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Abstract — A Magic Venn Diagram is a magic figure where regions of a Venn diagram are
labeled such that the sums of the regional labels of each set are the same. We have
developed a backtracking search to count the number of Magic Venn Diagrams. The
algorithm could determine the number of Magic Venn Diagrams for all Venn diagrams
with four sets. This paper presents the algorithm with its applied heuristics and lists the
computational results.

1. INTRODUCTION

For centuries magic figures, like magic squares and magic graphs, have been
studied for mathematical recreation, but also to further mathematical knowledge
(Andrews 2014, Block and Tavares 2009, Wallis 2001). Robinson (2016) has
introduced a magic figure, called Magic Venn Diagram (MVD), where the
nonempty regions of a Venn diagram are labeled such that the sums of the regional
labels of each set are the same. MVDs are of general interest as many magic
figures can be considered to be special cases of Magic Venn Diagrams.

In order to explore the structure of Magic Venn Diagrams, it is of interest to
count the number of MVDs of a given Venn diagram. To the best of our
knowledge, there has been no published work on MVDs so far, and MVDs have
been counted by hand only. As the number of nonempty regions increases,
counting MVDs by hand becomes unfeasible. We have developed and
implemented an algorithm that determines and counts all MVDs of a given Venn
diagram. The algorithm is based on backtracking search that applies some
heuristics to reduce the search space. In our test, we could calculate the number
of MVD:s for several scenarios that have not yet been determined before.

2. MAGIC VENN DIAGRAMS

A Venn diagram of order n and size r is an n-tuple (4,,4,, ..., A,) of distinct
subsets A1, Az, ..., A, of some set X such that there are exactly » nonempty Venn
regions R; of the form R; = (N;g; A;) N(Nig A)) where I € {1,2,...,n}. A Venn
diagram of order n is called complete, if its size is 27, that is, the collection of
nonempty Venn regions includes region R, for every subset/ € {1, 2, ...,n}.

A Venn diagram is regular of degree d if each set contains the same number
d of regions.

A labeling of a regular Venn diagram of order n and size r assigns a distinct
label 1,2, ..., r to each nonempty region. The label sets S;(L) of a labeling L are
defined as

Si(L) ={l|Lassignslto Rrwhere ] € {1,2,...,n} Ai€I AR, # 0}
for each i = 1,2, ..., n. In other words, S;(L) is the set of regional labels of the
subset A;,i = 1,2, ...,n.
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A given collection of label sets S, ...,S, uniquely defines a labeling as
follows. The region R: is assigned the label ! such that V¢l € S; AV g1 € S;.
Note that not any collection of n subsets of labels represents a labeling. In the
following, we often represent a labeling by its label sets.

A Magic Venn Diagram (MVD) is a regular Venn diagram of order n and size
r with a labeling L such that for some number m the sum Y{I |l € S;(L)} =m
for eachi € {1,2, ...,n}. The sum m of labels in a label set is called the magic
sum of the MVD.

Figure 1 displays a complete MVD of order 3, size 8 and degree 4. In the
following, we often represent a region R, = (Mg A;) NNy A]) by its
subset I € {1,2, ..., n}. Then the region {1, 2} of the MVD in Figure 1 is assigned
label 7, for example. The magic sum of the MVD is 20.

A1 ﬂ Az

Figure 1: MVD of order 3, size 8 and degree 4

Figure 2 displays a MVD of order 4, size 10, and degree 5. The magic sum is
27. Note that the Venn diagram is not complete. For example, the regions {2},
{3}, {1, 4}, {2, 3}, {1, 2, 4}, and {2, 3, 4} are not labeled, meaning these regions
are empty.

Figure 2: MVD of order 4, size 10, and degree 5

2.1 Magic Figures and Magic Venn Diagrams

Many common types of magic figures can be represented by MVDs. For example,
a magic square is an arrangement of the first n% natural numbers in an n x n array
such that every row, every column, and both diagonals have the same sum. A
magic square can be represented by a MVD where each row, column, and
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diagonal is represented by a set A;, i = 1,2, ...,n? + 2. The nonempty regions are
the corresponding intersections of rows, columns, and diagonals.

