
range of a graph I' after the insertion of subgraph structures that
correspond to intertwining two edges. We show that such insertions
can increase the genus at most by 2, and decrease by at most by 1,
regardless of the number of new vertices inserted.

1 Introduction

A rigid vertex is a vertex with a prescribed cyclic order of its incident
edges [2]. An embedding of a rigid vertex graph in a surface preserves such
a cyclic order in the surface at every vertex. If a general graph I seen as a
1-complex is embedded into a closed surface F, then the complement of T'
forms a family of regions. If each region is homeomorphic to an open disk,
we say that I' is cellularly embedded into this closed surface F' [6]. The
genus range of a 4-regular rigid vertex graph I' is the set of genera of closed
surfaces that I' can be cellularly embedded into [2]. It was shown in [2]
that the genus range of a 4-regular graph differs from the genus range of
the same graph when the vertices are considered rigid.

To each closed surface embedding of a graph one can consider a neigh-
borhood of the graph within the surface. This neighborhood forms a ribbon
graph (see next section for details). Conversely, from any ribbon graph
associated to a graph I' a cellular embedding of I in a closed surface can
be obtained. The genus of an embedding is therefore computed from the

CONGRESSUS NUMERANTIUM 232 (2019), pp.165-188



number of boundary components of a ribbon graph using the Euler charac-
teristic formula. Each 4-valent rigid vertex in a ribbon graph may achieve
one of two different connectivity of the boundary components at that vertex.
Hence, for a graph of n rigid 4-valent vertices, there are up to 2™ construc-
tions of ribbon graphs. The genus range, i.e., the set of all possible surface
genera where a graph can be embedded, is obtained through the number of
boundary components of all possible ribbon graphs.

A word w over an alphabet T is a double occurrence word (DOW) if
each symbol in ¥ appears in w precisely 0 or 2 times. Such words are also
known as unsigned Gauss codes. Each DOW has a corresponding 4-regular
rigid vertex graph I' where V(I') consists of the symbols within the DOW
w and E(T) are determined by the adjacent symbols in w [5, 2].

Let u be a word with distinct symbols, a single occurrence word (SOW),
such that a DOW w and u share no symbol. We consider the situations when
wu is inserted in two different locations of w, or, when u and its reverse u
are inserted in w thereby constructing another DOW. The former case is
called a repeat insertion, while the latter case is called return insertion [5].

The DOWSs and the particular repeat/return insertions are motivated
from models of DNA recombination [1]. Scrambled genes in certain ciliate
species can be represented with DOWs and the gene rearrangement pro-
cess can be modeled through removal of subwords in these DOWs [1, 3]. In
this case, the 4-valent rigid vertex graphs associated with the corresponding
DOWSs can be seen as the spatial arrangement of the DNA during the re-
combinant processes. It has been observed that most prevalent scrambling
(over 90% of the scrambled genes) in the genome of some species can be de-
scribed through repeat/return insertions in DOWs [4]. Therefore, changes
of properties of graphs associated with DOWSs through repeat/return inser-
tions have been studied [5, 7.

In this paper, we study changes in the genus ranges of 4-valent rigid
vertex graphs that correspond to repeat/return insertions in their corre-
sponding DOWs. We observe that such insertions (regardless of the num-
ber of symbols) change the genus of an associated ribbon graph by p where
p € {—1,0,1,2}. If the inserted word has even number of symbols, then
p # —1. Since removal of repeat/return subwords in a DOWSs can corre-
spond to a DNA rearrangement step, we consider the relationship between
the genus range of a DOW minimum number of steps (called the nesting
index) needed to reduce a given DOW to the empty word by a sequence
of deletions of repeat and return subwords. Although the maximum genus
range is bounded by twice the nesting index, we conjecture that this bound
is not achieved.
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2 Preliminaries

2.1 Graphs and Words

A graph T' = (V, E,n) is a 3-tuple where V' = V(I') is the set of vertices,
E = E(T') is the set of edges and n : E — {{u,v}|u,v € V(I')} such that
for e € E, n(e) = {u,v} is the set of endpoints of E. In this paper all graphs
are finite. A directed graph I' = (V, E, s, t) has a source function s: E — V
and target function t : E — V where for ¢ € E, s(e) = u indicates the
source (start) of e and t(e) = v is the target (end) of e. If there are no
ambiguities we write e = (u,v) = uv. A walk, W, in an undirected graph T
is a sequence of vertices and edges

W= (1}1161332#" *:vn—l:e:n—livn)

where 7(e;) = {v;,v;41} for all # <n — 1. In the case of a directed graph,
the walk satisfies s(e;) = t(e;—1) = v; for 2 < ¢ < n. A graph is connected
if for all u,v € V, there exists a walk from u to v. We say that a directed
graph is strongly connected if for any pair of vertices u,v € V, there exists a
walk from u to v and a walk from v to . For a graph I', an Eulerian circuit
is a walk W = (v1,€1,v2,...,%,_1, en—1,vs) Where each e ¢ E(T') appears
exactly once in W and v; = v,,.

