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1 Introduction

The decycling number of a graph G (denoted V(G)) is the smallest size of a subset
S of the vertex set V(G) such that G — S is acyclic [1]. Clearly a decycling set of
order V(G) is minimal with respect to the decycling property. A natural question
to ask is, “Are there larger subsets of the vertex set which are also decycling sets
yet minimal with respect to that property?”

We define a V-critical set S of a graph G to be a subset of the vertex set which is
a decycling set, but for every vertex v in S, G — {S — v} contains a cycle. The
maximum decycling number of a graph G (denoted V() is the maximum order
of a V-critical set of G.

2 Preliminaries

Obervation 2.1: If S is a V-critical set of a graph G and v is any vertex in S, then
v has at most deg(v) - 2 neighbors in the set S.

When G is a cycle or a complete graph, any V-critical set is of order V(G) (V(C,)
= Vu(Cr) = 1 and V(K,,) = Vio(K7n) = 1 - 2). Are there graphs G for which V(G) <
Vin(G)? An answer to that question can be found in the Petersen Graph. From [1]
we know that V(P) = 3 (for example {a, d, w} is a minimal decycling set).

Proposition 2.2: For the Petersen Graph P, Va(P) = 4.

CONGRESSUS NUMERANTIUM 234 (2019), pp.3-8.



Proof: Clearly the set S = {a, b, w, x} is a V-critical set. Can we find a Vcritical
set of order 57 In any set of 5 vertices at least 3 must be in either the pentagon or
the pentagram. Assume (WOLOG) they are in the pentagon. By Observation 2.1
they cannot induce a Ps, so one of these vertices is not adjacent to either of the
others. In this case, the only remaining cycle is the pentagram, and the decycling
set can be completed with a single vertex.

Proposition 2.3: The difference between V(G) and V,,(G) can be arbitrarily large.
Proof: Recall from [1] that, forn >3, V(W,) =2.

Lemma 2.3: For n > 3, Vp(W,) = Fﬂ If we label the central vertex vy and the
peripheral vertices v, v, v, ... v,, going clockwise around the cycle, then if n =
Oor2mod3theset{v;:i=1lor2mod3 }orifn=1mod3theset{v,:i=1or
2mod3andi<n-2} U {vs.} are V-critical sets. If a decycling set S has more
than li—"] vertices, then some vertex in S which lies on the cycle must have 2

neighbors in the Vcritical set, which contradicts Observation 2.1.
3 Products of Paths and Products of Cycles

For the grid graphs we will use the standard labeling [2] for the vertices of a
product of two graphs.

Lemma 3.1: If S is a V-critical set of PxP, then any copy of P, (respectively P,)
can contain at most m — 1 (n - 1) vertices of S.

Proof: If |[S m Pxj = m, then S is not V-critical since any cycle containing one
vertex of the P, must contain another vertex from the same P,, hence if you
remove any vertex in S~ P, from S it will still be a decycling set.

Theorem 3.2: For n > 2, Vu(PaxP,) = 2?" .

Proof: The sets { vi;:i=00r1 mod3 } whenn=0or2mod3or{w,;:i=0or
lmod3andi<n-2} U {vi } whenn=1mod3 are V-critical sets of order

Fg—‘-] Are there larger V<critical sets?

Note that no V-critical set S may contain more than 2 vertices from any three
consecutive copies of P». If the set { vi1, vi2, Vi1, Va2, Vi, Vizz } contains 3
vertices from S, then from Lemma 3.1 we know that each copy of P2 contains
exactly one vertex from S. Any cycle containing a vertex from the middle P> must
also contain either both vi; and v;2 or both vi:2; and viz2 and one of each pair is
in S. A similar argument shows that the 4-cycles at either end of the graph can




contain at most one vertex in S. This gives the upper bound Vy,(P2xP,) < Fﬂ
which proves the theorem.

Theorem 3.3: For 11> 4, V(P3xPy) = 2 332}

Proof: The sets {vi;:i=00rl mod3} w {va;:i=00r1mod3} whenn=0or
2mod3ortheset{vi;:i=00rlmod3andi<n-2} 0 {vim}u {vs;:i=0o0r
Imod3andi<n-2} U {vi,1} whenn=1mod 3 are Vritical sets. Are there
larger V<critical sets?

