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Abstract

For bipartite graphs F' and H and a positive integer s, the s-
bipartite Ramsey number BR,(F, H) of F and H is the smallest
integer ¢ with ¢ > s such that every red-blue coloring of K, ;: results
in a red F or a blue H. We evaluate this number for all positive
integers s when F' and H are both stars, are both matchings or one
is a star and the other is a matching as well as when F = H is an
arbitrary double star.
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1 Introduction

In a red-blue coloring of a graph G, every edge of G is colored red or blue.
For two graphs F' and H, the Ramsey number R(F, H) of F and H is the
smallest positive integer n such that every red-blue coloring of the complete
graph K,, of order n results in either a subgraph isomorphic to F all of
whose edges are colored red (a red F') or a subgraph isomorphic to H all of
whose edges are colored blue (a blue H). A graph (subgraph) all of whose
edges are colored the same is called a monochromatic graph (subgraph).

In [2] Beineke and Schwenk introduced a bipartite version of Ramsey
numbers. For two bipartite graphs F' and H, the bipartite Ramsey number
BR(F,H) of F and H is the smallest positive integer r such that every
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red-blue coloring of the r-regular complete bipartite graph K, , results in
either a red F or a blue H. Consequently, if BR(F, H) = r for bipartite
graphs F' and H, then every red-blue coloring of K., results in a red F
or a blue H, while there exists a red-blue coloring of K,_; ,_; for which
there is neither a red F nor a blue H. Beineke and Schwenk [2] showed
that BR(F, H) exists for every two bipartite graphs F' and H.

Thus, if BR(F, H) = r for bipartite graphs F and H, then every red-blue
coloring of K, , results in a red F or a blue H and there exists a red-blue
coloring of K,_4 ,_1 for which there is neither a red F nor a blue H. In
1], red-blue colorings of the intermediate graph K,_;, were considered,
which led to the concept of the 2-Ramsey number. For bipartite graphs F
and H, the 2-Ramsey number Ry(F, H) of F and H is the smallest positive
integer n such that every red-blue coloring of the complete bipartite graph
K\n/2),in/2) of order n results in a red F or a blue H.

In (3], red-blue colorings of complete bipartite graphs were considered
where the numbers of vertices in the two partite sets need not differ by at
most 1. Let F and H be two bipartite graphs. For a positive integer s, the
s-bipartite Ramsey number BR,(F, H) of F and H is the smallest integer
t with ¢ > s such that every red-blue coloring of K, ; results in a red F or
a blue H. In (3, 4, 6, 7, 10], the numbers BR,(F, H) were studied when
F\H € {K332,K23,Ks3}. In [5, 10], the s-bipartite Ramsey numbers of
small paths (those of order 8 or less) are determined and s-bipartite Ramsey
numbers are investigated for paths versus stars. In this work, we determine
BR,(F, H) for all positive integers s when F and H are stars, matchings or
one is a star and the other is a matching as well as when F = H is a double
star. We refer to the book [8] for graph theory notation and terminology
not described in this paper.

2 Stars and Matchings

In this section, we determine the s-bipartite Ramsey numbers BR,(F,H)
of bipartite graphs F' and H for all positive integers s where each of F and
H is either a star or a matching (also referred to as stripes). We beginning
with the case when F and H are both stars. For an integer n > 2, a star
of size n is denoted by 1 v

Theorem 2.1 For integers m,n,s > 2,

BRQ(Kl,m,Kl,n)z{m-'_n“l zf2§s§m+n_2

s otherwise.

Proof. We consider two cases, according to whether 2< s < m+n — 2
ors>m+n-—1.
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Case 1. 2 < s <m+n—2. Let there be given a red-blue coloring of
H = K, nn—1 resulting in the red subgraph Hp and the blue subgraph
Hp. Let U and W be the partite sets of H with |U| = s and |W| = m+n—1.
Now let w € U, If degHR u > m, then H contains a red K1,m; while if
degy,u <m—1, thendegy,u> (m+n—1)—(m—1) =n and so H
contains a blue Kj ,,. Therefore, BR:(Kim,K1n) <m—n+1.

