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Abstract
Our research focuses on the winning probability of a novel problem posted on a
question-and-answer website. There are n people in a line at positions 1,2,...,n.

For each round, we randomly select a person at position i, where ¢ is odd, to
leave the line, and shift each person at a position j such that § > 7 to position
J — 1. We continue to select people until there is only one person left, who then
becomes the winner. We are interested in which initial position has the greatest
chance to survive, that is, the highest probability to be the last one remaining.
Specifically, we have derived recursions to solve for exact values and the formula
of the winning probabilities. We have also considered variations of the problem,
where people are grouped into triples, quadruples, etc., and the first person in
each group is at the risk of being selected. We will also present various sequences
we have discovered while solving for the winning probabilities of the different
variations, as well as other possible extensions and related findings concerning
this problem.

1 Introduction

When the original version of this probabilistic counting-out game, where the total
number of people was limited to 600, appeared on the Chinese question-and-
answer website Zhihu[2], it received vast attention from the Zhihu community.
Within less than a year, it gained over more than 130 answers, 3000 followers and
600,000 reviews.

The original post is rather simple: it asks when 600 people stand in a line,
which position is the “safest”. What grasps people’s attention is that the defi-
nition of “safest” is unclear. Moreover, after redefining “safest” in two different
ways: the initial position with highest probability to survive or the initial position
with the longest expected time to stay in the line, people realize that according
to simulations, the two ways produce different answers. While the initial position
that has the highest probability to survive seems to be the last position, the ini-
tial position that has the longest expected survival time appears to be the second
position.
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At first sight, both answers make intuitive sense. Standing at the second initial
position, the person stays safe for a long period of time until the person with the
first initial position gets selected (we also recognize that the first position is the
most dangerous position). On the other hand, the person at the last position is
constantly switching from unsafe positions to safe positions, so overall this person
has more chances than any other person to be switched to safe positions.

Of course, to study this mismatch between longest expected survival time and
highest survival probability, we need more than just intuition. In this paper, we
focus particularly on one of the answers described above — the survival probabili-
ties. We formally define the problem as the following: there are n people in a line
at positions 1,2,...,n. For each round, we randomly select a person at position
i, where 7 is odd, to leave the line, and shift the people at positions j such that
J > i to positions j—1. We continue to select people until there is only one person
left, who then becomes the winner. The survival probability p,(¢) is defined as
the probability of the person with initial position 7 to be the only person left after
n — 1 turns.

By applying a first-step analysis and recursion, we are able to solve for exact
values for survival probabilities and prove a formula. We have also designed
variations of this problem, and found related sequences and formulas while solving
these variations. In the following sections, we will present the above results as
follows:

In Section 2, we will introduce a first-step analysis method and its recursion
equation, which help us solve for the exact values for survival probabilities.

In Section 3, we provide the formula for the survival probabilities and the
proof for this formula.

In Section 4, we present variations of this problem and the exact survival
probabilities values for these variations. Some speculations and discoveries on
the relationship between the original problem and the variations are provided.

Last but not least, section 5 briefly mentions some open questions related to
the problem and some of our future research directions.

2 First Step Analysis

To introduce the idea of first step analysis, let us first start with some base case
examples. Let p,(7) denote the probability that the person with initial position
¢ wins the game with n people in the line initially (1 < ¢ < n). For convenience,
we also denote A; to be the person with initial position i, and s; be the his/her
position. We first consider the base cases when n is small:

If n = 1, person A; is the only person in the line, so s/he automatically

becomes the winner. Thus we have | p1(1) =1}

If n = 2, person A; will be eliminated in the first round because s/he is the
only odd-indexed person. Person Az, who is the only one remaining in the next
round, will be the winner. Thus,(p2(1) =0 |and [p2(2) =11}

If n = 3, let us consider person A; first. Since 1 is the smallest index, person
Ajy’s position remains the same until s/he is selected and eliminated. Thus, if a
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person in the line has initial position of sy, s/he will eventually lose the game.
Thus, pn(1) =0 = |p3(1) =0|

