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Abstract

The astronaut problem is an open problem in the field of ren-
dezvous search. The premise is that two astronauts randomly
land on a planet and want to find one another. Research explores
what strategies accomplish this in the least expected time. To in-
vestigate this problem, we create a discrete model which takes
place on the edges of the Platonic solids. Some baseline assump-
tions of the model are: (1) The agents can see all of the faces
around them. (2) The agents travel along the edges from ver-
tex to vertex and cannot jump. (3) The agents move at a rate
of one edge length per unit time. The 3-dimensional nature of our
model makes it different from previous work. We explore multi-
step strategies, which are strategies where both agents move ran-
domly for one step, and then follow a pre-determined sequence.
For the cube and octahedron, we are able to prove optimality of
the “Left Strategy”, in which the agents move in a random direc-
tion for the first step and then turn left. In an effort to find lower
expected times, we explore mixed strategies. Mixed strategies in-
corporate an asymmetric case which under certain conditions can
result in lower expected times. Most of the calculations were done
using first-step decompositions for Markov chains.

1 Introduction
1.1 Background

The general premise behind all search theory problems is that an
agent is looking for a target (which could be mobile or immobile).
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Thus, the question we are naturally led to ask is “What is the opti-
mal strategy?” Optimal is traditionally defined to mean the strategy
that minimizes expected meeting time. From this basic premise, a
wide variety of problems have been proposed. Search theory originally
found its roots in military operations during World War II. During the
period from 1965 to 1975, Lawrence Stone pioneered mathematical
results for searches involving a single agent and an immobile target
and made important progress on problems involving a moving target
[9]. Another class of problems which has been thoroughly researched
are search games which involve a searcher, who is looking to minimize
time, and a hider, who is looking to maximize time [5].

Moreover, Thomas Schelling presents an interesting problem of
“tacit coordination” in his book, The Strategy of Conflict. Two parachu-
tists randomly land in area with defining landmarks such as roads,
buildings, a river, and a bridge. The goal for the parachutists is to find
one another. Schelling makes the claim that the crux of the problem
is the two parachutists must meet at a unique “focal point”. He then
goes on to say that the problem cannot be properly defined (and thus
cannot be solved) when the search area is homogeneous i.e. there are
no distinguishing focal points [7]. We will see that rendezvous search,
a subset of search theory, addresses this exact scenario.

Rendezvous search is a branch of search theory that has been gain-
ing attention in recent years. The premise of rendezvous search prob-
lems is that two (or more) agents are in different locations, and they
want to find one another. In this case, both agents want to minimize
the time it takes to achieve this goal. Rendezvous search can be fur-
ther broken down into two categories: asymmetric and symmetric. In
the asymmetric case, the players are not bound to the same strategy;
in the symmetric case, they are. Steve Alpern, a pioneer in the field of
rendezvous search, proposed ten open rendezvous search problems in
Search Theory: A Game Theoretic Perspective [2, Ch. 14]. Our research
is inspired by the astronaut problem.

The astronaut problem is as follows: two astronauts randomly land
on a spherical planet, each with the same detection range in which
they can see each other, and their goal is to find one another. No sig-
nificant progress has been made on this problem. However, there are
some results for rendezvous search on two-dimensional objects, such
as graphs and networks, which could potentially be used to approxi-
mate the sphere. We present results for the asymmetric case and the
symmetric case.

Significant work has been done for »n discrete locations on a con-
nected graph by Anderson and Weber. Results for the asymmetric
case have found that a “Wait for Mommy” strategy is optimal [4]. This
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strategy entails that one agent waits while the other searches all the
locations. For the symmetric case, one notable result is the Anderson-
Weber Strategy for rendezvous search on » discrete locations in a com-
plete graph. In this strategy, the agents have a probability of staying
in the same location for n—1 steps and a probability of visiting all other
n — 1 locations for n — 1 steps. If one agent waits and the other moves,
then the agents are guaranteed to find one another. Meanwhile, if both
agents move, there is no such guarantee. If both players wait, then
they will definitely not meet. This strategy drew inspiration from the
optimal “Waiting for Mommy” strategy in the asymmetric case, and
has been proven optimal for two locations and three locations [4, 10].

Another variation of the problem that has been considered is the
rendezvous search problem on the circle. Two agents are on an undi-
rected circle and want to find one another. One symmetric strategy
that has been studied by Alpern is the Coin Half Tour. In this strat-
egy, each agent flips a fair coin. If the coin is heads, then the agent will
walk 1 around the circle in the right direction. If the coin is tails, then
the agent will walk -;- around the circle in the left direction. The agents
repeat this process until they meet. On a circle with a circumference
of 1, this strategy yields an expected time of 3. Alpern also looked at
the asymmetric “Wait for Mommy” strategy on the circle. Under the
same conditions as before, this strategy yields an expected time of 1
[1]. The “Coin Half Tour” and “Wait for Mommy” strategy are thought
to be the best available strategy for the symmetric and asymmetric
case respectively.

