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Abstract

A famous open problem in the field of rendezvous search is to ascertain the
rendezvous value of the symmetric rendezvous problem on the line wherein both
agents begin two units apart. We provide a new, Bayesian framework to both
create new strategies for the agents to follow and to provide a new interpretation
of previously posited strategies. Additionally, we have developed a method that
modifies any siralegy, even those with potentially infinite expected meeting time,
into a new strategy that is guaranteed to have a finite expected meeting time. This
process, combined with using our Bayesian framework to create new strategies,
yields an upper bound that is within one percent of the current best upper bound
for the symmetric rendezvous value.

1 The Problem

On an infinite line, two agents are placed two units apart. Neither agent has any
knowledge as to which direction the other agent is in relative from their starting
position, nor is there a universal notion of direction. Each agent has the ability
to move at a maximum speed of one in each time unit. If both agents occupy
the same space on the number line, we say that they have met or rendezvous
has occurred. If each agent must adopt the same strategy (that is, they can not
meet beforehand to take on different roles), which strategy will guarantee the
smallest expected meeting time? Furthermore, what is that value, also known as
the symmetric rendezvous value?

2 Current State of Research

The symmetric rendezvous search problem on the line has been an open problem
for the past 25 years. Much progress has been made on tightening the upper
and lower bounds on the smallest expected meeting time (denoted R"), coming
up with strategies that achieve surprisingly small expected meeting times, and
narrowing the conditions which an optimal strategy must meet.
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Alpern {1], who originally postulated the problem, derived an upper bound of
5.0. His strategy was for cach agent to randomly decide which direction would be
"forward”, and then to move 1 unit forward and 2 units backwards in succession.
If rendezvous has still not occurred, the entire process is repeated, including ran-
domly selecting which direction is forward.

Han et al {2] found the strategy with the current smallest expected meeting time.
Their strategy emerges as a result of recognizing what made Alpern's strategy
succesful: if the two agents do not rendezvous after their first moving pattern
(1 forward, 2 backwards), then the problem simply resets because the distance
between them remains to be 2 units. Their framework involves increasing the
number of moves of the moving patterns and only assigning probabilities to those
moving patterns such that they are all distance-preserving, which is to say that if
rendezvous does not occur by the end of a eycle then the problem simply resets.
In Alpern’s strategy, there was only one moving pattern of length 3 thal was as-
signed probability, but Han et al employ optimization techniques to increase the
length of their moving patterns, which increases their number as well. In essence,
this helps to break the symmetry of the problem. However, due to computational
limitations, this was performed only up to all moving patterns of length 15, for
which an expected meeting time of approximately of 4.257 was derived. Han ¢! al
use a similar technique to derive a lower bound of 4.152, and both bounds have
yet to be bettered.

Both parties have also proved the following theorems: it is optimal for both agents
to change direction at integer intervals and move at maximum speed throughout.
Han et al refer to the strategies that follow these guidelines as grid strategies.

We would be remiss not to mention the contributions of other researchers (Ander-
son and Essegaier [3], Baston [4], and Uthaisombut [5]) who also found strategies
that bettered Alpern’s initial upper bound of 5.0.

3 The Bayesian Framework
3.1 The Essence of the Framework

Imagine that you are one of the agents attempting to rendezvous with the other
agent on the line, but suddenly all information about your previous movements
is destroyed. However, a genie appears to you and tells you that with probability
one, the other agent is in your forward direction, and this genie orients you ac-
cordingly (that is, you know what forward they are referring to). We remark that,
despite losing all of your previous information, you have everything you need to
act optimally, which is to move [orward with probabililty one ad infinitum. This
seems trivial: if you know which direction the other agent is in, travelling only in
that direction assures the smallest expected meeting time.

Now imagine that the same scenario with the genie occurs, except they tell vou
something slightly diflerent: with probability 0.79, the other agent is in your for-



ward direction (again, you are oriented accordingly). Now, things are certainly
less clear. Namely, two questions arise:

1. How should you act on this information so as to move optimally?

2. Could you perform a strategy with a smaller expected meeting time if you
had more information than this?

This paper focuses on answering the first question, with the second gquestion being
the subject of future research.