A closed surface S is a compact surface without boundary. A closed
orientable surface S is either the sphere S or the connected sum, § = #,T,
of g copies of the torus T where g is called the genus of S (the genus of §2
is 0). For the remainder of the paper all surfaces are orientable.

A graph I can be embedded into a closed surface S as a 1-complex. The
set S~ I' forms a family of regions. We call the embedding of T into § a
cellular embedding if each region in S —I' is homeomorphic to an open disk.

A (finite) set ¥ is called an alphabet where elements of ¥ are called
symbols. If ag,...,a, € I then the concatenation w = ag---a, forms a
word over ¥ and we say that the symbols a; (i = 1,...,n) appear in w. We
denote the set of symbols in a word w as £} = {a € |a appears in w}.
We denote the set of all non-empty words over T as £+. The empty word
€ is a word that contains no symbols. Then £* = £+ U {e}. If w = wyvuy
so that u;,v,us € I*, we say that v is a subword of w which we denote
as v C w. If w=ap---a, then the reverse of w is w® = a,,---ay. Two
words u =ay - a, and v = by - - - b, are equivalent, or u ~ v, if there exists
a bijection f: Ly — Ty such that f(ay) - f(an) =b;---by.

2.2 Double Occurrence Words and Assembly Graphs

In this subsection we recall definitions and set notations for double oc-
currence words and assembly graphs [3].
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Definition 1 (Double occurrence words). We say that w € I* is a double
occurrence word (DOW) if for every a € X, a appears in w 0 or 2 times.

The set of DOWSs is denoted as Epow. For example, the word 121323
is in Epow. For the remainder of the paper, we set £ =N.

For a rigid vertex v with deg(v) = 4, we label its incident vertices
e1,€2,€3,e4. We consider the equivalence relation among orders of these

edges generated by
(eit3, it €ip1,€) ~ (€5, €041, €42, €343) ~ (€141, €542, €543, €5)
where the subscript addition is mod 4.

Definition 2 (Rigid vertex). A rigid vertex is a vertex with a prescribed
cyclic order of its incident edges up to this equivalence relation.

A visual representation for a rigid

vertex is shown in Figure 1. Consecu- es

tive edges within the cyclic orientation i

are called neighbors. As depicted in Fig- = =
ure 1, neighbors are separated by an an- G

gle of “90 degrees” while non-neighbors

are separated by an angle of “180 de-  pigyre 1: 4-valent rigid vertex
grees”. In particular, in Figure 1, es

and ey are neighbors of e; and e3 is a

non-neighbor of e; [3]. An embedding of a rigid vertex graph in a surface
is required to preserve a given cyclic order of adjacent edges at every ver-
tex, so that a neighborhood of every vertex on the surface is as depicted in
Figure 1.

Definition 3 (Transverse Eulerian circuit). A transverse Eulerian circuit
in a 4-valent rigid vertex graph is an Eulerian circuit where every two con-
secutive edges in the circuit are non-neighbors.

Example 1. The graph in Figure 2 has no transverse Eulerian circuit while
the graph in Figure 3 does.

Figure 2: A 4-valent rigid vertex Figure 3: A 4-valent rigid vertex
graph with no transverse Eulerian graph with a transverse Eulerian cir-
circuit cuit
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Definition 4 (Assembly graph). An assembly graph is a 4-regular rigid
vertex graph with a transverse Eulerian cireuit.

Each double occurrence word w = agp---a, has a corresponding as-
sembly graph T' = (Ziy;, E). The 4-valent rigid vertices of the assembly
graph are a; € Xy, and the Eulerian circuit is determined by w such
that the ith edge in the circuit has end-points n(e;) = {a;,a:41} (1 4 1
is taken mod n). Because each vertex appears twice in the circuit, ev-
ery vertex has four incident edges, and the consecutive edges in the circuit
indicate the non-neighboring
edges. The transverse Eulerian 5
circuit also gives an orientation b
of I' such that for e € E(T), 1 2 “) S 33
s(e) = a; and t{e) = a;y; for
some ¢ € {0,...,n}. More pre- =;/
cisely, given a vertex v € Iy, N e
there exists as,a; € E[.w] such
that ¢ # j and a; = a; = v.
Then the prescribed cyclic or-
der of the edges incident to v
is (@4—184,@j-10,2;0:41,a5a41), so that T has a transverse Eulerian cir-
cuit [3]. Conversely, if a 4-regular rigid vertex graph has an Eulerian circuit,
then listing the order in which the vertices appear in the circuit forms a dou-
ble occurrence word.