Along with the results presented in the mathematics community,
the computer science community has published results on variations
of this problem. In the field of computer science, this problem consid-
ers two mobile agents who are located on two vertices of a network.
The agents’ goal is to meet at the same vertex. A plethora of vari-
ants have been considered. For example, in one version of asymmetric
rendezvous, a map of the graph and the agent’s starting position is
available for reference. Algorithms, called FOCAL strategies, have
been created to get the agents to an agreed upon meeting location. In
another version, the agents do not have access to a map, but there is
a distinguishing focal point in the graph. In one version of symmet-
ric rendezvous, agents are allowed to leave tokens to mark vertices
as desired [6]. In addressing efficiency of strategies, researchers have
considered both the expected time it takes for the agents to meet and
the worst-case scenarios. Overall, the computer science work seems to
emphasize utilizing all known information about the network in order
to determine 1) Is the problem solvable? 2) What is the best solution?
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1.2 The Discrete Model

In investigating the astronaut problem, we simplify and approximate
this problem with the five platonic solids: the tetrahedron, the oc-
tahedron, the cube, the icosahedron, the dodecahedron. Recall that
the platonic solids are polyhedrons composed of congruent, regular
faces with the same number of faces meeting at each vertex. These
solids seem to be a unique model among the rendezvous search liter-
ature, which currently focuses on two-dimensional graphs as opposed
to three-dimensional objects.

___._---""’_'—‘_.
(a) Tetrahedron. ) Cuibsa, (c) Octahedron.

(d) Dodecahedron. (e) Icosahedron.

Each platonic solid has a unique set of properties. Table 1 lists the
face shape, number of vertices, number of edges, number of faces, and
degree of vertices for each solid.

Solid Face Shape | Vertices | Edges | Faces | Vertex Degree
Tetrahedron | Triangular 4 6 4 3
Cube Square 8 12 6 3
Octahedron | Triangular 6 12 8 4
Dodecahedron | Pentagonal 20 30 12 3
Icosahedron | Triangular 12 30 20 5

Table 1: Properties of the platonic solids.
One property that they share in common is they all are vertex-

transitive, and thus from any vertex, the surrounding area looks the
same. Therefore when analyzing movements, we only need to consider
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the distance between the agents. We hope to find strategies that can be
adapted to the original astronaut problem on a sphere. Our intuition
is that “larger” solids will more closely approximate the sphere, though
it is still helpful to compare both “larger” and “smaller” solids.

This article considers a rendezvous search problem with the follow-
ing constraints:

1. The agents start on vertices and move along the edges from ver-
tex to vertex. The agents cannot travel a fraction of an edge.

2. The agents both move at a rate of one edge length per unit of
time.

3. The agents each have the same given detection range for which
they can see each other.

4. The agents start in positions where they cannot see each other.

5. The agents cannot jump from one vertex to a non-adjacent ver-
tex.

6. The search ends once the agents see each other.

Throughout this paper, we assume that the agents have full-face vis-
ibility. Full-face visibility means agents can see all faces (and their
vertices) adjacent to their current vertex. For example, an agent on
the icosahedron can see five triangular faces, along with their edges
and vertices, and an agent on the cube can see three square faces,
along with their edges and vertices.

Our ultimate goal is to minimize the expected time for the agents
to see each other.

1.3 Previous Results
1.3.1 Unbiased Random Walk Strategy

Our previous work [11] explores simpler strategies to get a prelimi-
nary bound for the optimal expected time. The simplest strategy we
considered is an unbiased random walk strategy. The two agents be-
gin at vertices where they cannot see each other, and, at each iteration,
move along a randomly chosen edge incident to their current vertex.
By vertex transitivity, the agents have no preference for any direc-
tion, and thus even the first move is random. The agents must move
at each turn, and the search will end when the agents can see each
other. Intuitively, an unbiased random walk strategy might be consid-
ered “mindless” and would be expected to give longer expected meeting
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times than more intentional strategies. For all of the solids, calcula-
tions for this strategy can be done using first-step Markov chain de-
compositions. However, you can also use geometric probability mass
functions. Examples of these calculations can be found in West, Xie,
and Wierman [11). We present a summary of the results.

Let T'(solid) denote the expected time for the search to end on the
given solid.

T (tetrahedron) = 0.

T(cube) = % ~ 1.3333.

T(octahedron) = -g- = 1.5

T'(dodecahedron) = ?-3% =~ 3.9214.

T'(icosahedron) = -g- = 2.5.