3.2 Formalizing the Framework

Although the two agents’ absolute starting positions will either be (~1) or (1),
we are more concerned with their point of view, which is to say that each agent
supposes they are starting at point (0) and that the other agent is either at (~2) or
(2). Also note that neither agent is concerned with the universal notion of forward
but rather their own arbitrary designation of forward. To assuage confusion, we
will say that both agents think of themselves as “the agent” and they are trying
to rendezvous with “the companion”. We let f(t) : [0, co] — R denote the agent’s
position according to the agent and g(t) : [0,00] — R denote the companion’s
position according to the agent at time t. Notice that both f(t) and g(t) are
continuous functions because no agent can jump over intervals of the line. Figure
1 is an illustrative plot of f(t¢) where the agent is following a grid strategy.

Figure 1: An Example of f(t)
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Clearly, the agent knows the precise form of f(t) since it has perfect memory
of what moves it has completed. If the agent knew the exact form of the function
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g(t) this would be extremely helpful in expediting rendezvous since they would
now know precisely in which direction to move to get closer to the companion,
Although the precise form of g(t) might be unknown, there is still some useful
information to be gained.

Proposition 1. The direction in which the agent is in relative lo the companion
does not change until rendezvous occurs.

Proof. Since both f(t) and g(t) are continuous functions, so too must the function
h(t) = f(t} — g(t) be continuous. If h(t) < O then the agent is in the {orward
direction of the companion and if h({t) > O then the agent is in the backward
direction of the companion. Suppose rendezvous has not yet occurred at time t*,
then there does not exist a £ < ¢* such that h(f) = 0. Via the Intermediate Value
Theorem, if A(1") > 0 then for all ¢t < t*, h{¢) > 0, and if h(t") < 0 then for all
t<t*, h{t) <0. O

Utilizing Proposition 1, if at any time £ before rendezvous the agent is given
information that f(f) > g(f), this is equivalent to being given the information
that f(0) > g(0), which is to say that the agent now knows precisely the direction
in which to move to rendezvous with the companion.

We take this notion and formalize it a little bit more. Let o = [f(0) — g(0)
and I be a discrete random variable that is the time until rendezvous occurs.
The agent is aware that before movement begins, P(a > 0) = P(a < 0) = 3. We
are interested in how this probability changes according to the agent as time goes
on given that the agent has so far completed some pure strategy s € S; while
following mixed strategy x (A mixed strategy is some probability measure over
a set of pure strategies, which in this case are vectors of forward and backwards
movements). Note that as soon as movement begins, the universe collapses on
a decision: « is either greater than or less than 1, not some superposition of
the two. However, the agent is aware of this reality, so instead it can compile
cvidence to hypothesize what it believes the value of « to be, or what the value
of Pla > O|R > t) is after completing s. We utilize Bayes Theorem to get an
alternate expression for this probability:
P(R > tla > 0)P(a > 0)

Pla>0R > 1) = ~
(@>0R>) = FRsTas0)Plas 0) + P> fla <0)P(a <)

We notice that the prior Pla > 0) = P(a < 0), which allows some factors to
cancel. Additionally, although we are sceking to find P{a > 0|1 > t), we should
recognize that to do so requires three inputs: time (¢), the pure strategy the agent
has completed so far (s), and the mixed strategy the companion has been following
so far (z). Thus, we introduce a new function (i, s,z) = P(a > 0]R > t) since
we will need to keep track of different scenarios or inputs.

o P(R > tla > 0) =
ﬂ(f,,-S,I) - ﬁ(R > tla_> O) -+ P(.R > t‘a & 0) (])




Proposition 2. If 8;(t,s,r) equals 1 it is optimal for the agent to move in the
backward direction.

Proof. If (t,s,z) = 1 then P(R > tla < 0) = 0, which means if a < 0 then
rendezvous must have already occurred, hence o > 0 since rendezvous has not
yet occurred. Thus, since o > 0, this implies that f(0) > g¢(0), hence the agent
should move in the backward direction to rendezvous with the companion as
quickly as possible. O

Clearly, calculating 3(t, 5, z) has value for the agent since it could possibly re-
veal the optimal direction for the agent to move in. How can the agent precisely
calculate 5(t, s,z)? First, we note that the companion has four different starting

configurations:

Starting Position | Forward Direction | Probability
a 1 B TS
2 -1 0.25
-2 1 0.25
-2 -1 0.25

The agent is also aware that the companion is following the same mixed strategy
that it did, so the agent can assign a probability to every possible form of g(t).
Thus, it will be able to calculate P(R > tla > 0) and P(R > t|a < 0) by summing
the probability that rendezvous would have occurred depending on the different
forms of g(t).