In an edge-magic graph defined by Kotzig and Rosa (1970), the n vertices
and m edges e, ..., e, of a graph are labeled by the numbers 1,2, ...,r =n+m
in such a way that the sum of the label of e; and of the labels of the vertices
incident to e; is the same for every i = 1,2, ..., m. An edge-magic graph can be
represented by a MVD where each edge e; corresponds toaset 4;,i = 1,2, ..., m.
For every edge e;, region R;; is nonempty, and for every vertex, regionRy; ;). i)
is nonempty where e; , e;,, ..., &, are the incident edges of that vertex.

2.2 Isomorphic MVDs
Two MVDs with labeling L an L', respectively, are magically isomorphic, or short
isomorphic, if there is a bijection p from {1,2, ...,n} to {1, 2, ..., n} such that the
corresponding label sets are the same, that is, Vs _, S;(L) = Sp; (L")
Consider, for example, the MVDs displayed in Figure 2 and 3. Let’s call the
labeling of the MVD in Figure 2 L and the labeling of the MVD in Figure 3 L".
Assume the bijection p maps 1, 2, 3, 4 as follows: 1~ 4,2~ 3,3 2,4~ 1.
Then the label set S, (L) = {1,4,6,7,9} is the same as set Sp;y(L") = S,(L").
Similarly, it holds that S, (L) = S,)(L) = S3(L), S(L) = Spia (L) = 5L,
and S, (L) = Sy (L)) = S, (L).

Figure 3: MVD of order 4, size 10, and degree 5

As most research is concerned with the structure of MVDs, we are interested
in counting the number of non-isomorphic MVDs. We specify how the number
of isomorphic and non-isomorphic MVDs relates to each other.

A region-preserving bijection of a Venn diagram of order n and with the
subsets with the n -tuple (4,,4,,...,4,) is a bijection p from {1,2,..,n} to
{1,2,..,n} such that forall I € {1,2, ..., n}, the region Ry, ;)i e 13 is nonempty if
and only if R; is nonempty.

Let M be a Magic Venn Diagram with labeling L. Then for every region-
preserving bijection p of the underlying Venn diagram of M, the labeling L' with
label sets S; (L") = Sp(;) (L) specifies a MVD that is isomorphic to M. Similarly,
assume M and M’ with labeling L and L', respectively, are isomorphic MVDs and
p is the bijection such that V;—; . S;(L) = S,(;,(L") holds. Then p is a region-



preserving bijection on the Venn diagram of M and M'. Thus, if there are k region-
preserving bijections on a Venn diagram, then a MVD of that Venn diagram has
exactly k isomorphic MVDs.

2.3 The Counting Problem

An instance of the MVD Counting Problem (MVDC) is a regular Venn diagram.
The MVDC requires determining the number of non-isomorphic Magic Venn
Diagrams of the given Venn diagram for every possible magic sum.

MVDC has been solved for all Venn diagrams of order 3. Robinson (2016)
has reduced the regular Venn diagrams of order 4 to 19 different types. The
solution of any MVDC instance can be derived from the solution of one of the 19
types, which are numbered 1, 2, 3, 4, 5, 6a, 6b, 7, 8, 9, 10, 11, 12a, 12b, 13, 14,
15, 16, 17. MVDC has been solved for the first eight types. See Robinson (2016)
for details. Table 1 lists the types of Venn diagrams of order 4 for which MVDC
has not been solved so far.

Type | Nonempty regions Size | Degree | Factor
9, {1}, {2}, {43, {1,2}, {1,3}, {1,4}, {2, 3}, {3.4},

P @34 0.2,3,9) ll B e

9 @, {1}: {2}: {3}: {4}§ {1’2}3 {23 3}: {374}’ {1s294}: ]l 5 2
{1,3,4},{1,2,3,4}
9, {1}, {2}, {3}, {4}, {1, 2}, {1, 3}, {1, 4}, {2, 3},

1 |2.4), 0.4, 11,2,3,4 all ) s

11 9, {1}’ {4}) {1’ 2}’ {1’ 3}:» {la 4}: {2’ 3}: {2: 4}: 12 6 4
{3,4},{1,2,3}, {2,3,4}, {1,2, 3,4}
9, {1}, {2}, {3}, {1, 3}, {1, 4}, {2, 3}, {2, 4},

