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Abstract. A set of vertices, S, in a digraph D, is split domi-
nating provided it is: 1) dominating and 2) D[V (D)\S] is either
trivial or has a lower level of connection than D. In this paper,
we consider split dominating sets in strongly connected tourna-
ments. The split domination number of a strongly connected
tournament T', denoted by ~,(T'), is the minimum cardinality
of a split dominating set for that tournament. The authors
previously gave a tight lower bound for +,(7T") when T is reg-
ular. In this paper, we show that when T is a nearly regular
2k-tournament, then ~,(T) > [-2:35] and this bound is tight.
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Let D be a digraph with vertex set V(D) and arc set A(D). A set S C
V(D), is considered dominating provided for each v € V{(D), either v € S,
or there is an arc (s,v) € A(D) for some s € S. See [6] for an introduction
to domination in graphs. For more recent work on domination in digraphs,
see [2] and [5]. Many variations on domination in both graphs and digraphs
have been considered. Recent examples include those found in [1] and [8].

In this paper, we consider split domination, introduced for graphs by
Kulli and Janakiram [9]. A set of vertices, S, in a connected graph G is
called split dominating if S is dominating and the subgraph induced by
V(G)\S is either trivial (a single vertex) or not connected. More recently,
this problem was explored in graphs by Hedetniemi, Knoll, and Laskar [7]
and in digraphs by Factor and Merz [4]. Connection in digraphs is nuanced,
making split dominating in digraphs an interesting extension.

A digraph D is strongly connected (or simply strong) provided for all
z,y € V(D), there is a directed path from z to y. A digraph D is uni-
laterally connected provided for all z,y € V(D), there is either a directed
path from z to y or from y to z. A digraph is weakly connected provided
its underlying graph (the graph obtained by ignoring the direction of the
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arcs) is connected. Thus, digraphs have levels of connectedness. Listed
in decreasing order, the levels are: strong, unilaterally connected, weakly
connected, and not weakly connected. Since strong connection implies uni-
lateral connection, which implies weak connection, we can talk about the
maximum level of connectedness of a digraph. For example, a digraph that
is unilaterally connected but not strongly connected attains unilateral con-
nection as its maximum level of connectedness. Given a digraph D, we say
a set of vertices S is split dominating provided S is dominating and the
subdigraph of D induced by V(D)\S is trivial or has a lower maximum
level of connection than D. The split domination number of a digraph D,
denoted by v,(D), is the minimum size of a split dominating set in D.

In this paper, we consider split domination in tournaments. T is a
tournament provided for all z,y € V(T), = # v, either (z,y) or (y,z) €
A(T), but not both. Since every tournament is unilaterally connected, the
most interesting case is to consider the split domination number of strong
tournaments. An n-tournament is a tournament with n vertices. If an
n-tournament is not strongly connected, then the split domination number
will automatically be n — 1.

If v € V(D), the outset of v is Nt (v) = {u : (v,u) € A(D)} and
the inset of v is N~ (v) = {u : (u,v) € A(D)}. We write NJ (v) to denote
N1t (v)NS, where S C V(D). Similarly, N5 (v) = N~ (v)NS. The outdegree
of a vertex « is [N 1 (z)| while | N~ (z)| is the indegree of z. A tournament is
k-regular provided each vertex has outdegree (and consequently, indegree)
equal to k. Thus, a k-regular tournament must be a 2k + 1-tournament.
Tight upper and lower bounds for 4,(T") when T is a k-regular tournament
are given in [3].

In this paper, we consider +,(T) when T is a nearly regular tournament.
A tournament is nearly regular provided half the vertices have outdegree
k and indegree k — 1, while the remaining vertices have indegree k& and
outdegree k — 1. Such a tournament will necessarily have 2k vertices. It
is known that every nearly regular 2k-tournament is strong (proving this
statement is a nice problem for an undergraduate graph theory course).
Next, we give an upper bound on the split domination number.

Lemma 1 IfT is a nearly regular 2k-tournament, then ~,(T) < k.

Proof. 1f k = 1, the statement is true so assume k > 2. Let z € V(T') with
INt(z)| = k — 1. Consider S = Nt(x) U {y} where y is any vertex from
N—(z). Since |N‘*,'(T)\S(:c)| =0, T[V(T)\S], the subgraph of T induced by
V(T)\S, is not strong. Suppose S is not dominating. Then there is some
vertex, call it v such that v € N~ (z) and v has an arc to every vertex in S.
But then the outdegree of v is at least |S|+ 1 = k + 1, a contradiction. O

154



Furthermore, this bound is tight. If T is a 2-tournament, v,(T) = 1 = k.
Otherwise, ¥ > 2 and a nearly regular 2k-tournament with ~,(T) = k is
given in [4]. See Figure 1 for an example.