Suppose that 8(t,s,z) # 1: is there any value to this information for the agent?
Hypothesizing the answer to be yes leads us to construct a new strategy space.
We say that a Bayesian Strategy (z € B) is any strategy that can be constructed
in the following manner;

1. Select a confidence function ¢(3) : [0, 1] = [0, 1].
2. At time t = 0, move in the forward direction.

3. At time t > 0, move in the forward direction with probability c(A(t, 8,x))
or in the backward direction with probability 1 — c(A3(t, s, z))

We label each Bayesian Strategy by its confidence function, ¢(B). Every Bayesian
Strategy c(3) has an equivalent mixed strategy z over all pure strategies of length
n for any arbitrary n.

Suppose we selecl a confidence function &(8) and we also wish to translate it
into the more familiar structure of representing some mixed strategy &. At time
t = 0, the agent moves in the forward direction, to position 1, with probability
one.

The agent must then decide with which probability it should move in either direc-
tion. Note that a pure strategy is represented by a vector of 1’s and -1’s, where
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Agent’s | Companion’s

Position Position | P{Companion’s Position)
1 1 0.25
1 ‘ 1 0.25
1 -3 | 0.25

a 1 is a movement in the agent’s forward direction and a -1 is a movement in the
agent’s backward direction. First, we update & :

i
e SLralegy ' Prolw;llnilli‘i:(«:l.“"
il i

To calculate 3(1,[1},2) all we need to know are the probabilities P(R > tla > 0)
and P(R > t|a < 0), which are the probabilities that rendezvous has not yet oc-
curred given that the companion originated in the forward or backward direction
respectively. If & > 0, then half of the time rendezvous will have already occurred.

If o < 0, then rendezvous has not yet occurred. Thus, P(R > tja > 0) = } and

P(R > tla < 0) =1, s0 A(1,{1},2) = ;%-'1 = £, To determine the agent’s next
move, we input the value we just derived into ¢(f8). For this example, suppose
¢ (%) = 0.2. First, let’s update :

A

T
Pure Steategy | Probability
T B I e
S T RO X:

Now, the situation gets more complicated bgguase the agent has essentially brang@
ofl into two distinct realities, which means that the companion now has eight pos-
sible movements it has completed (six, if you discount the two in which it stops
after one move because rendezvous has occurred). This is illustrated below:

A m’s_ quitiglln V'J_'_l_v-‘\.l':r_‘l_ﬂ"_w!_'-_r-dlinn} Coanpamink’s Position I l"l"‘-v'!'m“!|l=‘lllllt 'F’.,"'.‘.I.,"A""h”‘!f‘.".'.'.‘f..‘
:, el e e ek ..__6 ,ﬁ.. . o W S s e e ” I | <l]|lrl /i W
2 02 2 0.2
2 02 0 0.05
2 0.2 -3 0.2
2 02 -4 0.05
2 02 -2 0.2
0 08 4 0.05
0 0.8 2 0.2
O 08 0 0.05
4] 08 -3 | 0.2
0 ! 08 -4 0.056
0 ) 08 ! -2 0.2
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Our next step would be to calculate 8(2,[1,1], &) and A(2,[1,—1],Z) in order
to determine how the agent would move next in each of those scenarios. We
continue this process ad infinitum.

3.3 Analytic Approach to Optimizing the Confidence
Function

Our goal is to find the Bayesian Strategy ¢(8) that yields the smallest expected
meeting time. First, we establish some criteria that ¢(8) must meet in order
for the function to even be considered as a candidate for yielding the simallest
expected meeting time:

L. g(ly=1

2. ¢(0)=0

3. ¢(B8):[0,1} = [0,1]
Next, there are features of ¢(f) that we can provide intuitive justification for but
have not yet proved to be necesary mathematically:

1. For all 8,¢(B8) = 1 — ¢(1 — B8): There should be no real difference between
the forward and backward direction since they are both arbitrary.

2. ¢(3) = 3: If the agent knows it to be equally likely the companion is in

either direction, moving randomly seems like a reasonable strategy

3. ¢(B) is an non-decreasing function: If the probability the companion is in a
certain direction increases, it follows that the probability the agent moves
in that direction should never decrease.

There is an immediate choice for ¢(3) that is easy for one to justify, which
is the function below: We can think of ¢*(8) as a greedy approach: the agent is

Confidence Function c¢*(f3)
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always moving in the direction that it is more likely for the companion to be in.
If the directions are both equally likely, the agent moves randomly.