128 111,2,4), (1.3, 4, 2.3, 4}, {1, 2. 3, 4) Ll .
9, {1}, {2}, {3}, {1, 2}, {1, 4}, {2, 4}, {3, 4},

0 111,23}, 11,3,4), §2,3,4), (1,2, 3.4} sl B e

13 G) {1}7 {2}: {3}3 {4}3 {11 2}a {3: 4}3 {1) 2; 3}3 12 6 8
{1,2,4}, {1,3,4}, {2,3,4}, {1,2, 3,4}

14 @’ {1}, {2}= {3}’ {4}9 {l, 2}: {1) 3}: {2= 3}$ {2) 4}: 13 6 4
{34}, {1,2,4}, {1,3,4}, {1,2,3, 4}

15 Ga {1}: {2}3 {3}: {1&2}9{1;3}} {134}: {2)3}3 {2:4}1 14 7 6
{3"4}’ {1’2’4}! {1:3)4}9 {23 394}s {132: 3, 4}

16 g! {1}9 {2}: {3}3 {4}-) {13 2}’ {1)4}3 {2s 3]! [35 4}: 14 7 b
{1,2,3},{1,2,4},{1,3,4},{2,3,4},{1,2,3,4}

17 |every subset of {1,2, 3, 4} 16| 8 24

Table 1: Unsolved instances of MVDC of order 4

The second column specifies the nonempty regions of a Venn diagram of the
given type. The last column with heading “Factor” lists the mumber of region-
preserving bijections of the Venn diagram. This is the factor by which the number
of isomorphic MVDs of a given Venn diagram differs from the number of non-
isomorphic MVDs.




There have been some preliminary results by Yang Haifeng for the complete
Venn diagram of order 4, which have been communicated in 2014 to David
Robinson. Haifeng’s results state that the total number of MVDs in this case is
53,860,800. However, the results have not been published, and it is not known if
this number includes all MVDs or only non-isomorphic MVDs.

3. THE ALGORITHM

The solution algorithm is based on a backtracking search that traverses the labels
from lowest to highest and assigns the current label to a region. If the algorithm
detects that a current labeling cannot result in a MVD, the most recently assigned
label is assigned to a different region. For details on backtracking search, see
Russel and Norvig (2009). In our computational tests, we only track the number
of MVDs for each magic sum, but the algorithm can also explicitly output all
MVDs.

Collection<Region> regions;
Label[] labels;

Integer labellndex;
Integer[] numberMVDs;

countMVDs (Collection regionSet, Collection labelSet) {
regions = regionSet;
for each region r or regions, mark r as unlabeled;
labels = array with labels of labelSet in increasing order;
labellIndex = o;
for each possible magic sum m, numberMvDs[m] = @;
countMVDsRecursively();

}

countMVDsRecursively() {
if every region in regions is labeled {
Integer m = magic sum of current MVD;
numberMvDs[m]++;
} else {
Label 1 = labelArray[labelIndex];
labelIndex++;
for each unlabeled region r in regions {
label r with 1;
if validLabeling() {
countMVDsRecursively();

}

remove label 1 from r;

}
labelIndex--;

}
}

Figure 4: The backtracking search
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Figure 4 displays the pseudocode of the backtracking search. The entry point
to run the algorithm is the function countMVDs. It is passed in a problem instance
in the form of a collection of regions and labels. In this research, we only explore
label sets of the form {1, 2, ..., r}. However, the algorithm can handle any sets of
labels.