1.3.2 Multi-Step Strategies on the Cube and Octahedron

Next, we consider multi-step strategies which incorporate a determin-
1stic component. A multi-step strategy is a symmetric strategy where
both agents first randomly choose a direction in which to move one
step, and then move in a predetermined n-step sequence consisting of
steps in relative directions, creating an n + 1-step strategy. The search
ends whenever the agents see each other, including if they see each
other in the middle of their sequence of movements. If the agents do
not see each other after completing the n + 1 steps, then they repeat
the process until they do see each other.

The simplest multi-step strategy is that the agents first randomly
choose a direction in which to move one step, and then move one step
in the left direction relative to the edge that they just came from. We
call this strategy the Left Strategy. On the cube and octahedron, the
Left Strategy guarantees the agents see each other by the completion
of the second step. We use this property to prove optimality of this
strategy for those solids. See [11] for the proof. Through this proof, we
are introduced to the idea of strategies having a guaranteed ending
time, giving us a new way to define “best” strategy.
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1.4 Outline

In Section 2, we discuss multi-step strategies on the larger solids.
Given our previous results, we consider the relationship between op-
timality and guaranteeing a finite, bounded end time, and what it
means to be “optimal”. A low expected meeting time does not nec-
essarily guarantee that the search will not take an arbitrarily long
time. On the other hand, we can have a strategy with a longer ex-
pected time, but the probability that the search will end by a specific
time is one. We also discuss the use of Markov chains in calculations.

In Section 3, we then consider mixed strategies. The agents can
choose from a set of n strategies, all of the same length, and with each
strategy there is an associated probability of picking it. In this chapter,
we are primarily interested in finding the optimal expected time for
the set of mixed strategies and determining whether there exists a
mixed strategy that has a lower expected time than the lowest value
obtained previously. The calculations for mixed strategies are more
complex. However, we present some simplifications that allow us to
make significant progress on the previously mentioned goals.

Finally in Section 4, we conclude by comparing all strategies we
have explored alongside a discussion of optimality, and in Section 5,
we discuss future research.

2 Pure Multi-Step Strategies

We also consider longer multi-step strategies on the dodecahedron and
icosahedron. The icosahedron is unique among the solids because it
has “hard” and “soft” turns. For the dodecahedron, we investigated
strategies up to seven steps in length, and for the icosahedron, we in-
vestigated strategies up to five steps in length. Given our optimality
results for the cube and octahedron, we investigated some strategies
that guarantee a finite, fixed end time. For the dodecahedron, the
shortest strategy with this property has seven steps, and for the icosa-
hedron, it has five steps.

The calculations for these results are set up similarly to first-step
Markov chain decompositions. We present the calculation for the ex-
pected time of the Hard Left Strategy on the icosahedron as an exam-
ple. For the icosahedron, the agents cannot see each other when they
are either two units or three units apart.

Given that the agents are two units apart, there is a 4 probability
of seeing each other on the first step and a ;= probability of seeing each
other on the second step. Thus there is a £ probability that the agents
will not see each other during the iteration of the sequence. More
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specifically, there is a 3z probability that they will end up two units
apart and a 3z probablll'cy that they will end up three units apart

Given that the agents are three units apart, there is a s+ prob-
ab111ty of seeing each other on the first step and a probab1l1ty of
seeing each other on the second step. There is a & probablhty that
the agents will not see each other during the iteration of the sequence.
More specifically, there is a % probability that they will end up two
units apart.

Moreover, given that the agents cannot see each other, there is a $
conditional probability of starting two units apart and a } conditional
probability of starting three units apart.

Using this information, we construct the following system of equa-
tions:

Tui (icosahedron) = -Z—Ez + %E3.
7 1
B = --(1)+ (2)+ §§(E2+2) -+ %(E3+2).

2 2
B = Ia(l) + 752 + 25(B2 +2).

Solving this system of equations yields the approximate expected
time of 2.2921.

We are unable to claim an optimal strategy for all multi-step strate-
gies of any given length on these solids. However, by investigating
the longer multi-step strategies in our set through exhaustive search,
we can lower our upper bound for the optimal expected time. For
the dodecahedron, the lowest expected time we have found is 2.8.
This expected time was attained by the strategy {Random, Left, Left,
Right, Left, Left, Right} and its reflection {Random, Right, Right,
Left, Right, Right, Left}. These strategies guarantee the agents see
each other by the completion of the fifth step. For the icosahedron,
the lowest expected time we have found is approximately 2.1333. This
expected time was attained by the following strategies and their re-
flections:

{random, hard left, soft left, soft left, soft left},
{random, hard left, soft left, hard right, soft right},
{random, hard left, soft right, hard left, soft right},
{random, hard left, soft right, hard right, soft left},
{random, hard left, hard right, hard left, soft left},