Theorem 1. The Bayesian Strategy c* () s equivalent to Alpern’s Original Strat-
egy
Proof. First, we can express Alpern’s original strategy as the following mixed
strategy:

1. Complete the pure strategy [1, —1, —1] with probability 1.

2. Complete the pure strategy [1, —1, —1] with probability ’5 or (—1,1, 1] with

probability 1.
3. Repeat step 2 until rendezvous

As for the Bayesian Strategy ¢* (), the agent first moves in the forward direction,
and then calculates the associated A value:

B

P(R> 1lla>0)

R>1|a>0)+P(R>1|a<0):§+1

Wi

ﬂ(l,s,:c) = P(

Since ¢*(3) = 0 the agent moves in the backwards direction with probability 1.
Again, we calculate the 4 value to determine the next move:

P(R > 2|a > 0) 5

B(2,8,x) = ; : = =32
P(R>2la>0)+PR>2a<0) 141 3

Again, the agent moves in the backwards direction with probability 1. We notice
that at this point the problem resets in that the companion is 2 units in the
forward direction with probability % or in the backward direction with probability
3. Since ¢(3) = %, we can think of the agent’s next movement as determining a
new forward direction. Since the problem resets, we know that following ¢*(8) will
now result in either completing [1, -1, =1} or [~1, 1, 1] and then resetting again.
Thus, ¢*(8) reduces to the same mixed strategy as Alpern’s Original Problem, so

they are equivalent strategies. &

Equating Alpern’s Original Strategy to ¢*(8) helps provide further justifica-
tion as to why it is not optimal. Clearly, the agent is bchaving too bullishly
when they start to compile evidence as to which direction the companion is in.
Although so far we have only demonstrated that Bayesian Strategies can provide
an alternative outlook on established strategies, in the next section we will show
how we can derive actual bounds for any Bayesian Strategy.

4 Deriving Bounds

4.1 General Strategy

The expected meeting time given two agents are following the mixed strategy z
is denoted by T'(z,z). Suppose the two agents have only completed n moves,
with probability p, that rendezvous has not yet occurred. Consider the partial
expected meeting time, Tp(z,z) which is the expected meeting time using the



probability of rendezvous of the first n moves and doesn’t normalize the probabil-
ities (i.e. probability p. is "missing” from the expectation). Then the following
inequality holds for all n:

T(z,z) > Tu(z, z) +pn(n+1)

Additionally, given some mixed strategy z, we can produce an upper bound for
R®. After completing n moves, each agent retraces its steps and returns to its
original position. From there, both agents restart the strategy, again retracing
their steps and starting over if rendezvous does not occur after another n moves.
We call the new mixed strategy produced from this procedure z*.

T(x",z*) = Tu(z, 2) + pu(T(=*, 2"} + 2n)

which implies: X .
(1 - pn)T(zx",z2") = Tn(z, z) + 2npn

from which we obtain:

e - BT e .

Although the strategy z* ensures a finite expected meeting time, we can certainly
do better. Suppose z** is a strategy that is identical to z*, except when the agents
are retreating 1o their original position they perhaps don’t retrace their steps, so
there is maybe some chance the two agents rendezvous during this procedure.
For example, let’s say that after n moves the agent has to move forward i times
and backward j times to return to where they started. With probability % they
move forward % times and backward j times and with probability -21- the order is
reversed. Clearly, the following inequality must hold:

T(z*",2"") < T(z*, ") (3)

These bounds are useful for a few reasons. Firstly, even if T(z, z) itself is infinite,
we can still derive bounds for R” for any arbitrary n. Secondly, ff‘n(:c, x) can be
determined easily for sufficiently small n with a computer, which is useful since
the closed form T'(z,z) may be unknown.

4.2 Computational Approach to Optimizing the Con-
fidence Function

We have written a program that takes as input a valid confidence function e(8)
and some number of moves n and gives as output a lower bound for T'(c(8), c(8))
and two upper bounds for R*, one where the agents retrace their steps as in equa-
tion 2 and one where the agents retreat in the way described before in equation
3

To feed the program a confidence function, we first parameterize the confidence
function so that its shape is completely determined when given the value of the
parameter. We utilize scipy’s optimize package so that we can optimize the pa-
rameter to either minimize the upper bound for 2° or maximize the lower bound
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for T(e(B),¢(B8)). The goal is to find a confidence function that produces an up-
per bound on R’ that is better than Han et al’s upper bound (approximately
4.2574). Here is the procedure we will follow:

1. Parameterize ¢(f4) so it is of some form fully determined by parameter X.

2. Define the function {(n) to accept as input any n and give as output the
value of the minimum lower bound of T'(c(8), ¢(8)) given n moves.