Next, we show that there exists a red-blue coloring of G = K, jyyn-2
that avoids both a red K ,, and a blue Kin. Let U= {uy,us,...,u,} and
W = {w;,ws,. .., Wmin-2} be the partite sets of G. For each integer ¢ with
1 <1 < s, assign the color red to the m—1 edges u;w;, UsWit1, - .. , UiWitm—2
incident with w;, where the subscripts of vertices are expressed as integers
modulo m + n — 2, and assign the color blue to the remaining edges of G.
Let Gr and Gp be the resulting red and blue subgraphs of G, respectively.
If u € U, then deg;, u =m — 1 and deg;, u =n — 1. Thus, this red-blue
coloring of G produces neither a red K- 1,m nor a blue K; ,, whose central
vertex belongs to U. By this construction,

max{deg,, w: we W} = degg, ws <m —1 (1)
min{deg, w: we W} = dege, Wmin-2 > 0. (2)

Hence, 0 < §(Gg) < A(Gr) < m — 1 and so there is no red K ,m whose
central vertex belongs to W. Let degs, Wmin—2 = k. Since degs, w +
degg, w = s for each w € W, it follows that

degG‘B Wmtn-2 = 8 — degGR Wmin-2 = 8 — k. (3)
First, suppose that k > 1. Since

NGR (us—k+1) = {ws-k-i-lv Wy kt2y -0 'wm+n—2}

and degg;, u,_k+1 = m~1, it follows that (m+n—2)—(s—k+1)+1=m—1
and so s = n-+k—1. It then follows by (3) that deg,, 5 Wmin—2 = n—1and so
degs, w < n—1 for each w € W by (2). Next, suppose that k = 0. Since u,
is adjacent to wy, wey1,.. ., We(m—2), it follows that s+ (m—2) < m+n—2
and so s < n — 1. Hence, dego, w < degow =s<n-—1 for eachw e W.
Therefore, there is no blue K 1,» Whose central vertex belongs to W.

Hence, there is neither a red K\ m nor a blue Kin in G. Therefore,
BRy(K1m,K12) >m—n+1 and so BR,(K1im,Kin) =m~n-+1 when
2<s<m+n-2.

Case 2. s > m+n—1. We show that every red-blue coloring of H = Kaa
produces either a red Kj ,, or a blue K i,n. Let there be given a red-blue
coloring of H resulting in the red subgraph Hpy and the blue subgraph Hpg.
Let U and W be the partite sets of H with |U| = |[W| = s. Let v be any
vertex of H,sayv e U. If degy v > m, then H contains a red K 1,m; While
if degyy, v < m —1, then
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degy,v>s—(m—1)>(m+n—-1)~(m—-1)=n
and so H contains a blue K ,,. Therefore, BR,(Ki m, K1) = s. .

Next, we determine the s-bipartite Ramsey numbers BR,(F, H) when
F and H are both matchings. For an integer n > 2, a matching of size n is
denoted by nKj, which consists of n independent edges. For two disjoint
sets X and Y of vertices of a graph G, the set of edges joining a vertex of
X and a vertex of Y in G is denoted by G[X, Y] or, more simply, by [X, Y]
if the graph G under discussion is clear.

Theorem 2.2 For integers m, n, s> 2,

does not exist if2<s<m4+n-—2

BR,(mK3,nK3) = { s otherwise.

Proof. First, suppose that 2 < s < m +n — 2. Let ¢ be an integer
where ¢ > s. We show that there is a red-blue coloring of G = K, that
produces neither a red mKj nor a blue nK,. If s < m — 1, then assign
the color red to each edge of G. This produces a red-blue coloring that
avoids both a red mK; and a blue nK3. Thus, we may assume that s > m.
Let U and W be the partite sets of G with |U| = s and |W| = ¢t. Now
partition the set U into two subsets U; and U; where |U;y| = m — 1 and
[Uz| = s —m + 1. Assign the color red to each edge in [U;, W] and the
color blue to each edge in [U,, W|. This red-blue coloring results in the red
subgraph Gr = K,,_1,: and the blue subgraph Gg = Kiemi1p C Kn13
(since s—m+1< (m+n—2)—m+1=n-—1). Hence, there is neither a
red mKj nor a blue nK; and so BR,(mK>,nK3) does not exist.

Next, suppose that s > m+n—1. We show that every red-blue coloring
of H = K, , produces either a red mKj or a blue nK5. Let there be given
a red-blue coloring of H and let M be a perfect matching in H. Thus,
M| = s. If there are m edges in M that are colored red, then there is
a red mKj; otherwise, at most m — 1 edges in M are red and so at least
s—(m—1)>(m+n—1)~(m—1) = n edges in M are blue, producing a
blue nK3. Therefore, BR,(mK,, nKs) = s. =

Bipartite Ramsey numbers BR(F, H) when one of F and H is a star and
the other is a matching were studied in [9] and the following was obtained.

Theorem 2.3 [9] For integers m,n > 2, BR(K1,m,nK2) =m+ | 251|.

We now determine BR,(F, H) when one of F and H is a star and the
other is a matching, beginning with conditions under which these numbers
do not exist.