A naive implementation of the function validLabeling( ) in the recursive
procedure checks that the current labeling represents a MVD if all regions are
labeled as show in Figure 5. This implementation will ensure that the solution
algorithm comrectly counts MVDs by their magic sum. However, the time
complexity of this simplistic approach is O(r!) where r is the size of the given
Venn diagram. Hence, even for small problem instances of MVDC, the algorithm
becomes impractical. We discuss several ways to improve the heuristic
validLabeling() such that the search tree can be pruned before all labels are

assigned.

validLabeling() {
if not all regions are labeled or the labeling is a MVD {
return true;
} else {
return false;

}

}

Figure 5: Function validLabeling

3.1 Upper and Lower Bounds

The improved algorithm tracks, for each set A;, a lower bound Ib(4;) and an upper
bound ub(4;) for its total possible sum of regional labels given the current partial
labeling. In particular, the lower bound is the sum of the k labels currently
assigned to k regions of subset A: and of the d - k lowest labels that are not yet
assigned to any region. Analogously, the upper bound for the label sum of
subset A: is the sum of the k currently assigned labels and the d - k highest labels
that are not yet assigned to a region. Since the algorithm assigns labels from
lowest to highest, the lowest labels 1, 2, ..., j are assigned to regions for some label
J=12,..,r.1fl;,1,, .., 1 are the labels currently assigned to regions of 4;, then
the lower bound for the label sum of subset A: is calculated as

b(A)=L+L++L+(+D+{G+2)++(G+d—k)
and the upper bound is
ub(A) =L +L++Lh+(r-d-k-1))++ -1 +r

The calculation of the lower and upper bound requires to add d - k consecutive
labels. To speed up the calculation of the bounds, the algorithm determines all
possible sums of consecutive labels in a preprocessing step and stores the sums in
a two dimensional array where the value at index [i][j] is the sum of the j
consecutive labels starting with the label i.



Since the sum of regional labels of every subset A: has to be the same in a
MVD, the search tree can be pruned when the largest lower bound exceeds the
smallest upper bound, i.e. when

max{lb(4;)|i = 1,...,n} > min{ub(4))|i = 1,...,n} }
holds where n is the order of the Venn diagram.

3.2 The Magic Median
We complement the labeling L of a Magic Venn Diagram of size r and degree d
by replacing each label ! with the label r + 1 — L. Let {{1, l2, ..., la} be the label set
S;(L) of some subset A.. If L is the labeling of a Magic Venn Diagram with magic
sum m, then the sum of regional labels of A is
m= 11+12+"'+ld
In turn, the sum of regional labels of A: under the complemented labeling is
r+1-L))+0+1-L)+-+@T+1-1;)
=dr+1)-(L+L++l)=dir+1)—m
Therefore, the complemented labeling is the labeling of a Magic Venn
Diagram as well, and its magic sum is d(r + 1) — m. Since every MVD with
magic sum m has a complement MVD with magic sum d(r + 1) —m, the
median among all magic sums of a regular Venn diagram ofsize r and degree d
is d(r + 1)/2. We call the median of all magic sums the magic median. The
distribution of magic sums of a given regular Venn diagram is symmetric in the
magic median. For instance, Table 2 displays the distribution of magic sums of
the MVDC instance of Type 8 as specified in Table 1. Since the Type 8 Venn
diagram has degree 5 and size 11, the magic medianis 5(11 + 1)/2 = 30.

Magic sum |22 (23] 24 [25 |26 {27 (28 [29 |30 |31 (3233 |34 [35[36 3738
[¥MVDs 6 54118224358 424 |664|666|652 666 |664(424|358(224|118| 54 | 6

Table 2: Distribution of magic sums of Type 8

Due to the symmetry, the algorithm only need to determine either the MVDs
with a magic sum less than or equal to the magic median or with a magic sum
greater than and equal to the magic median. Since the solution algorithm assigns
the smallest labels first, the upper bounds ub(A:) are typically tighter than the
lower bounds Ib(A:). In turn, the condition that a current partial labeling results in
a label sum less than the magic median can be typically detected earlier. Thus in
order to prune the search tree as early as possible, the algorithm counts MVDs
with magic sum greater than or equal to the magic median.

3.3 Standard Label Representation

The solution algorithm as proposed in Figure 4 counts all MVDs, not the number
of non-isomorphic MVDs. As pointed out in Sections 2.2 and 2.3, the number of
all MVDs and the number of non-isomorphic MVDs differs by a factor, which is
the number of region-preserving bijections of the underlying Venn diagram. The

267



mumbers of non-isomorphic MVDs immediately result from the counts
determined by the algorithm by dividing each count by the corresponding factor.

