A SHORT NOTE ON THE LARGE STEINER i-DIAMETER
OF GRAPHS

TIMOTHY WU, CHRISTOPHER MELEKIAN, EDDIE CHENG

ABSTRACT. In a graph G, the Steiner distance d(S) of the vertex
subset § C V(G) is the minimum size among all connected sub-
graphs whose vertex sets contain S, and the Steiner k-diameter of a
connected graph G is the maximum d(S) among all k-element vertex
subsets S C V(G). In this paper we examine the Steiner k-diameter
for large k and then discuss the applications of the results.
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1. INTRODUCTION

In a finite, simple, undirected graph, the Steiner distance, introduced
by Chartrand et al. [1], is a natural generalization of the classical graph
distance. For a graph G(V, E) and a set S C V(QG) of at least two vertices,
an S-Steiner tree is a subgraph T'(V’, E') of G that is a tree with § C V",
In a graph G(V, E) with at least 2 vertices, for any S C V with |S| > 2
the Steiner distance dg(S) (or simply d(S) if the graph G is clear from
the context) is the minimum size of an S-Steiner tree; alternatively, it is
the minimum size connected subgraph whose vertex set contains S. We set
dg(S) = oo when there is no S-Steiner tree in G. We note that if S =
{u, v}, then dg(S) is simply classical distance d(u,v). If G is a graph on
n vertices, then for any k& with 2 < k < n, we define the Steiner k-diameter
of G, sdiam(G), as the maximum value of dg(S) over all vertex subsets
S with |S| = k. Again, we note that when k = 2, we recover the classical
diameter. We may observe that in a connected graph, a spanning tree of
the graph is an S-Steiner tree for any set S. This leads to the following
basic bound on the Steiner k-diameter.

Theorem 1.1. [2] Let k,n be two integers with 2 < k < n, and let G be a
connected graph of order n. Then k — 1 < sdiami(G) < n — 1. Moreover,
the upper and lower bounds are sharp.

In [3], the graphs with a given Steiner k-diameter were characterized by
connectivity and the structure of vertex cut-sets.
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Theorem 1.2. [8] Let G be a connected graph of order n, and let 1 < k <
n—2and 1 <t<k. Then sdiam,_(G) > n—t if and only if there exists
B C V(G) with |B| = k such that each t-element subset of B is a vertex
cut-set of G.

This result, with some additional analysis, can be used to give a full
classification of the graphs with a given Steiner k-diameter. In [3], such
classifications were given for k=n—1,n - 2,n — 3.

Corollary 1.3. Let G be a connected graph of order n > 3. Then
(1) sdiam,_1(G) = n — 2 if and only if G is 2-connected.
(2) sdiamy,_1(G) = n — 1 if and only if G has a cut-vertex.

Corollary 1.4. Let G be a connected graph of order n > 4. Then

(1) sdiamy,_2(G) = n — 3 if and only if G is 3-connected.

(2) sdiamy,_3(G) = n ~ 2 if and only if K(G) = 2 or G has ezactly one
cut-vertez.

(8) sdiamy,_2(G) =n — 1 if and only if G has at least two cut-vertices.

Corollary 1.5. Let G be a connected graph of order n > 5. Then
(1) sdiam,_3(G) = n — 4 if and only if G is 4-connected.
(2) sdiamy,_3(G) = n — 3 if and only if one of the following is true:
(2.1) k(G) = 3.
(2.2) &(G) = 2, and for every minimum vertex cut-set {u,v} of G and
w € V(G)\{u,v}, at  least one of {u,w} and {v,w} is not a vertex cut-
set of G.
(2.3) K(G) = 1, G has ezactly one cut-vertex u, and every 2-element
vertex cut-set of G contains u.
(8) sdiamy,_3(G) = n — 2 if and only if one of the following is true:
(8.1) K(G) = 2, and there are three vertices u,v,w € V(G) such that
{u,v}, {u,w}, and {v,w}  are all vertez cut-sets of G.
(8.2) k(G) = 1, and one of the following is true:
(8.2.1) G has exactly two cut-vertices.
(8.2.2) G has ezactly one cut-vertex u and a vertex cut-set {v,w} that
does not contain u.
(4) sdiam,_3(G) = n — 1 if and only if G has at least three cut-vertices.

This note serves two purposes. The first is to find a complete classifica-
tion of graphs with a given Steiner (n —4) diameter in the same manner as
the above results. The second is to discuss the possible application of these
results to particular families of graphs. Although the proof is straightfor-
ward, it illustrates that it is feasible to obtain such a complete classification
even though the statement is complicated.

2. THE STEINER (n — 4)-DIAMETER
Theorem 2.1. Let G be a connected graph of order n > 6. Then

162



(1) sdiamy,_4(G) =n — 5 if and only if K(G) > 5.
(2) sdiam,,_4(G) = n — 4 if and only if one of the following are true:

(2.1) k(G) =4

(2.2) k(G) = 3 and for all cut-sets {u,v,w} in G and z € G\ {u,v,w},
at least one of {z,u,v}, {z,u,w}, and {z,v,w} is not a cut-set.