Figure 1: A nearly regular 2k-tournament with & = 3. The black vertices

form a split dominating set of minimum size. This example is generalized
toall k> 2 in [4].

Next, we establish a lower bound for v,(T) when T is a strong nearly
regular 2k-tournament. Since any n-tournament has n(n — 1)/2 arcs, the
average outdegree (and average indegree) of the vertices is (n — 1)/2. This
means there is at least one vertex of outdegree at least (n — 1)/2 in any
tournament, and if » is even, there is a vertex with outdegree at least n/2.
Likewise, in any tournament with n vertices, there is a vertex with indegree
at least (n — 1)/2 and if n is even we know there is a vertex with indegree
at least n/2.

Theorem 2 If T is a nearly regular 2k-tournament, then
2k
%@ =[5
Proof. There is just one 2-tournament and it has split domination number
1. So assume k > 2. Therefore T is strong. Let S be a minimum size
split dominating set of T'. Since T[V(T")\ 5] is not strong, we may partition

V(T)\S into X and Y such that (z,y) an arc forall z € X and ally € Y.
Observe that |S| + |X| + |Y]| = 2k.

Consider T'[X]. There must be at least one vertex z’ in X with [N} (z/)] >
(IX|—1)/2. Since 2’ is directed toward every vertex in Y,

X|—-1
F2INvE) 2 B (1)
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Similarly, there is some vertex y’ in Y such that
[Yi-1
2

Since S is dominating we know there is at least one arc from a vertex in S
to y'. Thus,

k> |N"(@y)] 2 +1X]-

Y|-1
k2 IN-@) = P x4 ®
Adding inequalities (1) and (2), we see that

—|X|—1+|Y|+—IY|—1+|X|+152k = —3|X| 3'Y|<2k
2 2 2 2
Thus, | X| + |Y| < (4k)/3. Since |S| + | X| + [Y'| = 2k, we conclude that
m+ﬁ>% |m>% 0

Theorem 3 For all k, there erists a nearly regular 2k-tournament such

that X
Yo (T) = |-?§"-|

Proof. There is just one 2-tournament and it has split domination number
1. So assume k > 2. There are three cases to consider: either 3|(2k),
3|(2k + 1) or 3|(2k + 2). Suppose 3|(2k). Partition V(T') into WU X U
Y. Let W = {wp,wy,...,warszy—2} X = {o,...,%(2x/3)}, and ¥ =
{¥1,-- -, ¥@ks3)}- Let T[W] be any regular tournament with (2k/3) — 1
vertices. Let T'[X] be any regular tournament with 2k/3 + 1 vertices. Let
T[Y] be any nearly regular tournament with 2k/3 vertices with the property
that [Ny (y1)| < [Ny (w1)-

Forallw e W and x € X, let (w,z) € A(T). Forallye Y andw € W,
let (y,w) € A(T). For all 7 € {1,...,2k/3}, let (y;,z;) € A(T). Let arc
(y1,20) € A(T). Finally, for all remaining arcs between vertices of X and
Y, direct them from the vertex in X toward the vertex in Y. See Figure 2
for an example.

Observe that Y is split dominating and |Y| = 2k/3. It remains to be
verified that T is nearly regular. Let w € W. Then,

2k/3 2 %

|Nop ()| = N )] =0, and [Nf(w)| = 5 +1,
so |[Nt(w)| = k (and therefore |N~(w)| = k —1). Let z € X. Then,
2k/3 2k
Vi@ = 22, V@) = 2 -1, and [N (@) = 0,
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(any regular tournament
with (2k)/3 — 1 vertices)

To ¢+ Y1
x; — y; for remaining 4, ;

(any regular tournament (any nearly regular tourna-
with (2k)/3 + 1 vertices) ment with (2k)/3 vertices)

Figure 2: An example (k = 6) of the construction when 3|(2k).

so [N*(z)| = k—1 (and therefore |N~(z)| = k). The number of vertices in
X is two more than the number of vertices in W. So if we can show that,
in Y, the number of vertices with degree & is two more than the number of
vertices with degree k — 1, we will be done. Observe that

e ~LING @)l = & 1, and [N ()| =2

[Ny (y1)| =
Thus |[N*(y;)| = k. If y is one of the k/3 — 1 other vertices in Y with
outdegree in Y one less than the indegree in Y, then

2k/3 CLING G )I__E_l and |N3(y)] = 1.