Figure 4: An assembly graph correspond-
ing to 121323

Example 2. The corresponding assembly graph for the DOW 121323 is
I' = ({121323}, E) where E = {12,21,13,32,23,31}. A representation for
the assembly graph of 121323 is shown in Figure 4.

2.3 Ribbon Graphs and Genus Ranges

Let I be an assembly graph. For each rigid vertex v in T', construct a
square with v at its center. For each edge incident to v and w, we thicken
the edge to construct a ribbon connecting the squares such that the edge
is a centerline of the ribbon as shown in Figure 5. Ribbons are connected
to squares in such a way that the resulting surface is orientable. We call
this compact surface with boundary a ribbon graph of I. The set of all
ribbon graphs of I' is denoted Rp. By attaching 2-cells (disks) along all
boundary circles, we obtain a closed surface $ in which the assembly graph
I is cellularly embedded. Conversely, any cellular embedding of T in a closed
surface S can be constructed in this way, and a regular (thin) neighborhood
of I in S can be regarded as a ribbon graph of T'.

Each vertex square has two possible ways to connect as demonstrated in
Figure 7. The first is represented in Figure 6 where boundary connections
are depicted as in Figure 7(A). We note that the ribbon graph is orientable
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Figure 5: Connecting squares Figure 6: Visiting a square
by ribbons [2] twice [2]

and the boundary components are oppositely oriented along the ribbons
and without loss of generality we choose the orientations as depicted in Fig-
ure 7(A). The second way of attaching the ribbon is touching the band from
bottom to top (cf. Figure 7(A) vs. Figure 7(B)). The boundary connections
of Figure 7(B) is represented by Figure 7(C). For an assembly graph I' of
n vertices we have up to 2" possible ribbon graphs and thus 2" possible
embeddings. Due to symmetry we can consider only 2"~! cases. The ways
that the embeddings of I' change correspond to the way a ribbon connects
to a vertex square in the corresponding ribbon graph, and the change of
the boundary components of the ribbon graph R can be represented as in
Figure 7. The boundary connection as represented in Figure 7(A) is called
type 1 vertex configuration and the boundary connection in Figure 7(C) is
type 2 vertex configuration.

é;;s%e

(A)

©)

Figure 7: Boundary connection change at a vertex [2]. (A) type I vertex
configuration and (C) type 2 vertex configuration

For an assembly graph I' embedded in a closed surface S, with neigh-
borhood ribbon graph R € Ry, the number of boundary components of R
is denoted by b(R). Using the Euler characteristic for the closed surface
x(8) = [V|—|E|+b(R), we calculate the genus g(R) = ¢(5) = 3(2—x(9)).
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For an assembly graph with n vertices (and 2n edges) we have
1
o8) = 32 (V|- |El+5(R)

= 32 (n =2 +b(R)] = 5[2+n — H(R) (1)

The set of integers that represent the genera of the closed surfaces where an
assembly graph I' is embedded is the genus range of T', denoted GR(T) [2).

For each boundary connection change at a vertex of I, the total number
of boundary components in I' can either increase by 2, decrease by 2, or
remain the same as represented in Figure 8.

(a) (b) - .{c} (d) (e)

33 1—1 2—=4

Figure 8 All possible boundary connection changes (figure from [2])

It is known that the genus range of an assembly graph consists of con-

secutive integers so that the genus range GR(T') can be represented as a
closed interval of integers [a,b] where @ = min GR(I') and b = max GR(I')

[2].
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3 Genus Ranges of Assembly Graphs and Re-
peat/Return Insertions

In this section we consider assembly graphs and their genus ranges, in
particular, how genus ranges change with insertion of repeat or return words.
The assembly graph corresponding to the DOW w is denoted with I',,. We
use the notation R,, instead of Ryr .

Example 3. Consider the assembly graph 123123 and the following two
ribbon graphs R, R' € Rja3123 as depicted in Figure 9a and Figure 9b.
The genus of each ribbon graph may not necessarily be the same. As we
can see in Figures 9a and 9b, b(R) = 5 while 5(R') = 3. Thus we have
9(R) = 0 # 1 = g(R'). Changing the types of vertex configurations at
every vertex, one can show that GR(T'123123) = [0, 1].

(a) R (b) R
Figure 9: I'123123 and two of its ribbon graphs R, R’

Properties of repeat and return insertions on DOWs have been stud-
ied to determine relationships between DOWs [5, 7]. We observe how re-
peat/return insertions of DOWSs affect the genus ranges of the assembly
graphs that correspond to these DOWs.

Definition 5 (Repeat and return insertions). Suppose u,v,w € £* such
that uvw € Epow For the word where z € £t such that uzvazw € Ypow,
we say that uzvzw is a repeat insertion of uvw and for uzvefw we say it
is a return insertion of uvw.