{random, hard left, hard right, soft right, soft right}

All of these strategies also guarantee the agents see each other by the
completion of the fifth step. More results are presented in [11].
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3 Mixed Strategies

We next consider expanding the set of pure multi-step strategies to
mixed strategies. Previous work and our own numerical results sug-
gest that asymmetric cases yield lower expected times than symmet-
ric cases. Mixed strategies are a way to incorporate these asymmetric
cases into a symmetric strategy. The way a mixed strategy works is
that there is a set of n strategies that agents can choose from. All of
the strategies are the same length. For each strategy i, there is an as-
sociated probability, p;, of choosing that strategy. If the players do not
see each other after running through their strategies, then they pick
again with the same probabilities. The pure strategies are a subset of
the mixed strategies where one probability is set equal to 1 and the
others to 0.

3.1 Lower Bound for Expected Time

Allowing the agents the option to choose again complicates the calcu-
lations. Therefore, in order to simplify the computations, we derive a
lower bound on the expected time. To do this, we assume that if the
agents have not seen each other by the last step, then they see each
other on the next step.

Here, we present an example calculation. Suppose the agents are
on the dodecahedron and both use the Left Strategy. Recall that un-
der the Left Strategy, the agent moves one step in a randomly chosen
direction, and then one step in the left direction.

Given that the agents are three units apart, there is a 3 probabil-
ity that they will see each other on the first step and a Z probability
that they will see each other on the second step. Thus, there is a 3
probability that the agents do not see each other during the iteration
of the sequence.

Given that the agents are four units apart, there is a 2 probability
that they will see each other on the first step and a % probability that
they will see each other on the second step. Thus, there is a 3 prob-
ability that the agents will not see each other during the iteration of
the sequence.

Given that the agents are five units apart, there is zero probability
that the agents will see each other on the first step and a 2 probability
that they will see each other on the second step. Thus, there is a &
probability that the agents do not see each other during the iteration
of the sequence.

Moreover, given that the agents initially cannot see each other,
there is a -1% probability of the agents being three units apart, a 3

233



probability of the agents being four units apart, and a & probability
of the agents being five units apart.

In this bounded expected time calculation, we assume that if the

agents do not see each other during the iteration of the sequence, then
they will see each other on the next step. Thus we assume the follow-
ing:
Given that the agents start three units apart, there is a ‘-;- prob-
ability of the agents seeing each other on the third step. Given that
the agents start four units apart, there is a } probability of the agents
seeing each other on the third step. Given that the agents start five
units apart, there is a 2 probability of the agents seeing each other on
the third step.

Let EP denote the bounded conditional expected time given the
agents are ¢ units apart.

Using the information above, we calculate:

EP = %(1) + -3-(2) + %(3) _ -1-99
Ef = 2(1)+32)+50) = 3-
EB - %(2) + g(s) = g
Es(T) = %Ef + %Ef + %EE,B - 15—1

Note that for strategies that guarantee the two agents see each
other by the end of the sequence, the true expected time is equal to
the bounded expected time.

Let § = {51,52,...5,} be a set of n pure strategies. Suppose the
agents use a mixed strategy where they choose their strategies from
set S. Let B;; denote the bounded expected time given that agent 1
uses strategy : and agent 2 uses strategy j. Note that B;; = Bj.
After calculating all of the B;; terms, to calculate a lower bound for
the overall expected time of the mixed strategy, we need to optimize
with regards to the constraints and objective function:
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n n
min Z Z pip;Bij.

i=1 j=1

s.t. Zn:pk m ],
k=1

Vk,Pk > 0.

The objective function is an application of the Law of Total Expec-
tation. Each term in the sum represents the probability that agent 1
uses strategy 7 and agent 2 uses strategy 7, multiplied by the bounded
expected time, given that strategies i and j are used. The constraints
ensure that our optimal p; values satisfy the probability axioms.

While these calculations do not result in exact expected times, we
are still able to make some claims using these lower bounds. Specifi-
cally for the case when we are mixing two strategies, there are some
interesting results that relate the overall expected time to the ex-
pected time of specific cases.

3.2 Reducing the Number of Strategies

We present two lemmas which reduce the number of mixed strategies
that we need to analyze, given that the goal is to find a strategy with
a lower expected time.

Lemma 1. Let E*(T) be the optimal time for the set of pure strategies.
Let {S1,52, ... Sn} be a set of n pure strategies. If for all i,3j, B;; >
E*(T), then for any associated mixed strategy M, Ey(T) > E*(T),
where En(T') is the expected time of the strategy M.

Proof. Let p; denote the probability of choosing S; for i = 1,2,...n. To
satisfy the probability axioms, we require ¥, , p; = 1 and for all s,
pi = 0.

