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Abstract

It is known that for a maximal planar graph G with order n > 4,

the independence number satisfies 2 < o(G) < 222 We show

the lower bound is sharp and characterize the extremal graphs for
n < 12. For the upper bound, we characterize the extremal graphs
of all orders.

The independence number o (G) of a graph G is the size of the largest
independent set. This parameter is difficult to determine in general, but
can be bounded on various graph classes. This paper considers planar and
maximal planar graphs.

1 The Lower Bound

The lower bound was known to follow immediately from the Four Color
Theorem.

Proposition 1. If G is a planar graph with order n, then a(G) > B

Proof. The Four Color Theorem says that any planar graph is 4-colorable.
Each color class is an independent set, so one has size at least 2. O

Prior to the proof of the Four Color Theorem, Michael Albertson showed
that any planar graph has « (G) > -§-n [2] and found an algorithm to obtain
an independent set of size at least £n [1].

Proposition 1 is sharp. The only extremal graph of order 4 is K. Any
number of disjoint copies of K, is also an extremal graph, and so is any
graph formed by adding edges while preserving planarity. One example of
this is the cube of P,, which is maximal planar.

Definition 2. A critical extremal graph is a planar graph with a (G) =
ﬂ;—?)- that contains no proper subgraph H with o (H) = -’-‘{f—{l.

Proposition 8. Any critical extremal graph G other than K4 has § (G) > 4.
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Proof. Let G be a critical extremal graph and suppose v € G has d (v) < 3.
Let S = N (v) U {v}. Then any maximal independent set of G contains
a vertex in §. Then a (G —-S) < ﬂ4§2 -1= "'(C:;)"‘i < ”(G4'S), which is
impossible unless G — S is a critical extremal graph, a contradiction. [J

The square of the cycle Cg is a critical extremal graph of order 8. It is
mentioned in [3]. Note that it is not maximal planar.

C\

Proposition 4. The square of Cy is the unique critical extremal graph of
order 8.

Proof. We consider a maximal planar graph G with order 8 and indepen-
dence number 2, then check whether any edges can be removed. Now
A(G) € {5,6,7}. If A(G) = 7, G would have a vertex of degree 3. If
A(G) =6 and G has no degree 3 vertex, G = Cs + K2, and o (G) = 3.

If A(G) = 5, G contains Cs + K, and the other two vertices must
be adjacent. One of them must be adjacent to four vertices of Cs, and
the other adjacent to three vertices of Cs. Thus we find a maximal planar
graph in which the four vertices of degree 5 induce a 4-cycle. Checking the
edges of this cycle, we find that two nonadjacent edges may be removed
while keeping the independence number at 2. This produces the square of
Cs. O

There are two critical extremal graphs of order 12-the icosahedron
(mentioned in [7]), and the graph shown below. It is not regular and not
maximal.
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Theorem 5. There are exactly two critical extremal graphs of order 12,
the icosahedron and the graph shown above.

Proof. We consider a maximal planar graph G with order 12 and inde-
pendence number 3, then check whether any edges can be removed. Now
A(G) € {5,6,7,..,11}. If A(G) = 5, G is the icosahedron, which is a
critical extremal graph. If A (G) > 8, clearly o (G) > 4.

If A(G) =7, G contains Cy + K, and the other four vertices induce
K4 — e. Since 11 edges remain unassigned, one of these four vertices is
incident with at most two of these edges, and they must be incident with
consecutive vertices of the C7. But this produces an independent set of size
four.

If A(G) = 6, G contains Cs + K1, and the other five vertices induce
P4 + K. Now 11 edges remain unassigned and each of these five vertices
is incident with at least two of the 11 edges, so one of them is incident
with exactly three of the 11 edges. Checking three cases, we find that only
one choice (making the three edges incident with a degree two vertex in
P4+ K1) avoids an independent set of size four. Checking each edge of the
graph shows that four edges can be (separately) deleted without creating
an independent set of size four, and up to symmetry, only one pair can be
so deleted. This produces the graph shown above. 0

The graph shown above can be constructed from the square of Cg using
the following operation.

Let u be a degree 4 vertex of a graph, and {a, b, c,d} be its neighbor-
hood. Replace v and its incident edges with vertices {v,w, z, y, z} and edges
{aw, ax, bz, by, cy, cz, dz, dw, vw, vz, vy, vz, wr, Wy, W2, zw}. This increases
the order of a graph by 4 and preserves planarity.



Proposition 6. Let G be a graph, and H be a graph that results from
applying the operation described above. Then o (H) = a(G) + 1.

Proof. Let S be an independent set of G. If u ¢ S, let ' = SU {v}. If
u€ S, let =8 —uU {w,y}. Either way, S’ is an independent set of H,
and |8'| = |S|+ 1,80 a(H) > a(G) + 1.

Let S be a maximum independent set of H. At most two vertices of
{v,w,z,y,z} are in S. If exactly two are in S, none of {a,b,c,d} are, so
let 8" =8 — {v,w,z,y,2z} U{u}. If only one of {v,w,z,y,2} is in S, let
S =8 — {v,w,z,y,z}. Either way, S’ is an independent set of G, and
S| =|8]—1,s0 a(H) < a(G)+ 1. O

If G is a critical extremal graph, then applying the operation produces
an extremal graph H, that may be critical if {, a, b, c,d} does not induce
a wheel.