Note that no V-critical set may contain 5 vertices from any three consecutive
copies of P;. Let S be a V-critical set. Assume the set { v;1, vi2, Vi3, Vi1, Vin2,
Vil 3, Va2 1, Va2, Viva3 } contains 5 vertices from S. Then S must intersect the 3
copies of P in either a 2-1-2 pattern or a 1-2-2 (2-2-1) pattern by Lemma 3.1. For
the 2-1-2 pattern S is not V-critical since every cycle containing a vertex in the
middle copy of P3 must contain at least two vertices from one of the other two
copies of P3. For the 1-2-2 (2-2-1) pattern call u the single vertex of S in the
leftmost (rightmost) P3 and v a vertex of S closest to # in the middle Ps. If d(u, v)
= 1, any cycle containing v must contain either two vertices of S in the rightmost
(leftmost) Ps, or u, so S is not minimal. If d(u, v) = 2, any cycle containing v must
contain either two vertices of S in the rightmost (leftmost) Ps, u, or the other vertex
of S in the middle P, 5o S is not minimal. Thus 2= = 2 -2* > 2 - |2 is an upper
bound as well as a lower bound.

6 n=4
8 n=5
Theorem 3.4: For n > 4, Vi(PsxPp) > 11 n=7

lsns_aj otherwise

Proof: Forn =4 {vi1, v31, va2, vi3, V23, Vaap, n =5 { vi1, v31, Va2, V13, Va3,
Va4, V15, V35 b, andn=17 { Vi1, V31, Va2, V1.3, V23, Vag, V15, V25, Va5 V27, V32
pand{vs;:1<i<n-1}u{v;:i=00r1mod3 } whenn=0o0r2 mod?3 or{
viiti=0orlmod3andi<n—2} U { vy } whenn=1mod 3 are V-critical
sets of the appropriate order.
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Theorem 3.5: For 5 <m < n, Viu(PmxPp) >
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Proof: The sets {vii:i=0o0r 1l mod3} w {w;:3<k<m-1,andk=1mod2,j
=1,2,...,n-1}whenmisevenor {vi;:i=0o0r 1 mod3} U {vm::i=0o0r1mod
3JYufw:3<k<m-2,andk=1mod2,j=1,2, ...,n-1} whenm is odd are
Vcritical sets which attain the bound.

When investigating V.,(C» x C,) [3] an upper bound is easily shown. Then, we
will only need to give an example to prove each lower bound.

Lemma 3.6: Fora V=critical set S of Cp x C,, |S] < [EH

Proof: For the graph C,, x Cy,, p = mn and g = 2mn. To find the decycling number
we want to choose vertices for S that destroy as many edges as possible, but here
we want to choose vertices that destroy as few new edges as possible. The first
vertex we choose will destroy 4 edges, but if we pick new vertices adjacent to
vertices already in.S each will destroy at most 3 edges. If each new vertex destroys
exactly 3 edges, then <S> (the subgraph induced by S) contains no cycles, so Cn
x Cn — S has only one component, and p - |S] - 1 = g - 3|S] - 1. Solving for |S] we

get 1S =[?], which is an upper bound as we may destroy fewer edges.
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Proof: LetSi={vi,;:i<n-1 andi =0,1,2mod 4}U{v, ;:j<n-1 and
Jj =0,2,3mod 4}U{vs ,}, and S; = @ when n = 1or 3mod 4, {v, »} when
n = 0mod 4, and {v; »1} whenn = 2mod 4. Then S, U S, is a decycling set
of the appropriate order.

Theorem 3.7: For n > 4, Vin(C3xCy) =

4 Hypercubes

We next look at the hypercube Q... We will use the standard [2] description of O,
(vertices are n-bit binary strings and an edge connects two vertices if they differ
in exactly one bit). For any sct of vertices 7, we will use the notation 0T (resp. 1T)
for the vertices in 7 whose first bit is O (resp. 1) and ET (resp. ET) for the vertices
in 7 with even weight (resp. odd weight). Recall that in each cycle the parities of
the vertices will alternate.

Observation 4.1: Vi(02) = Viu(Cy) = 1
Theorem 4.2: Vi (Q3) =3

Proof: From [1] we know V(Q3) = 3, could V(Qs) > 4? Let S be a decycling set
with 4 vertices. If the vertices all have the same parity S would not be minimal. If
3 of the vertices have same parity S would not be minimal either (the vertex of the




other parity is irrelevant). Thus, S must contain exactly two vertices of each parity.
If we remove two vertices of even parity from Qs, the only remaining cycle must
be a 4-cycle containing both odd vertices that are neighbors of the remaining even
pair, hence the decycling set could be completed with only one vertex. Therefore,
any maximal minimal decycling set contains at most 3 vertices, and Vn((Q3) = 3.