We have the following inequality for the expected time of the mixed
strategy M:

n n
Em(T) 2 ). pipiBis.
i=1 §=1

Recall that the right hand side is our bounded expected time for
the mixed strategy.
Given that for all 4, j, B;; > E*(T), we can say

n n n n
Ey(T) > EzpinBz‘j > ZZPinE* (T).

i=1 j=1 i=1 j=1
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Simplifying this expression, we obtain

L L n o n n 2
3N pipET(T)=E*(T) Y pip; = E*(T) (E pi) = E*(T).
=1 j=1 i=1 j=1 =1

Thus, Ex(T) > E*(T). =

From this lemma, we can conclude that given for all ¢,j, B;; >
E*(T), if there exists i, j such that B;; > E*(T'), then the inequality
becomes a strict inequality, meaning the strategy is not optimal.

Also when n = 2, Lemma 1 is a statement about what pairs of pure
strategies create mixed strategies that perform better. More specifi-
cally, the only mixed strategies that perform better than pure strate-
gies are those with By < E*(T).

Lemma 2. Let S = {S1,52, ... Sn} be a set of n pure strategies and
let M denote a mixed strategy that consists of the n strategies in the
set. Suppose there exists some U such that Ey(T) < U and for some
strategy S;, B;; > U (and Bj; > U) for j = 1,2,...n. Then there exists a
mixed strategy M consisting of the strategies {S1,52,...5:—1,8i4+1y--Sn}
such that Ey (T) < Ey(T)

Proof. Let X: S x S — R be a random variable denoting the bounded
expected time corresponding to the pair of randomly chosen strategies

Let A be the event that S; is used by at least one of the agents. We
will only consider the nontrivial case where P(A) # 0.

The possible values for our random variable X are B;; for all com-
binations of ¢ and j. The probability that X = B;; for a given 4, ; is
equal to the probability of agent 1 choosing strategy S; and agent 2
choosing strategy S;. Thus, the expected value of X is equal to the
bounded expected time for the mixed strategy. i.e. Ey(T) = E(X).

Partition the expected value of X using the event A. By the Law of
Total Expectation,

E(X) = P(A)E(X | A) + (1 — P(A)E(X | A°).

Given that for S;, B;; > U Vj, we can conclude E(X | A) > U. Since
E(X) = Emq(T) < U, consider the following claim: E(X | A°) < E(X).
We will prove this claim by way of contradiction.

Claim: E(X | A°) < E(X).

Proof For sake of contradiction, assume that E(X | A®) > E(X).
Recall E(X) = E(X | A)P(A) + E(X | A°)P(A°).
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We concluded previously that F(X | A) > U. Since E(X) < U, this
implies that E(X | A) > E(X). Using this result and our claim, we
write

E(X)=E(X | A)P(A) + E(X | A°)P(A°) > E(X)P(A) + E(X)P(A°).
Simplifying the expression, we arrive at a contradiction.
E(X) > E(X)[P(A) + P(A°)] = E(X).
Thus E(X | A%) < E(X). O

Now, suppose that S; is no longer in the set of pure strategies from
which the agents can choose. Therefore, the probability of choosing
strategy S; is now zero. Thus, P(A) = 0 (in other words, we set P(X =
By;) = 0 for k=i or j=i). In addition, for the pairs of strategies Sy and
S; in A%, set P(X = By;) = P(X = Byg; | A%). Let E .. (X) denote the
expected time of X calculated with these new probabilities.

Erew(X) = E(X | A°). Recall E(X | A°) < Epm(T). Thus Epew(X) <
Em(T).

Let C; denote the event that pure strategy S; is chosen. We can
write E,,(X) as

Fnew(X) = Y aP(X =z | 4)

where the possible z values are the possible Bi; values. We know
P(X = Byy | A%) = > P(Cy | A%)P(Cy, | A®)Bij. Thus,
{l,m:Bim=B;}

Enew(X) = Zzp(ck | AC)P(CJ’ I Ac)BkJ"
ki i

Consider P(C; | A°) to be pj**, the probability of choosing strategy
S;. Then E,.,(X) is equal to the expected time of a mixed strategy
consisting of the pure strategies, {S1, S2,...8;_1, Siy1,...5,}. Let E(T)
denote the optimal expected time of mixed strategies consisting of the
pure strategies, {S1, S2,...5i-1,Sit1,.--Sn}. Ep(T) < Enew(X) because
the probabilities associated with E,,.,,(X) do not necessarily minimize
the expected time.

Thus, E;(T) < Enew(X) < Epm(T). O

3.3 Results for the Dodecahedron

For the dodecahedron, we consider mixing two 7-step strategies. Using
the previous lemmas, we are able to reduce the number of strategies
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that we need to analyze. There are sixty-four 7-step strategies, mean-
ing that besides pure strategies, there are (%') = 2016 mixed strate-
gies.