2 The Upper Bound

Maximizing « (G) over planar graphs is not an interesting problem, since
empty graphs are planar. The problem is interesting if we restrict ourselves
to maximal planar graphs. Caro and Roditty found an upper bound for
this case. We present a somewhat streamlined proof.

Theorem 7. [5] If G is a mazimal planar graph with order n > 4 and
minimum degree 6 = & (G), then o (G) < 224,

Proof. Let G be a maximal planar graph with order n > 4. Then G has
2n — 4 triangular regions. Each triangle bounding a region contains at
most one vertex of an independent set S. Now each vertex in S is on the
boundary of at least & (G) regions. Thus §|S| < 2n—4,s0 |S| < &4, O

When 6 (G) = 3, Caro and Roditty identified the extremal graphs, but
did not prove that they were the only extremal graphs.




Theorem 8. If G is a mazimal planar graph with order n > 4 and min-
imum degree § = & (G), the equality a(G) = 2%:‘1 holds if and only if G
can be formed from a planar graph H, all of whose regions have length & by
adding a vertex of degree § inside each region.

Proof. (=) Equality requires every vertex in S have degree §, and every
region of G have a vertex of S on its boundary. Deleting each vertex in §
produces a planar graph H, all of whose regions have length §, and all of
which contained a vertex of S.

(<=) Let H be a planar graph, all of whose regions have length §. Form
G by adding a set S of vertices of degree ¢ inside each region. As in Theorem
7,819 = 2n—4, s0 |§| = &4 O

When é = 3, the graph H is maximal planar. Caro and Roditty identi-
fied the extremal graphs, but did not prove that they were the only extremal
graphs.

When § = 4, Caro and Roditty gave the example of C4 (0 P, a planar
graph with all regions of length 4, to show that the bound is sharp. However,
these are not the only extremal graphs. Any planar graph with all regions
of length 4 is the dual of a 3-connected 4-regular planar graph. All 3-
connected 4-regular planar graphs can be constructed from the octahedron
graph using three operations [4].

When § = 5, Caro and Roditty provided a construction that begins with
the dodecahedron, and iteratively identifies 5-cycles in a dodecahedron and
the existing graph. This graph is planar with all regions of length 5, which
shows that the bound is sharp. However, these are not the only extremal
graphs. Any planar graph with all regions of length 5 is the dual of a 3-
connected 5-regular planar graph. There is an operation characterization
for such graphs [6].

When § = 3, the maximum independent set in the extremal graphs
is unique. The extremal graphs in the previous theorem exist only when
n = 2 mod 3. Characterizations of the extremal graphs also exist for all
other orders. When n = 1 mod 3, a slight modification of Theorem 8 works.

Corollary 9. A mazimal planar graph G with order n = 3k+1, k > 1, has
o(G) = =5 if and only if it can be constructed from a mazimal planar
graph H of order % gn+3 2 by either

1. adding 'vertzces of degree 8 in all but one region, or

2. deleting an edge, adding a degree 4 vertez in the resulting region, and
adding degree 3 vertices in all other regions.

Proof. (=) Let S be an independent set of size 2n — 2. We have 3|S| =
3(3n—3) = (2n—4) — 1. Then either S has one vertex of degree 4 and
all others of degree 3, or one region contains no vertex of S, and all vertices
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of S have degree 3. Delete all vertices of S, and in the first case, add one
edge to the region of length 4. This produces a maximal planar graph H
from which G can be constructed.

(=) Let H have order in + 2. Then H has 2(n+3)~4=2n-2
regions, so G has order (§n + )+ (§'n — £ — 1) = n, and the set of vertices

added is independent, with |S |=2n-3. O

When n > 4, the maximum independent set in the extremal graphs is
unique.

When n = 0 mod 3, the characterization of the extremal graphs is
somewhat more complicated.

Corollary 10. A maximal planar graph G with order n = 3k, k > 2, has
o(G) = &= S if and only if it can be constructed from a mazimal planar
graph H of order % gn+2 by either

1. adding ve'r'tzces of degree 3 in all but two regions

2. deleting an edge, adding a degree 4 vertex in the resulting region, and
adding degree 8 vertices in all but one other region

3. deleting two non-incident edges, adding degree 4 vertices in the re-
sulting regions, and adding degree 8 vertices in all other regions

4. deleting two incident edges so that the resulting region is bounded by
a 5-cycle, adding a degree 5 vertex in it, and adding degree $ vertices in all
other regions.

Proof. (=) Let S be an independent set of size 2n — 2. We have 3|S| =
3 (%4n —2) = (2n — 4)—2. Then the number of regions containing no vertex
of S plus ) o (d(v) —3) must be two. There are four possibilities—two
missed regions, one missed region and a degree 4 vertex in S, two degree 4
vertices in S, or one degree 5 vertex in S. In each case, deleting the vertices
of § and if necessary, adding edges in any nontriangular regions, produces
a maximal planar graph H from which G can be constructed.

(<) Let H have order 3n+2. Then H has 2 (-n +2)— 3n regions,
so G has order (}n +2) + (3n—2) = n, and the set of vert1ces added is
independent, w1th S| = 2n ~2. O

A maximum independent set in this construction need not be unique.
For any order n = 3k, k > 2, there is a maximal planar graph with order n
with more than one independent set of size -§-n— 2 . However, when n = 3k,
k > 3, there is also a maximal planar graph with order n with a unique
independent set.
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