Example 4. Let wvvw = 121323 = wv'w’ with u = 1213, v = 23, v' = 2,
w=¢, and w' = 3. Let z = 45, Then 1213452315 = uzvrw is a repeat
insertion of z and 1213152543 = uxv'zRw’ is a return insertion of z in
121323. The corresponding graphs are depicted in Figures 10a, 10b, and
10c.

The repeat/return insertions definition is adapted from the definition in
[5]. Now we look at how the properties of repeat and return insertions on
DOWs affect their corresponding assembly graphs and genus ranges.
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(a) 21323 (b) I'1213172345, (¢) I'i213172513,
2-interlace of ez and es 2-interlace of e; and e;

Figure 10: Crossing edges and adding vertices 4 and 5 to construct 10b
and 10c

Let I' = (V,E) be an assembly graph. A k-interlace between edges
e,/ € E is the process of “intertwining” e and ¢’ so that they cross k
times, and adding vertices to these k crossings. A visual interpretation of a
k-interlace of e and e’ is represented in Figure 11.

(2D AR

@r ®)

Figure 11: k-interlace of e,e’ € E(I)

A k-interlace between two edges represents the changes of the assem-
bly graph by insertion of either a repeat and or a return insertions of the
corresponding DOW. Let uvw € Zpow, let y = v ...y be a SOW and
v’ € {y,y®} be SOWs so that uyvy'w € Zpow. We can represent the
assembly graph of the word uvw as in Figure 11a and the assembly graph
of the word uyvy'w as Figure 11b where 3;,...,%; are the newly added
vertices to the k-interlace of e and e’. The graph I'121323 is depicted in
Figures 10a, and consider three of its edges e;, e; and es. The 2-interlace
of e; and e3 corresponds to the repeat insertion of 45 as shown in 10b; and
2-interlace of e; and e; corresponds to the return insertion of 45 as shown
in 10c.

We consider the changes of the genus of an arbitrary assembly graph I’
obtained by the k-interlace of two edges e,e’ € E(I') for k > 1.

Definition 6. Let I be obtained from I' by a k-interlace of edges e,¢’ €
E(T). For R' € Ry, we say that it is an extension of R € Ry if for every
vertex of I, the vertex type configuration is the same at both R and R'.
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Figure 12: Extension of R’ from R with type 1 configuruation at y

Consider R € Rr and let X = {21, z2,...,25} be eight points on the
boundary components of R such that pairs of points in X belong to the
same boundary component. Suppose the bijection T : {;,z3, zg, zg} —+
{z2, %4, 75,27} is such that ¥, = {(z:, ()|t = 1,8,6,8} indicates the
ordered pairs of points belonging to the same components (indicating the
orientation of the boundaries), two examples of Y, are presented in Fig-
ures 12a and 12b. Let o : {z2, 24, 25,27} — {21, %3, z6, 23} be a bijection
such that Y, = {(=z;,0(x;))|¢ = 2, 4,5, 7} indicates the pairs of points that
belong to the same boundary component in the remaining portion of the
boundary curves. The directed graph Gro) = (XY =Y, UY,) is called
the X-connection graph, or X-CG of R € Ry. This graph is comprised of
one, two, three or four disjoint cycles.

Let I be obtained from I'" by a k-interlace of edges e, e’ € E(T') and let
R’ € Ry be an extension of R. Then the X-CG of R’ can be defined as
G (r,0) as the boundary connections for each vertex v € I' are unchanged in
R'. An example of these X-CG graphs are depicted in Figures 13a and 13b
which are based on the ribbon graphs in Figures 12a and 12b. The edges
defined with ¥, remain the same in R’ as they are in R.

Theorem 1. LetT = (V, E) be the assembly graph, e, e’ € E, and let T" be
obtained from I' by a l-interlace of e and e’'. Fiz a ribbon graph R € Ryp
and let R' € Rr/ be an extension of R. Then g(R') = g(R) + p where
p e {-1,0,1,2}.

Proof. Let y be the newly added vertex in the 1-interlace I'. There are two
possible types of configurations of boundary components at y in R'.

Case 1: Type 1 configuration at y in R. Because R is orientable, the
boundary components on a ribbon graph have opposite orientation, and
without loss of generality, we choose X = {z;,...,z3} and assume orienta-
tion as depicted in Figure 13a. This defines ¥, with 7(z;) = x5, 7(xg) = s,
T(.'Ba) = Iy and T(:L'g) = I4.
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(a) X-CG for R (b) X-CGC for R’

Figure 13: X-CQGs for R and R’

We let G(;,) be the X-CG of R. If the configuration at the new
vertex y is of type 1, the X-CG graphs of R’ changes to G(r' o) Where
7'(%y, 3,8, 28) = (27, %2, 74,T5) as shown in Figures 13a and 13b. The
rest of the connections of the boundary components are indicated with the
same Y, for both R and R’ and there are twenty-four possible cases for o.