Using Lemma 1, we can reduce our set of strategies to 162 strate-
gies. Since we are only mixing two strategies, Lemma 2 is unable
to further reduce our set. When mixing two strategies, Lemma 2
states that a mixed strategy is not optimal if there exists some U
such that Exy(T) < U and there exists some strategy S; such that
B;; = U for j = 1,2. More specifically, the expected time of the pure
strategy that is not S; is less than or equal to that of the mixed strat-
egy.

In Lemma 1, we restricted By < 2.8. Moreover, through exhaus-
tive search we know that for all pure strategies, B;; > 2.8. Therefore,
Bi1 > 2.8 and Bs; > 2.8, regardless of what strategies they are. Thus,
Eym(T) = Byz. Since Ep(T) > Byz, there does not exist a U such that
Em(T) < U, Byg > U and either By; > U or Byy > U, Thus there are
no further reductions from Lemma 2.

Given that for our remaining strategies, B;; < 2.8 for i # 7, we can
apply the following lemma:

Lemma 3. For mixed strategies composed of two 7-step strategies on
the dodecahedron, if Byy < 2.8, then it is guaranteed that the absolute
minimum of the expected time function is attained and the optimal
probability, p, will be between 0 and 1, exclusive.

Proof. Let Eg(T) denote the bounded expected time for the mixed
strategy.
Recall that from the Law of Total Expectation,

Eg(T) =p*By1 +2p(1 — p) Big + (1 — p)?Bas.
Expanding this expression, we obtain
(Bi1 ~ 2By2 + Bay)p® + (2B12 — 2By2)p + Bys.

For any parabola of the form f(z) = az?+bz+c, where a, b, c are real
constants, the parabola has a finite minimum only when a is strictly
greater than zero. (When a is strictly greater than zero, the parabola
is convex.) Therefore, the bounded expected time function has a finite
minimum only when By; —2B2+ B2 > 0. This is what we will attempt
to prove.

Given By < 2.8 and for all 4, B;; > 2.8, we conclude B;; + By > 2%

2.8 and 2B;3 < 2+2.8. Thus By + Byy > 2Bjs. (i.e. Bj;—2B12+Bos > 0).
Therefore, the function has a finite minimum.
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Moreover, for any parabola of the form f(z) = az? + bx + ¢, where
a > 0,b,c are real constants, the vertex of the parabola (the = value
associated to the minimum functional value) is '—,.,f. For the bounded
expected time function, the vertex is equal to

—2(B12 — Ba2)
2(B11 — 2Bj2 + Bag)
We can write (B1; — 2Bj2 + Bgz) as —(Bya — Ba) + (B — Bya).
Because By; > 2.8 and Bz < 2.8, (By; — Byg) > 0.
Thus —(By2 — Bag) + (B11 — By2) > —(B12 — B22) and
—(B12 — Ba2) <1
(B11 —2B1a+ By)

Furthermore, -—(312 - 322) > 0 because By < 2.8 and Byy > 2.8,
and (B11—2312+322) > 0 because —(312—-322) > 0 and (311~B12) > 0.

Thus 5 B
~(B12 — Ba2) -0

(Bi1 —2B12+ Bg2) ~

Therefore, the p-coordinate of the vertex is between 0 and 1 inclu-
sive. O

This result reaffirms the potential for mixed strategies to yield
lower expected times than pure strategies. In addition, we can come
up with a set of conditions for when it is better to use a pure strategy
versus a mixed strategy. For example, when By; — 2B, + Bg <0, the
function goes to negative infinity. Thus, the p value corresponding to
the minimized bounded expected time will be at the boundary points:
p =0 or p = 1. Moreover, if the vertex of the graph is outside of the
interval [0,1], the p value will be at the boundary points.

3.4 Bounds for the Optimal Expected Time

Our ultimate goal is to find the optimal expected time for the set of
mixed strategies. Since we are not calculating exact expected times,
performing exhaustive search on current numerical results will not
give an answer to this question. However, upper and lower bounds to
this number can be found.

An upper bound of the optimal expected time is the expected time
of our current optimal pure strategy, 2.8. We find an improved lower
bound by finding the lowest of the lower bound expected times.

To find the lowest lower bound, we use the bounded expected times
of the asymmetric cases to partition the strategy set. We then utilize
the following lemmas to gradually increase and check the lower bound
until we cannot further increase it.
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Lemma 4. Let E*(T) denote the optimal expected time for the set of
mixed strategies. Let B, denote the smallest B;; value for i # j. Let
Bf, denote the smallest B;; value and B, denote the second smallest
B;; value (Bfy can equal B%, if more than one pure strategy corresponds
to the lowest By; value.) Let E,y;(T) be the minimized value of p° Bf, +
2p(1 — p)Bfy + (1 — p)2 B, with respect to p. E.p:(T) < E*(T).