Proposition 2.4 For integers m,n,s > 2, if s<n—1lors<m-—1<
n—1, then BRy(K1,m,nK2) does not exist.
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Proof. Suppose that 2 < s < n — 1. For an arbitrary integer ¢, the
red-blue coloring of K, that assigns the color blue to each edge of K, ,
produces neither a red K, nor a blue nKj,. Therefore, BRy(K1,m,nK?)
does not exist when s <n —1 as wellaswhens<m-—-1<n-1. ]

Under any other conditions, the numbers BR, (K1, m,, nK>3) always exist.

Proposition 2.5 Ifm, n, s are integers with2 <n < s<m -1, then
BR,(Kym,nK2)=m+n-—1.

Proof. First, we show that BR,(K1 y,,nK2) > m + n — 1; that is, there
is a red-blue coloring of G = K, ;, {n—2 that produces neither a red Ky,
nor a blue nK>. Let U and W be the partite sets of G with |U| = s and
|W| = m + n ~ 2. Partition the partite set W into two subsets W, and
W, with |Wi| = m — 1 and |W2| = n — 1. Define a red-blue coloring of
G by assigning the color red to each edge in [U, W] and the color blue to
each edge in {U, W]. Then the red subgraph is Gg = K, -1 and the blue
subgraph is Gp = K, 1. Since s < m — 1 and the maximum matching
in Gp has size n — 1, there is neither a red K ,, in Gg nor a blue nK3 in
Gp. Therefore, BR,(K1m,nK3) > m+n— 1.

To verify that BR,(K; m,nK3) < m + n — 1, we show every red-blue
coloring of H = K ;n4n—1 results in a red Kj ,, or a blue nKj. Let there be
given a red-blue coloring of H resulting in the red subgraph Hp, and the blue
subgraph Hg. Let U = {uy,ug,...,us} and W = {w;, ws,...,Wmin-1} be
the partite sets of H. Let M be a maximum matching in Hg. If |M| > n,
then we obtain a blue nKj;. So we may assume that [M| < n — 1. Suppose
that M = {ujw;,uows,... ,ulM|w;M|}. Let Uy = {u1,u2, ies ,ulMl} and
Wi = {wy,w2,...,wp}. Now, let Uy = U —U; and Wy = W — Wy If
there is a blue edge in [Uz, W3], then we obtain a matching by adding this
blue edge to M, which contradicts the maximality of M. Hence, we may
assume that H{[Up, Wa] = K,_|p, min-1—|pm| © Hr. Since [M| < n -1,
it follows that m+n —1— M| > m+n—1— (n~1) = m. So there is
ared Ky, in H. Thus, every red-blue coloring of K s;m+n—1 Tesults in a
red K ,, or a blue nK; and so BR,(K1,m,nK2) < m+n — 1. Therefore,
BR(K{m,nK2)=m+n-—1. m

Proposition 2.6 Ifm, n, s are integers withm,n > 2 and s > m+ |_~"—§¥_|,
then BRy(K1,m,nK3) = s.

Proof. By the definition of s-bipartite Ramsey number,
BR,(K1,m,nK3) 2 s.

Hence, we need only show that BR,(K ,,nKj3) < s, that is, every red-
blue coloring of H = K, , results in a red K ., or a blue nKj. Let there
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be given a red-blue coloring of H resulting in the red subgraph Hg and the
blue subgraph Hg. Let U = {uj,ug,...,us} and W = {wy,wy,...,w,}
be the partite sets of H. Let M be a maximum matching in Hg. If
M| > n, then we obtain a blue nK3. If [M| < | 251 |, then we may assume
that M = {ujw;,uswe,.. ,u|M|w|M|} Let Uy = {u1,us,.. ,u|M|} and
W, = {'w1,w2,...,w|M|}. Now, let Up = U —U; and Wo =W —W,. If
there is a blue edge in [U;, W], then we obtain a matching by adding this
blue edge to M, which contradlcts the maximality of M. Hence, we may
assume that H[Uz, Wy] = K,_|m|, s—m| C Hg. Since |M| < !_“"IJ and
s>m+ |_""1J it follows that s —|M| > m+ | 25| — | 251 | = m. So there
is a red K1, in H. Thus, we may assume that |251| +1< [M|<n-1.
For each vertex w € Wa,

deggpw>s—|M|2m+ 23] — [M|=m—1~ (M|~ 25}] - 1).