The change in the number of disjoint cycles that comprise G(r,0) Versus
G (o) gives the change in the number of boundary components between R
and R'. Let C(G(;,5)) be the total number of disjoint cycles of G(;,). Then
we have C(G(-rﬁ ‘,}) - C(G(.,.,q)) = b(R} e b(R)

(a) R (b) R

Figure 14: R and R’ with fixed Y, = {22y, 2773, T578, T4s}

"The Table 1 contains all changes in the number of boundary components
for the 24 choices of o. The highlighted row for Y, is illustrated in Figure 14.
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Yo C(Cina) | C(Crry) | W(R')— bB(R)
{z2%1, 473, 5T, T7Ts } 2 1 -1
{T2x1, T4Z3, T76, T5Ts } 1 2 1
{:.‘Eg:!‘:l, Ty, X4Tg, L7y |' 1 2 1
{xox1, 523, T76, Tas} 2 1 -1
{z2z1, 2723, Ta4%6, T5Ts } 2 3 1
{Iﬂa:li L£7L3, L5T6, 24273} 3 2 =k
{z471, T223, T5T6, T7T8 } i 2 1
{.1"4.’:.."1, Loy, T7Eg, 27533} 71 3 1
{z4z1, T5Ta, Toxe, T7La} 2 1 '
{z4z1, T5 T3, T7 %6, ToT3 } 1 2 1
{z421, T7%3, Tots, TsTs } 3 2 =]
{z4z1, Ty T3, T5 L6, ToZg} 2 1 -1
{2571, ToT3, TyTs, T2T8 } 2 3 1
{z5w1, T9T3, T7T6, TaTs } 3 2 =1
{x521, T43, TaTe, T7Ts } 3 % -1
{zsx1, T423, T76, 25} 2 1 -1
{xsx1, 723, TaTe, T4Ts} 4 1 -3
{x5z1, T723, TaTs, ToTs } 3 2 -1
{$7271,I2£E3,&:4$3,$53}3} 1 4 3
{271, xox3, 256, TaTs } 2 3 1
{z121, a3, T276, T5T8 )} 2 3 1
{9:73:1, 4T3, T5Ts, :321'3} 1 2 1
{z72), 523, Towe, a3} 3 2 -1
{xrz1, T5T3, T4TE, ToT8 } 2 3 1

Table 1: Highlighted example in Figure 14

This computation was performed on Mathematica 11.0. The table indicates
that the difference in boundary changes increases by 1 or 3 or decreases by
1 or 3, hence for I" with n vertices we have

o(R) = 3@ ~b(R) +[n+ 1)) = 52— B(B) + ] + [ +1)

1 - —

= 3@-bR +n) + 1 = o(R)+ 2 = oB) 4o (2)
where ¢ € {—1,-3,1,3} implying p € {~1,0,1,2}.
Case 2: Type 2 configuration at y in R'. The ribbon graph R’ and the
X-CG of R’ in this case are as depicted in Figures 15 and 16. We perform
the same computations for the 24 cases of Y, in this case (see Appendix
Table 2). These computations show that the difference in the number of
boundary components in R and R’ also increase by 1 or 3 or decrease by 1
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; Figure 16: Exterior connection graph
Figure 15: R’
g Of R’, G{T! :ﬂ'}

or 3, hence for a graph I' with n vertices we obtain the same result as in
Case 1. O

Let I' =T, where w = uv € Lpow and let I = ', be obtained by a
l-interlace of I'. If u,v € Epow then we have a special case of Theorem 1.
The assembly graph I'ypys is called the cross sum of T', and T', which is
discussed in [2]. The cross sum of I'y, and I, as shown in Figure 17. It has
been shown in [2] that in this case that GR(T ypi5) = {91 + g2 jgnel,, g€
T,} holds.

-“":.-:"“-\\‘ F-.-l_..] I_-'_ ., s
|' o 1 ‘\L a.. I - 1
|—‘1"T,I e e( ‘ . | T, | b}(\ o 1 T,

T

Figure 17: T',.,T, Figure 18: Cross sum of I',,.I",,

Theorem 2. Let I be the assembly graph, e, e’ € E(T'), and I be obtained
by a 2-interlace of e and ¢’. Let R € Ry and R € Ry so that R’ is an
eztension of R. Then g(R') = g(R) + p where p € {0,1,2}.

Proof. Let y; and y, be the newly added vertices in I obtained by the
2-interlace. Let R; be an extension of R for ¢ € {1,2,3} where R has a
type 1 configuration at both y; and s, R; has a type 2 configuration at
precisely one of the vertices y;,y», and R} has a type 2 configuration at
both ¢ and yo. The X-CGs for each of these ribbon graphs are shown in
Figure 20 where the edges in Y, are the same in all three cases and are not
depicted.