Proof. For the optimal expected time for the set of mixed strategies,
E*(T) = p?B11 +2p(1 — p) Bi2 + (1 — p)2 Bag for some two strategies and
some optimal value p.

Let p* denote the corresponding optimal value of p for E*(T). Also,
let Bf;, Bj,, and B3, be the corresponding B;; values for E*(T). Thus
we have

E*(T) = (v")*Biy + 29" (1 - p")Bfy + (1 - p")*B3,.

Bf; > 0 is the smallest B;; value. Thus, BX < B},. Replacing B},
with B{; in the above expression and making analogous replacements
for Bj, and B3,, we get the following inequality:

E*(T) = (»*)*Bf; + 2p" (1 — p")BL, + (1 —p*)?BL,

Eopi(T) is the minimized value of p?Bf; + 2p(1 —p)BL + (1 —p)? Bk
with respect to p. Therefore,

Eopti(T) < (p")*Bfy + 29" (1 —p")Bly + (1 - p°)? B,
Connecting these inequalities, we get -
Eopi(T) < (0")*Biy +2p"(1 — p") Bz + (1 - p" )’ Bk < E*(T).
Thus E,p.i(T) is a lower bound for the true optimal expected value. [

Lemma 5. Let T(v) denote the set of bounded expected times for mixed
strategies such that Bz = « for a given +y. Let E.(T) denote the mini-
mized value of p* Bf; + 2p(1 — p)y + (1 — p)2 Bk, with respect to p. Then
E,(T) < min{T(v)}

Proof. Let En(T') denote the minimum value in the set T'(y). With
this value, there is an associated mixed strategy, and thus an associ-
ated By and By value. Suppose By; < Bag. Let’s call these values
71" and B73™ respectively. Also associated with E,,;,(T) is the opti-
mal p value, which we will call p*.
Recall that Bf; and B, are the two smallest B;; values overall.
Thus, Bf; < B{" and B, < By Thus,

(»*y*Bfi +2p"(1 —p*)y+ (1 — p*)?B5,




< (p")*BiY" +2p"(1 - p")y+ (1 - p*)°BRH™.
Given that E(T') is the minimized value of p? B, + 2p(1 — p)y +
(1 — p)?2 B4, with respect to p, we conclude

EL(T) < (@*")*Bfy +20*(1 - p" )7+ (1 - p*)*Bs;.
Connecting these inequalities, we conclude E,(T) < E..ir,(T). O

Lemma 6. Let E;(T) denote the minimized value of p> Bf, +2p(1—p)j +
(1 - p)® B, with respect to p. Suppose ji < jo. Then E;, (T) < E;,(T).

Proof. For sake of contradiction, suppose that E;, (T') > E;, (T).

Let p* denote the associated optimal value of p for E; (T) and p’
denote the associated optimal value of p for E;, (T).

Since E;, (T') < E; (T,

(¢)*Bf;+2p'(1-p)j2+(1-9)*Bf, < (p")*Bfy +2p" (1-p")j1-+(1—p")* B,
Moreover, since 0 < j; < jo, we can conclude that
()" Bi1+20' (1-p)j1+(1-¢)* Bz < (¢')* By +20' (1-p)jo+(1—#')*Bjp.
Connecting these inequalities, we get
(') Bii+20' (1-p)i1+(1—p)* Bl < (0")*Bfi+2p* (1-p")j1+(1—p")*B,.
In other words,
(#)*Biy +20'(1 - p')jr + (1 — p) 2B, < E;, (T).

However, E; (T) is supposed to be the minimized value of p>BF, +
2p(1—p)j1 + (1 —p)2BEL, with respect to p. We arrive at a contradiction.
O

For the dodecahedron, when optimizing p%By; + 2p(1 —p)Bya + (1 —
p)?B3; with respect to p, we use the lower bound value 2.6333 for B,.
This value was found through exhaustive search. For B;; and Bss we
use the two lowest lower bounds for 7-step pure strategies, which are
2.8 and 2.8. This calculation yields our initial lower bound of 2.7165.

From Lemma 5, we know that for all the mixed strategies with
By2 = 2.6333, the bounded expected times are greater than or equal
to 2.7165. After analyzing the mixed strategies that satisfy Bj; =
2.63333, we find that none of the pure strategy combinations have
expected times 2.8 and 2.8. This means the bounded lower bound is
never attained, and thus there is room for improvement. Looking at
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the set of mixed strategies with B = 2.6333, the minimum value is
2.7537037. Consider this value to be our new tentative lower bound.