Then let us consider person Az. In the first round, the person is even-
positioned so s/he will not get eliminated. Consider the result of the first round:
P(person A; selected) = P(person Aj selected) = 1, i.e. the person Az has equal
probabilities to shift to s; (if A; is eliminated at first) or remain at sz (if As is
eliminated at first). If person A; is shifted to s;, then s/he has probability
p2(1) = 0 to win. If person A; keeps the position s, then s/he has probability
p2(2) = -}; to win. Thus, we use a first-step decomposition and condition on the
result of the first round:

P(person Az wins) = P(shifted to s;) - P(win | shifted to s;)
+ P(remain at sz) - P(win | remain at s3)

1 1
=5 p2(1) + 3 p2(2)
1 1
--5-0-}--2--1
=1
=3

Hence | p3(2) - !

Finally, we consider person As. Although we can simply compute 1 — p3(1) —
p3(2), we will still do a first-step decomposition here, since we want to generalize
the formula for the winning probability using the decomposition later. Person Ag
is either eliminated in the first round or shifted to s2. If the person is shifted to
s2, s/he has probability p2(2) to win. Thus we have:

P(person A3 wins) = P(shifted to sz) - P(win | shifted to s2)

= 2 7a(2)

o
=3

Therefore, [pa(3) = % |

With the base cases shown above, we see that each calculation depends only
on its very first step. After the first step is taken, the cases break into situations
we have already calculated. We call this bottom-up idea the first-step analysis,
and use it to generalize the recursion equation to calculate the exact value for
any winning probability p,,(¢):

Pn(i) = P(shifted to 8(,'..1)) . P(wm ] shifted to 8(1‘_1))
+ P(remain at s;) - P(win | remain at s;)
= P(shifted to 8(;~1)) - pr—1(i — 1) + P(remain at s;) - p,_1(3)
This process is a non-homogenous Markov chain. The probability to shift (or

not to shift) only depends on the current state, the position of the person and
the total number of people at present.
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3 Survival Probability Formula

From the first step analysis above, since we have the winning probabilities for
n = 1,2, 3, we can compute the winning probabilities for n > 4.

n | p(l) p(2) p(3) p(4) p(5) p(6) p(7) p(8) p(9)
11 |

2|0 1

3o 4 1

1o & & 2

510 § & 2 2

6l]0 § § & 3 3

10 % %5 & & & &

glo & & & & & & &
910 % % H H B B B >

Table 1: The winning probabilities for each person for n = 1,2,3,...,9.

From Table 1, we see the winning probability increases approximately linearly
as index ¢ increases. Also, we can see a clear pattern in the winning probabilities
within each level (row).

The following theorem provides an exact formula for p, (i) for all » and i < n:

Theorem: the winning probability for the person at position ¢ among n people

initially is:
, 1, ifn=1
pn(d) = 1£)

E3lEak otherwise

Proof: We use induction to prove the result. Note that we have shown that the
person A; always loses the game unless s/he is the only person.

Base cases:
The n = 1 case is trivial.

If n = 2, then person A; gets picked in the first round and Az wins with proba-
bility one.

When ¢ = 1, we have pz(1) = 0 and ] L”{ = Tf_.’_ = O

1 1
When ¢ = 2, we have p2(2) = 1 and T;-Lj%jﬁ' = & = 1. Both are in agreement
with the formula

Let n = 3. If A; gets picked (with probability 1) in the first round, then A;
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becomes the person at the first position and thereby cannot win, so Az automat-
ically becomes winner. If As gets picked (with probability 3), then Az is the
winner because the person A, will be eliminated. We verify agreement with the
formula:

When i =1, ps(1) =0 and ¢ ]=1l=0.

When i = 2, ps(2) = and—l-ﬁ_-i—=-1—2=-é.
L =

When i = 3, p3(3) = 4 and%:f—z—%.