In case of the MVDC instances of Type 10 and 17, every bijection on
{1,2, ..., n} is region-preserving. In this case, we can avoid counting isomorphic
MVDs by defining a standard form of the labeling representation and by counting
a labeling only if it is in that standard form. To define the standard form, we first
define the lexicographical order on label sets as follows. Let S = {l1, 15, ..., 14}
with [; < [; <+ <lg and §' = {l3,1;,.., 15} with [ <1} <.+ < 1; be two
label sets. Then

S<S" ey, ah =UAL=[A AL =L _ AL <,

Since label sets represent the regional labels of a subsets Aq, each label set contains
d labels where d is the order of the underlying Venn diagram.

A labeling L is in standard form if its 1abel sets S, (L), S, (L), ..., S, (L) are in
lexicographical order, i.e. S; (L) < S,(L) < -+ < S, (L).

If every bijection on {1, ..., n} is region-preserving, then any permutation of
the label sets of a MVD represents an isomorphic MVD. In particular, in every
group of isomorphic MVDs, there is exactly one MVD whose labeling is in
standard form. For those MVDC instances, the algorithm counts a MVD only if
its labeling is in standard form. In other words, as soon as a partial labeling
violates the standard form, the search tree can be pruned.

Remember that the algorithm assigns labels from lowest to highest. Thus, the
algorithm can detect as soon as a partial labeling cannot be extended to a labeling
in standard form any more, allowing to prune the search tree early.

3.4 Pruning the search Tree
We summarize the pruning conditions. If one or both of the following conditions
are true, the search tree is pruned:

o max{Ilb(A)|i=1,..,n}>min{ub(4)|i=1,..,n}

e min{ub(4))i=1,..,n} < magic median
In case that every bijection on {1,...,n} is region-preserving, the tree is also
pruned in the following case:

e the current partial labeling cannot be extended to a labeling in standard
form

The check for the above conditions has been implemented in the function
validLabeling() of the solution algorithm.

4. COMPUTATIONAL RESULTS
The solution algorithm has been implemented in the programming language Java
10. All problem instances were run on a desktop computer with an Intel(R)
Core(TM) i7-4790 CPU @ 3.60GHz processor and with the operating system
Windows 10 Education.

Table 3 displays the run times in seconds for a MVD instance for the Types
8-17. The fourth column displays the run-times of the algorithm version that



counts all isomorphic MVDs. The fifth column displays the run-times where only
labelings in standard form are counted. This can only be applied to Type 10 and
17. In these two cases, the run-time is reduced by an order of magnitude. The last
column displays the number of non-isomorphic MVDs.

Type | Size | Degree | CPU Time (sec) CPU Time (sec) # MVDs
(no standard labeling) | (standard labeling)

8 11 5 0.109375 2,840
9 11 5 0.062500 5,208
10 | 12 5 0.468750 0.046875 936
11 12 6 0.546875 11,760
12a | 12 6 0.687500 32,304
12b | 12 6 0.531250 19,600
e 6 0.656250 8,076
14 | 13 6 4.093750 82,232
15 | 14 7 34.812500 681,544
16 | 14 7 37.843750 565,536
17 | 16 8 4990.062500 258.671875 29,313,344

Table 3: Run-times for MVDC instances of order 4

Tables 4 - 14 display the counts of non-isomorphic MVDs by magic sum for
each type. The counts are listed only for magic sums that are less than or equal to
the magic median. It turns out that Haifeng solved the MVDC instance with an
underlying Venn diagram of order 4 and size 15 where all regions are nonempty,
except for the region R,. His total count of 53,860,800 includes all MVDs.