For the ribbon graphs R| and R} there exists precisely one boundary
component that does not traverse the edges incident to vertices within I'.
Thus, in order to find b(R;) — b(R) for j € {1,3}, we must add 1 to the
total number of strongly connected components for R] and Rj’s X-CGs
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Figure 20: X-CGs

so that C(G (o)) + 1~ C(Gr0)) = b(R;) — b(R). The 24 differences in
the total number of boundary components between R and its extension R’
is computed by Mathematica 11.0, see Appendix Table 3. Thus the total
number of boundary components changes by § € {-2,0,2}.

o(R) = 32— 8(R) + [ +2) = 2@~ B(R) + 8]+ [n-+2)
s %(2—b{R)+n)+-2--;—6=9(R)+%(2*5)=9(R)+P (3)

where § € {~1,0,1} implying p € {0,1,2}. O

Theorem 3. Lei I be the assembly graph, e,e’ € E(T'), and I' be obtained
by a 3-interlace of e and ¢/. Let R € Rr and R’ € Ry so that R is an
extension of R. Then g(R') = g(R) + p where p € {—1,0,1,2}.

Proof. Let y1,y2 and y3 be the newly added vertices to R'. Let R for
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i € {1,2,3} be extensions of R where R] has a type 1 configuration at
vertices y,y2 and y3, R, has a type 2 configuration at precisely 0 < ¢ < 3
vertices in {y1,y2,ys}, and R; has a type 2 configuration at vertices y;,
y2, and ys. Just as in the other two theorems, we observe the exterior
connection graphs for each R] and count the difference in the number of

boundary components. The exterior connection graphs for R] are shown in
Figure 22.

4 2
& o
»
S
\\‘=
Hi
1
!
3|
= ..-." 4
R
N
i1
1 3
I
F
g &
2 F
/

L3

: B
s

3

I8
l‘t_ a3

Figure 22: X-CGs for R’

The 24 differences in the total number of boundary components between
R and its extension R’ is computed by Mathematica 11.0, see Appendix
Table 4. The difference in the number of boundary components between R
and its extension R'is § € {—1,1,3,5}. Letting n be the number of vertices
inT,

1 1
o(R) = 5@~ b(R) +[n+3]) = 52— Bb(R) + 6] + [ +3))

=%(2~5(R)+n)+§;—5=g(R)+p 4
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where § € {—1,1,3,5}. Hence we obtain p € {-1,0,1,2}. O

Theorem 4. Let I' be an assembly graph and let I'y be obtained by a k-
interlace of two edges e,e’ € E(I'). Let R € Rr and R, € Ry, be an
extension of R. Then for k>3

_ Ja(Ra2) ifk is even
9(R) = {Q(Ra) ik is odd .

Proof. We consider the case k is even, as the case k is odd follows from a
similar argument. Let R be fixed and consider the ribbon graphs for Rs
and Ri. Let v;,..., v, be the newly added vertices for Ry and 2z, z; be the
newly added vertices for R;. Consider the X-CGs for R».

If there are no type 2 configurations at 2, ...,y then the X-CG for Ry,
is the same as the X-CG for Rz when there are no type 2 configurations at
zy or zg. If there are 1 < n < k—1 type 2 configurations at y,..., ¥k, then
the X-CG for R;. is the same as the X-CG for R; when there is precisely
one type 2 configuration at either z; or zo. If every vertex {v1,...,ux} is a
type 2 configuration, then the X-CG for Rj is the same as the X-CG for
R for when there is a type 2 configuration at z; and z;. Now we consider
b(Re) — b(Rz).

-‘\//:_ "\-“\‘/ ---- \“\f : w

j’@-/v :"*' =
(a) No type 2 (b) T'ype 2 configuration (c) Type 2 configuration
configurations at a vertex at vertices g; and g4

Figure 23: Section of k-interlace with/without type 2 configuration

From Figure 23a, we can see that each consecutive pair of vertices tra-
verses a shared boundary component that does not exist in R;. Thus, if
there are no type 2 configurations at any of the vertices yi,...,vx, then
b(Ry) = b(Rs) + k — 2. Letting n be the number of vertices in I' we have
that

1 1
o(Rx) = 5(2 —b(Re)+ [n+k]) = 5(2 —[(R2)+ k—2] + [n+ K]
1
= @-bR)+n+2) = o(Ry)
Let R; have a type 2 configuration at some vertex y;. Choosing some y;
in the k-interlace, allow y; to undergo a boundary connection change. Fig-

ures 23b and 23c shows that the outer portion of the boundary components
traversing y; will split, while the inner portion of the boundary components
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will connect together. Ultimately, the total number of boundary compo-
nents do not change. Letting R, have precisely one type 2 configuration
and Ry to have 1 < m < k— 1 type 2 connections or letting R, have two
type 2 configurations and Rj have a type 2 configuration at every vertex
¥1,..., ¥ leads to the same computation as shown in (5). Thus, for all
possible cases, g(Rx) = g(Ra). O

Corollary 1. Let ' be an assembly graph and let Ty be obtained by a k-
interlace of two edges ey, ex € E(I'). Then fork >3

GR(T2) Ifk is even

I'y) =

eitie) {GR(I‘E,) If k is odd .