INS ()] =
Therefore [Nt(y)| = k ~ 1. The remaining k/3 vertices y € Y have
[Ny (9)| = [Ny ()| + 1. For such g,

2k/3

N ()l = =2, ING @) = 3 1, and [N ()] =

So [N*(y)| = k. In other words, Y has k/3 + 1 vertices with outdegree
k and k/3 — 1 vertices with outdegree k — 1. Thus T is a nearly regular
2k-tournament.
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For the second case, assume that 3|(2k + 1). Let |W|= (2k+1)/3—1
and let |X| = |Y| = (2k + 1)/3. Notice that |V(T)| = 2k. Let T[W]
be any nearly regular tournament and let T[X] and T[Y] be any regular
tournaments. Let every vertex in W beat every vertex X. Let every vertex
in Y beat every vertex of W.

All that remains is the arcs between vertices in X and Y. Label X =
{:l?o,ﬂ:l, ‘o ,:I:r..l} and Y = {yo,yl, cos ,y.,...l} where r = (2k + 1)/3. For
i=0,...,r ~ 1, let (y;,2;) € A(T). For i # 3, let (x;,y;) € A(T).

Observe that Y is split dominating and |Y| = (2k + 1)/3 = [2k/3].
Having already established that |V (T')| = 2k, all that remains is to verify
that T is nearly regular. Let z € X. Then

2k +1)/3 —1 2% + 1

INb @) = ZEDEZD N @) = 22 1, and (N (2)| =0,
Thus [N*(z)] =k — 1 (and so |[N—(z)| = k). Let y € Y. Then
2k+1)/3 -1 2k +1
gl = I Nk ) =1, and V) = 2L 1

Thus, [Nt (y)| =k (and so [N~ (y)| =k — 1).

(any nearly regular tournament with
(2k + 1)/3 — 1 vertices)

W

Ti Yi
for i # 7, x; — y;

(any regular tournament (any regular tournament
with (2k + 1)/3 vertices) with (2k + 1)/3 vertices)

Figure 3: An example (k = 4) of the construction when (2k + 1) is a
multiple of 3.

Finally, let w € W. Since T[W] is nearly regular with (2k +1)/3 —1
vertices, | Ny, (w)| = p or p — 1 where 2p = (2k + 1)/3 — 1. In the former
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case,

2k +1)/3 - 1 2% + 1
2 3
so [IN*T(w)| = k. But, if |Nil,(w){ = p — 1, then [Nt (w)| =k — 1.

Thus half the vertices in T" have outdegree k, specifically the vertices in
Y and half the vertices in W. The remaining vertices in 7" have outdegree
k — 1, making T nearly regular. See Figure 3 for the example where k = 4.

N3y, (w)] =  INE (w)] = , and [Ny (w)] =0,

Finally, we consider the case where 3|(2k + 2). Let T[W] be any nearly
regular tournament on (2k+2)/3 vertices. Let T[X| and T[Y] be any regular
tournaments on (2k + 2)/3 — 1 vertices. Notice that T has 2k vertices. For
eachy € Y and we W, let (y,w) € A(T). For eachw € W and z € X, let
(w,z) € A(T). Finally, for eachz € X andy € Y, let (z,y) € A(T).

(any nearly regular tournament with (2k + 2)/3 vertices)
|24

{any regular tournament with (any regular tournament with
(2% + 2)/3 — 1 vertices) (2k + 2)/3 — 1 vertices)

Figure 4: An example (k = 5) of the construction when (2k + 2) is a
multiple of 3.

Notice that if we let § = Y U {w} for any w € W, then S is split
dominating and of size (2k + 2)/3 = [2k/3]. If T is nearly regular, the
proof is complete. Every vertex in X has an arc to every vertex in Y and
half of the other vertices in X. So for all z € X,

(%k+2)/3—2 2%k+2
2 3

Every vertex in Y has an arc to every vertex in W and half of the other

[Nt ()] = = B,
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verticesin Y. Soforally € Y,

2k+2 (2k+2)/3-2
CO 2

Of the vertices considered so far, an equal number have outdegree k and

k — 1. There are |W| = (2k + 2)/3 vertices unexamined as of yet. Each of

these vertices has an arc to every vertex in X and an arc from each vertex in
Y. Exactly half of the vertices in W have outdegree p in W, while the other

half of the vertices in W have outdegree p — 1 in W, where p = L_l“‘";z 3

INt(y)| = = k.

2k +2

INFw)| =p+ —3
Therefore, if [Ny}, (w)| = p — 1, then |[Nt(w)| = k — 1. Thus half of the
vertices in T' have outdegree k£ (and indegree k¥ — 1), while the other half
have outdegree k — 1 (and indegree k). See Figure 4 for an example. O

~-1=k.
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