Magicsum |22 |23 |24 | 25 | 26 | 27 | 28 | 29 | 30
# MVDs 3 [27 (59112179 ]212 | 332 | 333 [ 326

Table 4: Non-isomorphic MVDs of Type 8 (magic median: 30)

Magicsum | 21122 (23] 24 | 25 | 26 | 27 | 28 | 29 | 30
# MVDs 4 130 |94 ]149 | 260 | 303 | 420 | 501 | 578 | 530

Table 5: Non-isomorphic MVDs of Type 9 (magic median: 30)

Magicsum | 25 |26 [27 |28 |29 |30 |31 | 32
# MVDs 6 122128154 |64]|85]97 (112

Table 6: Non-isomorphic MVDs of Type 10 (magic median: 32.5)

Magicsum | 30 [ 31 [ 32 | 33 | 34 | 35 | 36 37 38 39
# MVDs 3 |48 [ 103 | 420 | 407 | 820 | 876 | 1,240 | 1,071 [1,784
Table 7: Non-isomorphic MVDs of Type 11 (magic median: 39)

Magic sum |30 | 31 | 32 33 34 35 36 37 38 39
#MVDs |64 288 | 424 [ 1,184 | 1,156 | 2,276 | 2,304 | 3,496 | 2,920 | 4,080
Table 8: Non-isomorphic MVDs of Type 12a (magic median: 39)
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Magicsum | 29 (30 31 | 32 | 33 | 34 35 36 37 38 39
#MVDs |34 [92]232]376/488|1,008 1,390 | 1,500 | 3,848 1,924 | 1,328

Table 9: Non-isomorphic MVDs of Type 12b (magic median: 39)

Magicsum (28129 [30 | 31 [ 32 | 33 | 34 | 35 |36 | 37 | 38 | 39
#MVDs |6 |26 |68 |136| 165|330 | 330 | 534 | 590 | 773 | 634 | 892

Table 10: Non-isomorphic MVDs of Type 13 (magic median: 39)

Magic sum | 31| 32 | 33 | 34 | 35 | 36 | 37
#MVDs | 36| 222 | 535 | 1,128 | 2,048 | 2.881 | 4,088

Magicsum | 38 | 39 | 40 | 41 | 42
#MVDs | 5,174 | 6,024 | 7,325 | 7,869 | 7,572

Table 11: Non-isomorphic MVDs of Type 14 (magic median: 42)

Magicsum |40 | 41 | 42 | 43 | 44 45 46
#MVDs | 40 | 426 [ 1,784 | 3994 | 8,034 | 13488 | 21.462
Magic sum | 47 43 49 50 51 52
#MVDs | 29,490 | 38,530 | 45,952 | 54,676 | 59.830 | 59,830

Table 12: Non-isomorphic MVDs of Type 15 (magic median: 52.5)

Magic sum |38 [ 39 | 40 | 41 42 | 43 44 45
# MVDs 12 | 204 | 812 | 2,064 | 4,170 | 6,866 | 10,524 | 14 816

Magic sum | 46 47 48 49 50 51 52
#MVDs 19,862 | 25496 | 31,008 | 35,800 | 40,652 | 44,294 | 46,188

Table 13: Non-isomorphic MVDs of Type 16 (magic median: 52.5)

Magicsum | 51| 52 53 54 55 56 57 58
# MVDs 327 3,506 (11,457 34,568 | 70,930 | 148,256 (230,288 |381,686

Magic sum 59 60 61 62 63 64
#MVDs | 503,732 | 829,020 | 903,036 |1,203.986| 1,371,212 |1,843 868
Table 14: Non-isomorphic MVDs of Type 17 (magic median: 64)

S. SUMMARY AND CONCLUDING REMARKS
We have implemented an algorithm that determines the number of MVDs for all
magic sums of a problem instance. The algorithm is based on backtracking search
and applies several heuristics to reduce the search space. Computational results
have been presented where the consecutive labels 1,2,...,r are assigned. The
implementation can handle the more general problem where any set of labels is
given, not just the labels 1,2, ...,7. The given number of labels may be greater
than the number of nonempty regions. However, if the given labels are not
consecutive values the distribution of the magic sums may not be symmetric
anymore, and therefore the heuristic using the magic median cannot be applied.
The algorithm has solved all problem instances of MVDC of order 4. Among
the instances of order 4, there are 11 types that have not been solved before. The
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run-time of the MVDC instance of size 16 exceeds an hour when counting all
MVD:s. Instances with larger size will become impractical to solve. We can likely
improve the heuristics to reduce the search space further and to solve MVDC
instances of slightly larger size effectively. However, it is expected that the
number of MVDs of the MVDC instance with the complete Venn diagram of
order 5 is too large to be explicitly enumerated by a single-thread algorithm.
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