Proof. The corollary follows immediately from Theorem 4. O

We note that in the above corollary we cannot set & > 1 for k odd. For
an assembly graph T', if we let I be obtained by a l-interlace of e, e’ € E(T)
and I' be a 3-interlace of the same two edges, it is not necessarly true that
GR(I') = GR(I'""). Consider the DOW 123312 and the assembly graph
I'12az12. 12343124 is obtained by a 1-interlace of the edges 33 and 21 and
I'123456312456 is obtained by a 3-interlace of the edges 33 and 21. One can
compute that GR(rnaq;;lm} = [1, 2] and GR(Flmmmm) == [1, 3] so that
G R(T'12343124) # GR(T'123456312456 ).

4 Reductions of DOWs and Genus Range

Using the developed machinery for insertions of DOWs we can determine
an upper bound for the genus range of an assembly graph.

Definition 7. Let w = wjvusv'us € Lpow where v' € {v,v%}. Then
w — v = ujuoug is called the repeat/return removal of v from w. We say
that v is a maximal repeat/return word of w if for any u € Xpow such that
vC ul wthen v =u.

Example 5. For w = 12341243 we have w— 12 = 3443 and w — 34 = 1212,
Definition 8. A reduction of w is a sequence of words (vo, . ..,v,) in which

(i) Up =W,

(ii) vk41 is obtained from vy by applying maximal repeat /return removal.
(i) v, =&
Definition 9 ([7]). The nesting index NI(w) of a DOW w is the smallest
integer n for which (vp,...,v,) is a reduction.

Example 6. Consider the DOW w = 1213243545. Then the sequence
(w,12124545,1212,¢) is a reduction of w.
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Theorem 5. LetT be an assembly graph and let (To = I, Ty,..., ' =I"}
be a sequence of assembly graphs where T';yq is obtained from T; by an
interlace. Then

max GR(I') ~ max GR(T') > 2m,
min GR(T) — minGR(I') < m.

Proof. Let I' be an assembly graph, I be obtained from a k-interlace of
e,e’ € E(I'), and R’ € R+ be an extension of R € Ry. From Theorems 1,
2, 3, and 4, we have g(R) ~ 1 < g(R') < g(R) + 2.

Let R; € Rr,. Because R; is an extension of R;_, for i € {1,eooyn}); it
must be the case that g(R;—1)—1 < g(R;) < 9(R;i-1)+2. Thus, g(Rp)~m <
g(Rn) < g(Ro) + 2m. Hence we obtain the inequalities. O

Corollary 2. Let w € Zpow and T, be its corresponding assembly graph.
Then max GR(I',,) < 2NI(w).

Proof. Let (up,...,%m) be a minimal reduction of w. From this reduction,
form the sequence of assemly graphs (CumsTuigro o3 Tug ). We can ses
that T'y,_, is obtained from T, by a [==*Linterlace. Let R,, € Rr,, so
that for each i € {1,...,n}, Ry, , is an extension of R,,. From Theorem 5,
max GR(T'y,) —max GR(T',,) < 2m. Because GR(T,,,) = GR(T,) = [0,0],
we have that max GR(T',,) = max GR(T,,) < 2m = 2 NI(w). O

We note that for any k, there is w such that NI(w) — max GR(I,,) = k.
For let
w = 12213443 - - - (2k — 1)(2k)(2k)(2k — 1).
then NI(w) = k and maxGR(T,,) = 0.
We conjecture that the equality in Corollary 2 does not hold for any non-

empty word. It is of interest to know, for given n and m, the minimum of
[2NK(I'y ) —max GR(T',,)] over all DOW w with m symbols and NI(T'y) = n.
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5 Appendix

Given an assembly graph I', The appendix contains all tables that show
the difference in the number of boundary components of R € Ry and R’ €
Ry where I is a k-interlace of ' and R’ is an extension of R. Every table
contains all 24 possible connections for an X-CG graph of a given ribbon
graph.