If w is joined to at least [M| — |251| vertices in U; by red edges, then
there is a red K ,, in H. Otherwise, each vertex in W is joined to at most
|M| — | 252 | — 1 vertices in U; by red edges; so each vertex in W is joined
to at least |251| + 1 vertices in U; by blue edges. Assume, without loss
of generality, that u,w| M|+1 18 blue for each ¢ with 1 < i < |_""1J + 1. If
there is an integer j with 1 < j < | 251| + 1 such that wjpq41w; is blue,
say u|pm|+1w1 is blue, then there is a matching

M’ = {upm1ws, vawm 4} Y {usws 1 2 < i < [M}

whose size is larger than M, a contradiction. Hence, u)ps41w; is red for all
jwith 1 <j < |251] 4+ 1. This implies that

-1
degy, umi41 > 3-|M|+t 5 J+1

> (m+l J)—( —-1)+[”'2"1J+1
— m—n+2+2[-n—;lJEm—n+2+(n-—2)=m.

Thus, there is a red K ,, whose central vertex is upi41 in H. Conse-
quently, every red-blue coloring of K, , results in a red K ,, or a blue nK,
and so BR,(K1 ,,nK2) < s. Therefore BR, (K1 m,nK>3) = s. =

For two vertex-disjoint graphs G and H, let G + H denote the union
of G and H.

Theorem 2.7 Ifm,n, s are integers with3<n<m<s< m+L J—l,
then
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BR,(Kym,nKs) =2(m—1)+n—s.

Proof. Sincem <s<m+ |_’—‘—§-1-J: 1, we can write s = m + 7 for some
integer j with 0 < j < [251| —1. Then 2(m~1)+n—-s=m+n—2—3j.

First, we show that BR,(Kj m,nK2) > m+ n—2— j; that is, we show
that there is a red-blue coloring of G = K, ;nn-3-; that produces neither
a red K ,, nor a blue nKy. Let U and W be the partite sets of G with
[U| =s=m+j and |W| =m +n — 3 — j. Partition the partite set U into
three subsets Uy, Uz and Us and the partite set W into three subsets Wy,
W, and W3, where

Uil =Wil=n-1-(G+1)=n—j-2
V2| = |Wo| =7 +1
Usl=s~(n~1)=m+j—-n-1=m+j—-n+1
Ws|=m+n—-3—j—(n—1)=m—j5—2.
Define a red-blue coloring of G by assigning the color blue to each edge in
the set [U; U Uz, W1] U [Uy, W U W3] and the color red to the remaining

edges of G. Let Gp and Gp be the resulting blue and red subgraphs of G.
Observe that

Gp = G[U1 U Us, W1] -+ G[U2, Wy U W3]

Ky 1—(5+1), m—1 + Kj11, m—1
G[Ul UUs, WaoU W3] + G[Uz, W1]
Em-1, m-1+ Kn—1-(5+1), j41-

Gr

Since there is neither a red K ,,, in Gg nor a blue nKj; in Gp, it follows
that

BR,(K1m,nK3) >m+n-—-2—j.

To verify that BR,(K1,m,nK3) < m+ n — 2 — j, we show that every
red-blue coloring of H = K mn2-; results in a red K ,, or a blue nkKj.
Let there be given a red-blue coloring of H resulting in the red subgraph
Hp, and the blue subgraph Hg. Let U = {u,ug,...,u, = Um4j} and W =
{wi,wy, ..., Wmin—2-;} be the partite sets of H. Let M be a maximum
matching in Hg. If |[M| > n, then we obtain a blue nKs. If M| < n—j-2,
then we may assume that M = {ujwy, ugws, ... yumwim |} Let

U1 =z {ul,ug,. ..,u,M'} and Wl == {wl,wz,. ..,wlMl}.

Now, let Uy = U — Uy and Wy = W — W;. If there is a blue edge in
[U2, W3], then we obtain a matching by adding this blue edge to M, which
contradicts the maximality of M. Hence, we may assume that
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H[U2, Wa] = KoM}, min-2-j—|m) € Hr.
Since M| <nmn—j—2and 3 < L”T‘lj — 1, it follows that
m+n—-2—-7j—-|M|>2m+n—-2—j—(n—j—2)=m.