Thus the base cases are correct.

Induction Hypothesis: We assume our formula is correct for all possible 7,
t=1,2,3,...,n in level n (the n-th row).

Inductive Step: We prove the correctness of our formula by doing two inductive
steps: (1) if our formula is correct for level n (even), then it is correct for n + 1
(odd), and (2) if our formula is correct for level n (odd), then it is correct for
n + 1 (even).

Notation: Let S be the event that the person A; gets shifted to position s;_;
in the next round when there are n + 1 people, R be the event that the person

A; remains at the same position s;, and E be the event that the person A; gets
eliminated. We then have P(S) + P(R)+ P(E) = 1, where P(E) = 0 if 1 is even.

Case (1): Let » be even. We want to show that the formula is correct in
the casen+ 1 for any ¢ =1,2,...,n + 1.

Sub-case (1.1): Let ¢ be odd (i = 1,3,5,...,n — 1) and n be even. By the
first step decomposition,

Pr+1(1) = P(S)pn(i — 1) + P(R)pn(i).

In this case,
| &z =t
p i—1)= ] - nn
D=5 " 3
and |_'J i
Pn i) = nan = Z
©) = 1zja7 = 3%

Since 4 is odd and n is even, when we increase to n + 1 people,

(-1)/2
PO) = nion
and
1 (i—1)/2

P(R)=1-P(B) = P(S) =1~ oo — 1ol
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Thus,
Pny1(t) = P(S)pn(i — 1) + P(R)pa(?)

_ G-/ (& S Gt VLAY
T (n+2)/2 (%%) L4 (1' (n+2)/2 (n+2)/2) (%z%)
i—1

e

= nian
2

L 3

RESIES)

Thus the formula is correct.

Sub-case (1.2): Let i be even (i = 2,4, 6,...,n) and n be even. By the first step
decomposition,
Pr+1(3) = P(S)pa(i — 1) + P(R)pa(%)

In this case, pn(i — 1) = T%LT = ié."l‘j%_l, and pn(3) = T%LJ%'J?T = .%3;
if2

Since 4 is even and n is even, when we increase to n + 1 people, P(S) = =&y

and P(R) =1-P(S) =1— 2.
Thus,

Prta(i) = P(S)pn(i — 1) + P(R)pn(i) |
= ((n i/z)/z) (z@% 1) g (1 & :-/3)/2) (-; )

niz2n
2 2

_13)
ek

Thus the formula is correct.

0f3

USTEN

[+

Case (2): Let n be odd. We want to show that the formula is correct in the case
n+lforanyi=1,2,...,n41.

Sub-case (2.1): Let ¢ be odd and n be odd. By the first step decomposition,

pn+1(i) = P(S)pn(2 — 1) + P(R)pn(3).

In this case, pn(i— 1) = —ﬁ and pn(i) = Gﬁ—n :%

Since i is odd and n is odd when we increase to n + 1 people, P(5) = éﬁ%%
and P(R) =1~ P(E) — P(S) =1 - t:5hy7 — &34
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Thus,

Prt1(3) = P(S)pn(i — 1) + P(R)pn(3)
_@G-1/2 H
T (n+1)/2 27120

i=1

Thus the formula is correct.

Sub-case (2.2): Let ¢ be even and n be odd. By the first step decomposition,

Pn11(i) = P(S)pali — 1) + P(R)pa(i).

i— . 5
In this case, pn(i— 1) = r%ﬁf‘r = =5k, and pa(i) = ml%T - ;__i_—_ll%—c_r

Since ¢ is even and n is odd, when we increase to n 4 1 people, P(S) = ZE':-leTﬁ

and P(R) =1— P(S) =1 - 37,
Thus,

Pr1(d) = P(S)pn(i—1)+ P(R)pn(3)

2 if2-1 ( i ) i/2
(n+1)/2 ﬂ'z-l nin (n+1)/2 n-2-1 n;tgl
__ 3
T nilntl
2 2
__ 3]
RESEN
2 2

Thus the formula is correct.