3. Determine if there exists an n such that [(n) > 4.2574....

4. Define the function u(n) to accept as input any n and give as outpul the
value of X that minimizes the best upper bound of R* derived from c(f)
given n moves.

Select a X* that could potentially satisfy limyp.,eo u{n) = X*

g.«"(

6. Compute the best upper bound for R® given ¢(8) and X * for as large a valuc
of n as you would like.

Steps 2 and 3 are to check if it is possible that the specific parameterization could
potentially yield a strategy that is better than the strategy of Han et al. Steps 5
and 6 are to actually derive a strategy and an upper bound on R*. We will walk
through this procedure completely for a paxametenzatlon of ¢(B) and afterwards
we will present the results in Figure 5

Consider the following class of linear confidence functions, illustrated in Figure
2: For some X € [0, 00),
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Figure 3: l(n) for the linear confidence function up to n = 20.
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Figure 4: u{n) for the linear confidence function up to n = 18.
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First, we search for an n that satisfies l(n) > 4.2574...: At n = 20, I(n) >
4.2574... so we must reject this parameterization as a candidate for besting Han
et al.’s upper bound.

So now we shift gears and try to estimate limp—; 00 u(n).

It appears that /e is pretty close to the optimal value of X for n = 18. Any
selection of n will give us a valid upper bound, so now the only issue remaining is
computation time. Since we have shown that this parameterization cannot best
Han et al’s strategy, it is not a worthy endeavor to try an extremely large n. We
choose n = 20 instead:

Linear Confidence Function, X = ve,n = 20 = R" < 4.27840

Figure 5: Results of Heuristic for Linear Confidence Function

| » Lower Bound on T(c(B),c(8)) Best Upper Bound on R® ||
1 & 7.0
2 2.41275 6.58724
|8 293635 620112
4 3.35853 6.12179
[ 5 3.66280 573924
6 385250 5.15721 a
7 3.97808 4.93982
8 4.06390 4.75582 B
9 4.12475 466749
10 4.16590 4.56047
11 419474 T 4.49508
12 4.21480 4.42825
13 4.22907 4.39157
14 423803 o 4.35177
15 4.24573 - 4.32065
16 4.25039 4.31004
17 4.25363 4.29678
18 4.25586 ~ 4.28687 -
19 425739 4.28020 B
|20 425847 427480

We also consider the following class of quadratic confidence function, illus-

trated in Figure 7:

0 0<A<t—\/ok

- ~X(B- 1P+ 3-y&x <8<

For some X € {0, 00), ¢(B) = ( 1 '-; 1 2 :la 55?1 12
X(B-3)"+3 3<B8<3+\3x

! ;1 +Hysks8<

258




Figure 6: The quadratic confidence function with parameter value X = 9.5
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Performing the same procedure as the linear confidence function reveals that
no choice of X yields an expected meeting time smaller than the strategy of Han
et al. The optimal X appears to be oscillating around 9.5 at the end, which yields
an upper bound of 4.32816 for n = 16.

Figure 7: Results of Heuristic

Form of | liM,—eol(n) | Estimate of ~ Upper
c(8) >4.25747 | limpoou(n) | n | Bound ]
Linear Yes e T20 ] 12708
| Quedratic | Yes 95 |16 | 4.32816

5 Summary

We have developed a new strategy space that takes a Bayesian approach to calcu-
lating the next move the agents should make, considering some of the information
they have available to them. This provides us with an intuitive basis for deriving
a strategy, as opposed to exhaustive computation. By interpreting other strate-
gies as Bayesian ones (as we did with Alpern’s original strategy) can shed light
into what makes them successful or not. Additionally, we have shown how to
derive both lower and upper bounds from any mixed strategy z that might only
describe a finite number of moves. Finally, we have crafted a heuristic which
utilizes known optimization algorithms to search for a Bayesian strategy with
the smallest expected meeting time, and have derived an upper bound on R® of
4.27840. Future work is centered around devising smarter ways to find better
Bayesian strategy confidence functions.
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