So there is a red K ,, in H. Thus, we may assume that n—j —1 < |M| <
n— 1. For each vertex u € Uy, it follows that degy  =m+n—2—j5—|M|.
If « is joined to at least |M| — (n — j — 1) 4 1 vertices in W, by red edges,
then there is a red K ,,, in H. Thus, each vertex in U is joined to at most
|M|— (n— j — 1) vertices in W; by red edges; so each vertex in U, is joined
to at least n — j — 1 vertices in W; by blue edges. Assume, without loss
of generality, that wjps41w; is blue for each i with 1 < i <n—j - 1. If
there is an integer ¢ with 1 <7 < n —j — 1 such that Wi p1|+1%; is blue, say
W\ M|+1u1 is blue, then there is a matching

M = {w|M|+1u1,u|M|+1w1} U {uw; :2< i< | M|}

whose size is larger than |M]|, a contradiction. Hence, wjps41u; is red for
all ¢ with 1 <4 < n —j— 1. This implies that

degp, Wimit1 = m+j—|M|+n—j—1l=m+n-1-|M|
> m4+n~1l—-(n—-=1)=m

So there is a red K ,, whose central vertex is wim|+1 in H. Thus,
| BRy(Kym,nKs) <m+n—2—j,
and therefore, BRy(Kj m,nK2) =m+n—2—j. =

Theorem 2.8 Let n and m be integers withn > m > 3. If s is an integer
withn<s<m+ I_"""J — 1, then

2m~1)+n—s ifm<n<2m-3
BR (K1m,nK2)={ s( ) ifn>2m—2

Proof. We consider two cases, according to whether m < n <2m-—3or
n22m-—2.

Case 1. m < n < 2m—3. First, observe that since m+ |25 1> s, it
follows that 2(m—1)+n—s > s+1. Suppose that s = n+j for some integer j
with 0 < j < m+| %52 | —1—n. We show that BR,(Kj m,nK2) = 2m—2—3.
First, we show that BR,(K},m,nK2) > 2m — 2 — j; that is, we show that
there is a red-blue coloring of G = K, 2,3 ; resulting in neither ared K7 ,,
nor a blue nKj. Let U and W be the partite sets of G with |U| = s = n+j
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and |W| = 2m — 3 — j. Partition the partite set U into three subsets Uj,
U; and U3 and the partite set W into three subsets W;, Wy and W3, where

[Ur] = W] = [W3|=m —j -2
U2l =j+1+n—m
[Us| = [W2| =5 + 1.

Define a red-blue coloring of G' by assigning the color blue to each edge in
the set [Uy U Us, W1] U [Uz, W2 U W3] and the color red to the remaining
edges of G. Let Gp and Gp be the resulting blue and red subgraphs of G.
Observe that

Gg = G[U1 U Us, Wl] + G[Uz, Wa U W3]
== Km—j—2, m—1 + Kj+1+n-—m, m—1
Gp = G[U1 UUs, WzUW3]+ G[Uz,Wl]

= Km-1, m-1+ Km—j—2, j+1+n-m-
Since j <m+ 25| — 1 —n and n < 2m — 3, it follows that

J+l4n—-m < m+ lﬁ%—lJ —1—-n+14+n—m

- e[ e

2 2
Thus, there is neither a red K ,, in Gg nor a blue nK; in Gg. Therefore,
BR,(K1m,nK3) > 2m —2—;.

To verify that BR,(K1 m,nK2) < 2m — 2 — j, we show that every
red-blue coloring of H = K 9y,—2—; results in a red Kj ,, or a blue nKj.
Let there be given a red-blue coloring of H resulting in the red subgraph
Hp and the blue subgraph Hp. Let U = {uj,up,...,us = up4;} and
W = {w1, w3, ..., wam—2-;} be the partite sets of H. Let M be a maximum
matching in Hg. If |M| > n, then we obtain a blue nKy. If |[M| < j4n-m,
then we may assume that M = {u1wy, ugws, .. .,u|M|w|M|}. Let Uy =
{UI,uz,...,U|M{} and W1 = {wl,wg,...,wlMl}. NOW, let Uz = U — Ul
and Wy = W — W;. If there is a blue edge in [Uz, W), then we obtain a
matching by adding this blue edge to M, which contradicts the maximality
of M. Hence, we may assume that H[Usz, W2] = K,_|pm|, 2m—2—j— M| C Hr.
Since |M| < j +n — m, it follows that

s—IM|=n+j—|M|2n+j—(+n—m)=m.

So there is a red K;,, in H. Thus, we may assume that j + 1+ n -
m < |[M| < n—1. If there is w € W, such that w is joined to at least
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|M|—(j+1+n-—m)+1 vertices in U; by red edges, then there is a red K 1.5%
in H. Thus, each vertex in W, is joined to at most |M|— (j +14+n—m)
vertices in U; by red edges; so each vertex in W5 is joined to at least
J+1+4n—m vertices in U; by blue edges. Assume, without loss of generality,
that u;wipr)41 is blue for each i with 1 < ¢ < 7+ 14 n —m. If there is
an integer ¢ with 1 <4 < j 4+ 14 n — m such that wa41w; is blue, say
Ujar)+1wq is blue, then there is a matching

M’ = {u)p w1, mawppgp 41 U {waw; - 2 <0 < | M|}

whose size is larger than |M|, a contradiction. Hence, u|ps41w; is red for
all 2 with 1 <4 < 5+ 1+ n — m. This implies that

degy, ump4r = 2m—2—j3—|M|+j+1+n—-m
m—1—|M|+n
> m—-1—-(n—-1)+n=m.