(2.8) K(G) = 2 and for all vertez cut-sets {u,v} of G and sets {w,x} €
V(G) \ {u,v}, at least one of {u,w,z} and {v,w,z} is not a cut-set.

(2.4) k(G) = 1 and G has ezactly one cut-vertex v and all 2-element
and 3-element vertex cut-sets contain u.
(8) sdiam,_4(G) = n — 3 if and only if one of the following are true:

(8.1) k(G) = 3 and there exists some {u,v,w,z} € V(G) such that
{v,v,w}, {u,v,z}, {u,w,z}, and {v,w,z} are all cut-sets.

(8.2) K(G) = 2 and all two element cut-sets of G {u,v} and {w,z} are
disjoint.

(8.3) k(G) = 1 and at least one of the following conditions is true

(3.8.1) There are ezactly two cut-vertices, and all two element cut-
sets contain at least one of these vertices.

(8.8.2) There is exactly one cut-vertex u and some three element cut-
set {v,w,z} € G\ u such that at least one of {v,w}, {v,z}, and {w,z} is
not a cut-set.

(4) sdiamy,_4(G) = n — 2 if and only if one of the following are true:
(4.1) &(G) = 2 and G has some elements {u,v,w,z} such that all two
element subsets of {u,v,w,z} are cut-sets.
(4.2) k(@) = 1 and G has ezactly three cut-vertices or ezactly two cut-
vertices z,u and a cut-set {v,w} € G\ {z, u}.
(5) sdiamy, _4(G) = n — 1 if and only if G has at least 4 cut-vertices.

Proof. In each case, we apply Theorem 1.2 to suppose the existence of the
set B for the given value of ¢ and the nonexistence of such a B for ¢t — 1,
and enumerate all possibilities.

For (1), we note that there are no cut-sets with 4 vertices in a 5-connected
graph. The case (5) is also clear.

For (2), we must include exactly one vertex of B in the S-Steiner tree.
If K(G) = 4, choose B as a 4-element cut-set. If x(G) = 1,2, or 3, there
must be some three element subset of B that is not a vertex cut-set, but
B must be a cut-set of G. The conditions in (2.2) and (2.3) enumerate the
possibilities. For x(G) = 1, there can only be one cut-vertex, and the other
three vertices in B must not be a cut-set. The conditions in (2.4) follow.

For (3), there must be some two element subset of B that is not a vertex
cut-set, but every three element subset of B is a vertex cut-set. Cases
(3.1) and (3.2) follow directly. For x(G) = 1, there at least one cut-vertex.
Then, the other three vertices in B must form a cut-set. However, adding
one more vertex must connect G. Thus if B has exactly two cut-vertices
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the remaining two vertices in B are not a cut-set, as in (3.3.1). If B has
exactly one cut-vertex, the other three vertices, must form a cut-set, but at
least one two-element subset of these three vertices must connect G. This
describes (3.3.2).

For (4), there must be some element of B that is not a cut-vertex, but
every two element subset of B is a cut-set. Cases (4.1) and (4.2) follow
directly.

O

3. APPLICATIONS

Given the characterizations described in the results above, a natural goal
is to use them to investigate various families of graphs. This is complicated
by the fact that the conditions we have given only characterize the Steiner
k-diameter when k > n — 4. As many families of graphs, especially those
suitable for use as interconnection networks, have high connectivity, the
application of these results is relatively uninteresting in many cases. For
example, the n-dimensional hypercube is n-regular, n-connected, and has
2" vertices. Thus, our results are only informative in the case where n < 5.

While ad-hoc methods may lead to a calculation of the Steiner diameter
for more values of k in such families of graphs, more general methods for
k < m — 4 have not yet been described. As such, to illustrate the use
of these particular results, we examine the family of generalized Petersen
graphs, which are 3-regular and 3-connected. The generalized Petersen
graph P(n, k), 1 < k < % consists of n outer vertices labeled ag, a1, ..., a1
and n inner vertices labeled by, b1,...,bn-1. 0; = a; and b; = b; if i = j
(mod n). Connect edges a; with a;41, b; with b;4x, and a; with b;. For
more on generalized Petersen graphs, refer to [5].

Theorem 3.1. Let n > 2. Then sdiamg,_1(P(n,k)) = 2n — 2,
sdiamgn_2(P(n, k)) = 2n — 3, sdiamy,_3(P(n,k)) = 2n — 3, and
sdiampyn_4(P(n,k)) = 2n — 4.

Proof. Note that x(P(n, k)) = 3, so sdiamgy,,_1(P(n,k)) = 2n — 2,

sdiamy,_2(P(n, k)) = 2n—3, and sdiams,,_3(P(n, k)) = 2n—3. In addition,
all three element cut-sets of a generalized Petersen graph are of the form
{ai-1)@it1,bi}, {biok, bitk, ai}, or {ay,@ipk, aiy2x} (When n = 3k). From
this, we see that no four element set can contain four three element subsets
that are all cut-sets. Thus, by Theorem 2.1, sdiamsy,_4(P(n,k)) = 2n —
4, O
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