Yy C(G(ﬁvb) C(Gfr"ﬁl) b(H’) = b(R)
{xozy, T4x3, T5T6, T7Ts } 2 1 -1
{mzwll TaZ3, LT7Ts, 35338} i 2 i
{@9wy, T5T3, T4Ts, Trag} 1 2 1
{zozy, T5 3, T76, Tozg } 2 3 1
{zozy, T723, 2476, T5T8} 2 1 -1
{z221, T7 T3, T5T6, T4Ts ) 3 2 -1
{2471, T2 T3, T5T6, T7T8} 1 2 1
{xqxy, ox3, T7T6, T5TR} 2 3 1
{242y, 2523, TaT6, T8} 2 3 1
{z41, T523, 2776, Zaxs } 1 4 3
{xazy, 2723, o8, T5Ts } 3 2 -1
{x41, 723, THTE, T2} % 3 1
{z571, a3, T4T6, D775} 2 1 =
{ﬁﬁ‘l‘l,mzxg, L7Lg, 3’4-1?3} 3 2 -1
{xsxq, £4x3, Toe, T7s } 3 2 &
|wsx1, Tax3, Tre, ToTs ) 2 3 1
{.’Esii‘}'l y 7Ly, Takg, :1:4w3} 4 1 -3
{571, 2723, Taxs, T225 } 3 2 ol
{Z721, Zo73, 2476, 255 ) 1 2 1
{£B7==‘1 y Loy, TsTe, $4$3} 2 1 -1
{2721, 473, ToT6, T8} 2 1 <1
{zrzy, w45, T5T6, Toxs} 1 2 1
{721, T5 T3, Towe, T4} 3 2 -1
{x7z1, T5T3, T4, Tods} 2 3 1

Table 2: X-CG for R’ with type 2 configuration
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Ys C(Gr,e)) | C(Giry ) +1 | b(R)) — b(R)

ToTy, 4T3, T5TE, TTLS |

{zaz1, Zax3, 2776, To T8}

{z221, 7823, 2426, 2728 }

fn:z:n , TEL3, TTTG, TALS}
1

I3EY, LTI, B4T6, THILE
T3}, 7L, LETE, T4T8
T4y, T2T3, 5T, T7TH
ixqx), T223, E7%6, T T
{\T4T1, 523, T2Ta, T7 L8
{zqx, Tswy, T7Te, ToTg
T4T), TTL3, T2T6, T5TE
\ T4, T, T5T4, sza}
{zsx1, 223, TaTe, Tr28 )
{z5x1, z2%3, T7Te, T4T8 )
{zsx1, 2473, x2%8, T7T8}
{z5T1, 24T3, 2706, TaT8)
{zsx), 2723, To%s, T4x8 )
{zsx1, 2723, 4T, P28}
T72), X223, TyTg, TeTa |
T7Ty, T9ry, TETG, T4Ta |
TrT1, T4T3,T2Te, T8 f
T7dl, XqT3,Tels, TaTy

¥7L], ToX3, T2Le, T4L )
T7T1, TET3, T4 T, TITE )

DAY e DS ] P O P R A SRR o £ B0 o 0 Rt ]
[SRC) EXCY FRC] N ) O BN - AR S R R R B S s ) L) SR ) (R )
SIoICInOICIRICIN K OSINOIRROICIN KW O

(a) Difference in number of boundary components between R} and R

Yo C(Cira) | C(Cler, o)) | () - B(R)
| T2T1, T4T3, TETH, TTTE | 2 2 0
| TyT1,T4T3, T7T6, T5T8 | 1 3 2
T2, P5T3, Tqde, L7L8 1 1 0
Tyxy, TET3, 7o, TaTs ) 2 2 0
@91, 2773, T4e, Trg | 2 2 0
{zoz1,2723, T8 X6, TaTs) 3 1 -2
T4x),Toky, T5Te, T7TR} 1 3 2
T421,L3T3, L7206, TRLR} 2 4 2
T4T),TET3, TIT6, TITG ) 2 2 0
{2421, 2523, T7T8, T2 28} 1 3 2
{z421,T723, L2786, TETE) 3 3 0
T4Z1, L7TI, TETG, T2T8 2 2 0
\T5®¥1, T2T3, TaTs, TTT8 2 2 0
TET), ToT3, TTT6, TaT8 3 3 0
{zs2y, 2473, ToT6, TTT8 3 1 -2
\T5T, T4TY, 7T, L2 T8 2 2 0
{xsx1, 2723, TIT6, TaTs | 4 2 -2
{521, #7203, T4TE, T2LR } 3 1 -2
\Z721, 2273, TaTe, T5T8} 1 3 2
{#721, 2923, T576, TaTs ) 2 2 0
{z721, 2473, Tox8, T578) 2 2 ]
2721, T4%3, TETE, LIXG } 1 1 1]
{2721, 2523, TaTe, £4Ts 3 1 -2
{z7x1, 2523, T4T6, T2T8 } 2 2 0

(b) Difference in number of boundary components between R and R
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