Thus, there is a red K}, whose central vertex is umj+1 in H. Hence,
BRy(K1,m,nK3z) < 2m — 2 — j. Therefore, if n < s <m+ |251| — 1 and
8 =n+j, then BR,(Ky m,nKj3) =2m —2 - j.

Case 2. n > 2m — 2. Since BR,(Kj m,nK2) > s, we need only show
that BR,(Kim,nK2) < s, that is, every red-blue coloring of H = Ky
results in a red K ,,, or a blue nK,. Let there be given a red-blue coloring
of H resulting in the red subgraph Hp and the blue subgraph Hg. Let U =
{u1,uz,...,u,} and W = {wy, ws,...,w,} be the partite sets of H. Let M
be a maximum matching in Hg. If |[M| > n, then we obtain a blue nKy. If
|M| < m — 2, then we may assume that M = {ujwy, ugwy, ..., U M|WIM| }-
Let Uy = {uq,uq,.. "ulM|} and W = {wl,wg,..‘,w|M|}. Now, let Uy =
U—U, and Wy = W — W,. If there is a blue edge in [U,, Wy], then we
obtain a matching by adding this blue edge to M, which contradicts the
maximality of M. Hence, we may assume that

H[Uz, W3] = K,_ M), s—m| € Hr.
Since |[M| <m —2 and s > n > 2m — 2, it follows that
s—|M|>2m -2~ (m—2)=m.

So there is a red K ,,, in H. Thus, we may assume that m—1 < [M| < n—1.
For each vertex w € Wy, it follows that

degy, w>s— |M|>n—|M|>2m—2—|M|

If w is joined to at least |M| — m + 2 vertices in U; by red edges, then
there is a red Ky ,, in H. Thus, each vertex in W; is joined to at most
|M| —m+ 1 vertices in U; by red edges; so each vertex in W, is joined to at
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least m —1 vertices in U; by blue edges. Assume, without loss of generality,
that u;w|ps41 is blue for each ¢ with 1 <i < m — 1. If there is an integer i
with 1 <4 < m — 1 such that w4 1w; is blue, say ujps4w1 is blue, then
there is a matching

M' = {U|M[+1‘W1,U1w]M|+1} U{uww;:2<1i<|M|}

whose size is larger than |M|, a contradiction. Hence, u)p+1w; is red for
all < with 1 <7 < m — 1. This implies that

degy, Ymi+1 = s—|M|+m—-1>2n—|M|+m-1

> n—(n-1)+m—1=m.

Thus, there is a red K, whose central vertex is uipm|+1 in H. Thus,
every red-blue coloring of K, , results in a red K}, or a blue nK> and so
BR,(K1,m,nK32) < s. Therefore, BR;(K} m,nKj3) = s. "

The following result summarizes the values of BR,(F, H) for all positive
integers s when F is a star and H is a matching.

Theorem 2.9 Let m, n and s be integers with m,n,s > 2.

l.Ifs<n—1ors<m—1<n-—1, then BR,(K} n,nK;) does not
extst.

2. Ifn<s<m~1, then BRy(Kym,nKs) =m+n-—1.

3. If())3<n<m<s<m+ |25 —1lor(ii)n<s<m+|25L] -1
and 3 <m < n < 2m -3, then BRy(K},m,nKz) =2(m —1) +n—s.

4. If()) s>m+ (25| or (i) m >3 and2m—2<n < s < m+
l.nT-l.] ~ 1, then BRs(Kl,m, nKs) = s.

3 Double Stars

For integers a, b > 2 where a < b, let Sap be the double star whose central
vertices have degrees a and b. In this section, we determine the values of
BR,(F, H) for all positive integers s when F = H is a double star. In this
case, we write BRs(Sa5, Sap) 85 BR,(Sap)-

Proposition 3.1 Let a, b, s be integers with a,b,s > 2 and a < b.

If s <2a—2, then BRs(S,) does not exist.
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Proof. For an integer ¢ where ¢ > 2a—2, the red-blue coloring of K252,
in which both red and blue subgraphs are K,_; ;, produces no monochro-
matic S, 3. Since K,; C Koa-2,; for each integer s with 2 < s < 2a—2, there
is a red-blue coloring of K, that avoids a monochromatic S, 3. Therefore,
BR,(S,,) does not exist. a

We now show that BR,(S, ) exists otherwise, beginning with the case
where 2a — 1 < s < 2b—2.