Next, consider the second lowest B;; value, 2.6667. Optimizing
the expected time (still using 2.8 and 2.8 as the expected times for
the pure strategies), yields the value 2.733345. From Lemma 5, we
conclude that all of the mixed strategies in this set have bounded ex-
pected times greater than or equal to 2.733345. Analyzing the subset
of strategies where B;; = 2.6667, we find that none of the mixed strate-
gies have a combination of pure strategies with expected times 2.8 and
2.8, and the minimum value is 2.75897436. This value is greater than
the tentative lower bound, 2.7537037. Therefore, the tentative lower
bound holds.

This process can be repeated until we reach a B;; value, B};, such
that the optimized expected time is greater than the lower bound.
Lemma 6 states that all strategies with B;; > Bj; will have a larger
expected time.

After executing this process, the final result for the lower bound
is 2.7537037. Therefore our current bounds for the optimal expected
time for the set of mixed strategies are 2.7537037 and 2.8. This inter-
val is relatively small, with an approximate length of 0.05.

4 Summary and Conclusion

We have investigated expected meeting times for our simplified ver-
sion of the astronaut problem on the platonic solids. Our previous
results explore random walks and multi-step strategies. This paper fo-
cuses mainly on the extension of multi-step strategies to mixed strate-
gies. These results are the first of their kind in modeling the expected
time for two astronauts to see each other in the astronaut problem.
Overall, there are some more intuitive results that are consistent with
the current literature, and there are more surprising results that il-
lustrate thought-provoking ideas in the problem.

Previous results investigate an unbiased random walk strategy.
The unbiased random walk strategy is considered to be the most basic
strategy since the agents are not trying to strategize in any way. These
baseline cases are used as comparisons for other strategies as we at-
tempt to decrease the current optimal expected meeting time. More
work on the unbiased random walk strategy can be found in [11] and
[12].

The Left Strategy serves as an introduction to multi-step strate-
gies. It gives the agents a path that is not fully random. It decreases
the expected time on the three solids examined, the octahedron, cube,
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and dodecahedron under face visibility. The Soft/Hard Left Strategy
on the icosahedron also yield expected times shorter than that of the
unbiased random walk strategy. This verifies that non-random, multi-
step strategies can perform better than random strategies. In fact, we
prove that the Left Strategy is optimal on the octahedron and cube
due to the property that it guarantees the agents see each other by
the end of the second step.

On the icosahedron and dodecahedron, longer multi-step strate-
gies are explored. More specifically, we consider strategies up to seven
steps in length and strategies up to five steps in length on the dodec-
ahedron and icosahedron respectively. Similar to the unbiased ran-
dom walk strategy, first-step Markov chain decompositions are used
to calculate expected times. We are unable to prove optimality for
a multi-step strategy. However, in the subsets that we have investi-
gated through exhaustive search, some of these strategies have much
smaller expected meeting times than that of the unbiased random
walk strategy. In addition, some strategies have the added property
that they guarantee the agents see each other by the end of the se-
quence.

Mixed strategies offer a way to insert an asymmetric case. We con-
sider mixed strategies composed of two 7-step strategies on the dodec-
ahedron. Results on the dodecahedron suggest that there is poten-
tial for a mixed strategy to have a lower expected time than all pure
strategies. However, there are many combinations of pure strategies
that do not result in a more beneficial mixed strategy. In other words,
the asymmetric case does not help lower the expected time. In these
cases, it is more advantageous for the agents to use a pure strategy
as opposed to a mixed strategy. In addition to numerical results, we
have results pertaining to the process of finding the optimal expected
time of the set of mixed strategies. The original set of strategies can
be reduced to a smaller set of interest. Also, upper and lower bounds
for the optimal expected time can be calculated. These methods are
not specific to the dodecahedron, and can be applied to other solids.

5 Future Research

There are many options for future research on this topic. Topics that
we are particularly interested in pursuing are mixed strategies on the
other solids, multi-step and mixed strategies under adjacent-vertex
visibility (under this visibility, the agents can only see the vertices
that are adjacent to the one they are standing on) and no visibility
(the agents must meet), and making conjectures for the sphere.
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Another possibility for future research is to add more edges and
vertices to the faces of the solids to closer approximate the sphere.
One obstacle we have found in the first approach is that the solids
are no longer vertex-transitive, so there are many cases to be explored
and calculations become much more complicated. Therefore, another
possibility is to consider other vertex-transitive solids that are larger
than the platonic solids. For more information on this work, see [12].

Another possibility is to consider strategies with a waiting compo-
nent. West [12] has considered the case where in the unbiased ran-
dom walk strategy, the agents also have the option to wait at each
step. It would be interesting to see how inserting a waiting component
in multi-step strategies would affect results. In addition, one could
adapt the Anderson-Weber strategy for our search and see if it is as
effective.

Overall, there are many more strategies to be explored on the pla-
tonic solids and other vertex-transitive solids. Comparing these strate-
gies will hopefully point us in the right direction for more complex
approximations on the sphere.
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