Remark: A concern is that if 4 = n + 1 (the last person in the next level),
then we may be using pn(¢) = pan(n + 1) which does not exist. However, if
we consider the last person in a queue of (n + 1) people, then the probabil-
ity that he remains at the same position s(,;) is 0 because the person ei-
ther gets eliminated or gets shifted. Thus the second term involving pn(n + 1)
would disappear: P(R) - pn(n + 1) = 0-p,(n+1) = 0. For the first term,
P(S) - pn(n — 1) = P(S) - pn(n), and the term pn(n) can still be found in the
previous level. Hence, we do not have “index out of range” issue.

4 Winning Probability: mod k variations

In this section, we will present variations of this problem. We call these variations
the mod k variations. First, let us reconsider the original problem. Instead of
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recognizing the selection process as randomly selecting a player at odd position
in the line, we can think of it as grouping people in pairs, and the first one in
each group is at the risk of being selected. We call it the mod 2 case (problem
operating on a mod 2 basis).

After obtaining the specific formula for the winning probabilities of the mod 2
case, we want to examine those cases where we group players in triplets, quadru-
plets, etc. Similarly, in each round, the first person in the group, i.e. the players
with position number =1 (mod k), are at risk of being selected.

We re-use our notation from the mod 2 case to state the problem:

There are n people in a line at positions 1,2,...,n. For each round, we ran-
domly select a person at position %, where where i = 1 (mod k), to leave the line,
and shift the people at position ¢ such that j > ¢ to position j — 1. We continue
to select people until there is only one person left, who then becomes the winner.
The survival probability pn(%) is defined as the probability of the the person with
initial position ¢ to be the only person left after n — 1 turns.

Again, in these cases, we can re-use the recursion equation to compute the
probabilities directly:

pn(%) = P(shifted to s;_1)) - P(win | shifted to s¢-1))
+ P(remain at s;) - P(win | remain at s;)
= P(shifted to s¢;_1)) - pn—1(¢ — 1) + P(remain at s;) - pn-1(%)

From Section 3, we see that the winning probability grows linearly in pairs.
Therefore, a natural conjecture would be that for a problem operating on mod %
basis, the probability grows linearly in groups of ¢ with perhaps a different slope.
However, surprisingly, we will see that it is not the case. More interestingly, the
winning probability grows in a polynomial fashion.

n | p(1) p(2) p(3) p(4) p(5) p(6) »(7) p(8) p(9)
3|0 0 1

4/0 o 1 1

510 o 1 1 2

6/0 0 § § § %

710 0 35 4 i 5

510 0 % % 8 15 i s
9l 0 % % F w m om oW

Table 2: Some values of the winning probabilities for the mod 3 case
We see from Table 2 that the numerator does not follow a linear trend. After

adjusting the values to share a common denominator, the numerators form such
a sequence: 0,0,1,1,2,4,4,6,9,9, 12, 16, 16, 20, 25, 25, 30, 36, 36, 42, 49, 49,
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With the help of the On-line Encyclopedia of Integer Sequences (OEIS)(6], we
have identified the sequence of numerators to be 4008133 with formula | || ]
where i is the initial position index, while the denominator is very similar to
AE006501. After making slight adjustments in the formula for AE006501, we
obtain the formula for the denominator, which is | 24* || 242 || 242 | for the mod 3
case, where n is the total number of people.

Therefore, we obtain the general formula for mod 3 case:

Formula: In the mod 3 case, the winning probability for the person at po-
sition 7 among n people initially is:

‘ 1, ifn=1
pn(i) = L otherwise.

L s || o]

Notice that another way to look at this sequence is to group the numbers
into triplets. Then the third number (last number) in each group would exhibit
quadratic growth: 1,4, 9, 16, 25...