Theorem 3.2 Let a, b and s be integers with 2 < a < b.
If2a—1<5<2b~2, then BR,(S,) =2b—1.

Proof. First, we show that BR,(S, ) > 2b—1; that is, we show that there
is a red-blue coloring of G = K 2.2 that produces no monochromatic S, 3.
Let U = {u1,ug,...,us} and W = {wy,ws,... , w2} be the partite sets
of G. Partition the set U into two subsets U; and U, with |U;| = [s/2]
and |Uz| = | 8/2| and partition the set W into two subsets W; and W, with
[Wi| = [W2| = b—1. Define a red-blue coloring of G by assigning the color
blue to each edge in [Uy, W;] U [Uz, W5] and the color red to each edge in
[U1, Wa]U[Us, Wi]. Let Gg and Gg be the resulting red and blue subgraphs
of G, respectively. For each vertex x of G, it follows that deg, R2Sb-1
and degg;_ « < b — 1. Therefore, there is no monochromatic S, in G and
80 BR,(Sap) > 2b— 1.

To show that BR,(S,5) < 2b — 1, we proceed by induction on a > 2.
First, suppose that a = 2 and so 3 < s < 2b — 2. Let there be given a
red-blue coloring of H = K, o, resulting in the red subgraph Hp and the
blue subgraph Hg. Let U = {uy,u2,...,us} and W = {wy, we, ..., wap—1}
be the partite sets of H. Since w; is incident with 2b — 1 edges, at least b
edges are colored the same, say ujw; isred for 1 <i < b. Let § = U — {u;}
and T' = {w;,wy,...,wp}. If there is a red edge in [9, T, then there is a
red S2p; otherwise, H[S,T] is a blue K,_; 5. Since s —1 > 2, it follows
that H[S, T| contains a blue Sy ;. Hence, there is a monochromatic Sy 4 in
H. Therefore, the statement is true when a = 2.

Next, suppose that the inequality BR,(S, ) < 2b—1 holds for an integer
a—1 > 2. Thus, for every integer ¢ with ¢ > a — 1 and every integer s
with 2a — 3 < s < 2¢ — 2, it follows that BRs(Sa—1.) < 2c — 1. We show
next that the inequality holds for a. So, let b and s be integers such that
b>aand2a—1<s<2b—2 We show that BR,(S,3) < 2b— 1. Since
b > a, it follows that b > a— 1. Because 2a — 1 < s < 2b -1, it follows that
20 —3 < 5 < 2b— 2. Hence, BR,(S,-1,) < 2b — 1. Consequently, every
red-blue coloring of K 2,1 results in a monochromatic S, 5. We show
that every such coloring also results in monochromatic S, ;.

Let there be given a red-blue coloring of H = K, ;1 resulting in the
red subgraph Hp and the blue subgraph Hg. Assume, to the contrary,
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that there is no monochromatic S, 3. Let U = {uj,ug,...,u,} and W =
{wy,ws,...,wop_1} be the partite sets of H. Since 2a —1 < s < 2b—2
and so 2a — 3 £ s < 2b— 2, it follows by the induction hypothesis that H
contains a monochromatic F' = S,_; 3. We may assume, without loss of
generality, that F' is a blue S,_1 3 whose central vertices are u; and w; such
that u; is adjacent w; for 1 <7 < b and w, is adjacent u; for 1 < j < a—1.
Thus, degp uy = b and degpwy = a — 1. Let Uy = {ug, Ugy1,---,Us}-

x If there is a blue edge in [{w; }, Uy, then there is a blue S, 4, a con-
tradiction. Thus, each edge in [{wy}, U] is red. Hence,

degg,wy=s—(a—1)>(2a—1)—(a—1) =a. (4)

* If there is u € U such that deg Hp ¥ = b, then there is a red S, , whose
central vertices are u and w;, a contradiction. Thus, deg Hp U S b—1
for each v € U7 and so

degy, u > (2b—1) — (b— 1) = b for each u € U;. (5)

* If there is w € W such that deg Hp W = a, then w must be adjacent
to some vertex u € Uy (as |[U — Uj| = a — 1). Since degy v > b
by (5), there is a blue S,; whose central vertices are u and w, a
contradiction. Thus,

degy, w < a—1 for each w € W. (6)

It then follows by (6) that the size my, of Hp is at most (a—1)(2b—1)
and

degy, w>s—(a—1) > a for each we W. (7

* If there is u € U such that degy, u > b, it then follows by (7) that
there is a red S, 4, a contradiction. Thus, deg Hp ¥ < b—1 for each
u € U and so

degy,u>(20—1)—(b—1)=0b for each u € U. (8)
It then follows by (8) that my, > sb.