Theorem 4.3: Vi(Q) =7

Proof: The vertex set {0000, 0001, 0101, 0111, 1100, 1010, 1111} is a V-critical
set of order 7.

Could Vin(Q4) > 8? Let S be a V-critical sets of order 8. Neither S n 0Q4 nor S n
1Q4 could contain exactly 0, 1, 2, 6, 7, or 8 vertices or S would not be a decycling
set.

Case 1: S ~ 0Q4 contains 5 vertices. Then (WOLOG) EQs N S ~ 0Q4 contains
either 4 or 3 vertices.

Case 1A: EQ4 n S n 0Q4 contains 4 vertices. All of the remaining cycles are in
10, so the odd degree vertex is irrelevant.

Case 1B: EQs n S m 0Q4 contains 3 vertices. One of the odd degree vertices is
adjacent to the 3 even vertices, so it cannot be in S. Regardless of how the two
odd vertices are chosen to complete the set, they induce a Ps in 0Q,. From Lemma
3.1 there is an induced P3 in /Q4 which cannot be in S. The other vertex in /Q4
adjacent to the middle vertex in that P; cannot be in S either, or S will not be
minimal. The remaining 4 vertices in /Q4 (from which you need to choose 3 to
complete S) induce a K 3. If you choose the central vertex and 2 others, then S is
not a decycling set. If you choose the 3 pendant vertices, then S is not minimal.
Case 2: S intersects both 004 and /(4 in 4 vertices. .

Case 2A: If all the vertices in S  0Q4 are even (odd), then all the remaining cycles
are in /Qs, so S can be completed with at most 3 vertices.

Case 2B: Three of the vertices in S N 0Q4 are (WOLOG) even. One odd degree
vertex is adjacent to the 3 even vertices, so it cannot be in.S. Whichever odd vertex
we choose to complete the set will be the middle vertex in an induced P in 0Q..
The even vertex in /Qs adjacent to that odd vertex cannot be in S (Observation
2.1). From Case 1 we know that no copy of Qs can contain 5 vertices of S, so 3 of
the remaining vertices in S must be in the C, in 1Q4 with 3 of its vertices adjacent
to the induced P3 from above. For the same reason, the last vertex in S is now
determined. No matter how S is completed, it is not minimal.

Case 2C: From cases (2A) and (2B), all of the sets EQs ~ S~ 004, EQ4 N~ S ~
004, EQ4 N S ~ 1Q4, and EQ4 1 S N 1Q4 contain exactly 2 vertices. From Case
(2B) no copy of Qs can contain 3 even vertices of S, so once we know the two
even vertices in 00, the even vertices in /(Q, are determined. One odd vertex in S
from 0Q4 and Q4 must be adjacent to exactly one even vertex in S otherwise S is
not a decycling set. Regardless of how these two odd vertices are chosen, there is
only one cycle remaining, so S can be completed with a single vertex.

In any of the cases, S cannot contain 8 vertices and be minimal.



Theorem 4.4: Vin(Qs) = 20

The words of weight 2 and weight 3, form a V-critical set of order 20.

Could Vi(Qs) > 217 Let S be a Vritical sets of order 21 and 7= Qs — S. If (T) is
connected, it has 10 edges, and there are 2 - 4 + 9 - 3 = 35 edges between 7 and
S, hence 35 edges in S. However, 3-2-'3;-5- > 3, so some vertex in S has degree 4 in

(S), which contradicts Observation 2.1. If we reduce the number of edges in 7,
then we increase the number of edges between S and 7, and decrease the number
of edges in S. The first time that brings the degree condition in line is when the
number of edges in 7 is 6. For S to be minimal, every vertex v in .S must be in
some cycle in 7 L v. Since every cycle in Qs must be even, then each vertex v
must be adjacent to the endpoints of an induced P5 or Ps in 7. Six or fewer edges
is not enough to accommodate the 21 vertices in S.

Theorem 4.5: Vi, (Qs) > 42
The vertices in 0Qs of weight 2 and weight 3 along with the vertices in /Qs of

weight 3 and weight 4 along with 000000 and 111111 form a V-critical set of
order 42.
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