We have also obtained adjusted numerators for mod 4 and 5:

e mod4:0,0,0,1,1,2 4,8, 8,12, 18, 27, 27, 36, 48, 64, ...
Numerator OEIS Sequence A008218, formula | 4|41 ]| &2,
Denominator OEIS Sequence 4008233 (slight adjustments made), formula
|23 ][22 )| =h2 ) =4 ).

e mod5:0,0,0,0,1,1, 2,4, 8, 16, 16, 24, 36, 54, 81, 81,...

Numerator OEIS Sequence A008381, formula | ]| &t || &2 &3 ).
Denominator OEIS Sequence A008382 (slight adjustments made), formula
L= L R L 2R ).

Using similar ways to look at these sequences, we observe that if the game
mode is mod k, then for each person A; where i = 0 (mod k), i.e. i is a multiple
of k, the numerator of survival probability (with a common denominator being
the least common multiple) grows polynomially exponent of k — 1.

Additionally, with the numerator and denominator formulae, we are able to
make a conjecture for general formulae for mod 4 and mod 5 as well:

Formula: In the mod 4 case, the winning probability for the person at po-
sition ¢ among n people initially is:

" {L ifn=1
Pn(i) = Lty 42 .
(B o apiy g Otherwise.

Formula: In the mod 5 case, the winning probability for the person at position
i among n people initially is:

9 {L ifn=1
Pnli) = LIS L2 e ,
A A LI otherwise.
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There are some patterns we could observe from our proved mod 2 formula and
our conjectured formulae for the mod 3, mod 4 and mod 5 variations. When
n = 1, the survival probability is 1 since there is only one person to begin, so this
person has automatically survived the game. When n > 1 and in mod k, the
numerator has k — 1 floor function terms and the dominator has k floor function
terms. Inside the floor functions, the numerators of the & — 1 terms for the nu-
merator of the formula are just i+ 1,7 +2,...,4 + (k — 2) and the denominator
n+1,n+2,..,n+ k, while all the denominators are k. By these observations.
we conjecture the generalized formula for any mod k case:

Formula: In the mod k case, the winning probability for the person at po-
sition 2 among n people initially is:

1, ifn=1

Pn(i) = { ITh22 154 :
_immﬂ'.;:l ek otherwise.

5 Open Questions and Future Research

In this paper, we have presented a novel type of probabilistic counting-out game.
By using first-step analysis, we have solved for exact survival probabilities values
for any person in this game, and proved an exact formula. We have also presented
different variations of the game, the mod k modes, where instead of randomly
selecting the first person in every pair of persons, we randomly select every first
person in groups of 2, 3, ..., k.

With the help of OEIS[6], we have identified various sequences in the numer-
ators and denominators of mod k survival probabilities, and made a conjecture
on the general formula of survival probabilities on any mod k game.

As shown earlier, we are able to prove the original problem, the mod 2 case
formula, by induction and first-step analysis. While we agree that it is possible
to apply induction and first-step analysis to any mod k game, one of the key
challenges we are currently facing is the subcase explosion. In Section 3, due
to the constant odd-even switch resulting in slight variations, we are forced to
split the problem into four different subcases, and use first-step analysis to deal
with each of them separately. In mod 3, the problem will further expand to six
different subcases, because for any person in the line, s/he can start as the first,
second or last person in the group, and after taking the first step, the person can
end up in two different positions (shift up or stay). Likewise, mod 4 induction
proof will require discussions on eight subcases, and mod 5 on ten subcases...

Although by tedious repetitions, we are able to use first-step analysis and
induction to prove any mod k formula, in order to verify the general mod k
formula, we need to find other more efficient strategies.

Another interesting aspect we are planning to explore is the correlation be-
tween this problem and other preexisting questions. It is easy to see that this
counting-out game bear some resemblances to the Josephus problem [1]. After
identifying the numerator and denominator sequences on OEIS, we are excited
about the potentials of drawing similarities between our problem and other topics.
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