Therefore, sb < mpy, < (2b—1)(a—1). Since s > 2a—1 > 2a—2, it follows
that (2a — 2)b < sb < (2b—1)(a — 1) and so a < 1, which is impossible.

It then follows by the Principle of Mathematical Induction that there
is a monochromatic S,3 in H and so BR,(S,3) < 2b ~ 1. Therefore,
BR,(Sap) =2b—1when 2a —1<s<2b—2. »
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Theorem 3.3 Let a and b be integers with 2 < a < b.
If s is an integer with s > 2b— 1, then BR,(S,,) = s.

Proof. Since BR,(S,5) > s, we need only show that BR,(S,;) <
We proceed by mductlon on a > 2 to show that every red-blue coloring
of H = K, , produces a monochromatic S, for integers a and b with
2 < a < bwhere s > 2b— 1.

First, suppose that a = 2. We show that H contains a monochro-
matic S;3. Let there be given a red-blue coloring of H resulting in the red
subgraph Hp and the blue subgraph Hg. Let U = {uj,ug,...,u,} and
W = {wq,ws,...,ws} be the partite sets of H. Since uy is incident with
s > 2b— 1 edges, at least b edges are colored the same, say ujw; is red
for 1 <:<b Let S=U-—{u1} and T = {w;,ws,...,wp}. If there is a
red edge in [S,T], then there is a red Sgp; for otherwise, H[S, T] is a blue
K1 Since s —1 > 2b—2 > 2, it follows that Ky C H[S,T] and so
H[S, T] contains a blue Sz. Hence, there is a monochromatic Sz in H.

Next, assume for an integer a — 1 > 2 that for all integers ¢ and s
with ¢ > a — 1 and s > 2c — 1, we have BR,(S,.) < s. We now show
for integers b and s with b > a and s > 2b — 1 that BR,(Sep) < s.
Assume, to the contrary, that there exists a red-blue coloring of H = K 8,8
for which there is no monochromatic S, 5. Let U = {uj,u2,...,u,} and
W = {wy,ws,...,w,} be the partite sets of H. Since b > a, it follows that
b > a—1 and so by the induction hypothesis there is a monochromatic F =
Sa-1,4 in H. We may assume, without loss of generality, that F is a blue
Sa—1,6 Whose central vertices are uy and w; such that u, is adjacent w; for
1 <4< band w, is adjacent u; for 1 < 5 < a~ 1. Thus, degpu; = b and
degpwi =a—1. Let Uy = {ug, ugt1,...,us}.

» If there is a blue edge in [{w;}, Uy], then there is a blue S, 3, a con-
tradiction. Thus, each edge in [{w;}, U1] is red. Hence,

degg,wi=s8—(a—-1)>(2—-1)—(a—1)=2b-a>b (9)
* If there is u € Uj such that degy, u > a, then there is a red S, ;, whose

central vertices are u and wy, a contradiction. Thus, deg ¥ <61
for each u € Uy and so

degy u>s~—(a—1)>bforeachue Uy. (10)

* If there is w € W such that degy, w > a, then w must be adjacent
to some vertex u € U; (as |U — U1| = a —1). Since degy_u > b
by (10), there is a blue S, ; whose central vertices are u and w, a
contradiction. Thus, degy w < a — 1 for each w € W and so

degy,w>s—(a—1)>bfor eachwe W. (11)
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This implies that the size mpy, of Hp is at least s(s —a + 1).

» If there is u € U such that degy_ u > a, it then follows by (11) that
there is a red S, 3, a contradiction. Thus, degy, u < a — 1 for each
v € U and so mpy, < s(a—1).

Therefore, s(s—a+1) < my, < s(a—1) or s < 2a—2. Since s > 2b-1,
it follows that b < a — 1/2 < a, which is impossible.

It then follows by the Principle of Mathematical Induction that thereis a
monochromatic S, 5 in H and so BR,;(Sa ) < 5. Therefore, BRy(Sap) = 8
when s > 2b — 1. L]

In summary, we have the following theorem which provides the values
of BR,(S,,) for all integers a,b,s > 2.

Theorem 3.4 Leta, b, s be integers with a,b,s > 2 and a < b.
1. If s <2a—2, then BR,(S, ) does not exist.
2. If2a—1<5<2b—2, then BR,(S,p) = 2b— 1.
3. If s > 2b—1, then BR,(S,p) = s.
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