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ABSTRACT. A perfect matching of a graph is a subset of edges in the
graph such that each vertex is contained in exactly one edge. We
study the number of perfect matchings of a given graph. In particu-
lar, we are interested in the power of two that divides this number.
A new type of vertex set called a channel is considered, the pres-
ence of which is associated to powers of two in the perfect matching
count. This gives a method for determining lower bounds on such
powers. Algebraic and involutive proofs are given for these results,
and methods for channel identification are given. We specialize to
perfect matchings on subgraphs of the square lattice, which are iden-
tified with domino tilings of the plane, and apply channels to some
conjectures by Pachter.

1. INTRODUCTION

A perfect matching of a graph G = (V, E) is a set of edges from E such
that each vertex in V is contained in exactly one edge. Let m¢ denote
the number of perfect matchings of G. In general, determining mq for an
arbitrary graph is #P-hard [16]. However, it was first shown by Kasteleyn
[7] that for planar graphs we may construct a signed version of the adjacency
matrix with the property that its determinant is m%. Such a matrix is called
a Kasteleyn matriz for G.

Using the Kasteleyn matrix gives a method for computing the number
of perfect matchings in polynomial time. For some families of graphs we
may even find explicit formulas for m¢g using this matrix. For instance,
a classical result of Temperley and Fisher [15] and Kasteleyn [6] gives the
following for the number of perfect matchings of the m x n grid graph:

i 9 km g Im ki
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Much attention has been given to the fact that, for m = n = 2r, this formula
produces a number of the form 2752 with b, an odd integer (see, e.g., [1], [3],
{4], [5], (8], [12]). This can be shown directly from Kasteleyn’s formula by
extracting the factors where k = [. However, this method does not readily
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extend to non-rectangular regions since few exact formulas such as (1) are
known. Other proofs have been given using combinatorial methods that
rely on the reflective symmetry of the square grid graph. The key result in
this vein is the following:

Proposition 1.1 (Ciucu’s Factorization Theorem [1]). If a bipartite graph
has a line of symmetry containing 2r vertices, and no edges connect two
vertices on opposite sides of the line, then the number of perfect matchings
of the graph is divisible by 2.

Many more power of 2 patterns for non-symmetric graphs have been
proposed [12][14]. For example, Pachter gives the following conjecture:
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Conjecture 1.2 (Deleting from step-diagonals). Let G be the 2r x 2r grid
graph shown in Figure 1. If any k of the highlighted edges are removed,
then

mg = 2r_kb

for some odd integer b.

The goal of this paper is to introduce a unified method for tackling these
2-divisibility problems. We do so via the introduction of special vertex
sets, called channels. Channels build upon the following result, known to
Lovész, who gave an algebraic proof.

Proposition 1.3 ([11], Problem 5.18). Let G be any graph. Then mg is
even if and only if there is a non-empty set C C V such that every vertex
s adjacent to an even number of vertices in C.




We will strengthen this for a planar graph G to show that in fact the
number of channels divides m%. Since the number of channels will always
be a power of 2, this gives us a lower bound on the power of 2 dividing mg.
We will give an algebraic proof of this result and a combinatorial proof for
Proposition 1.3.

We will provide a number of applications of channels to subgraphs of
the square lattice. Perfect matchings of such graphs may identified with
domino tilings of planar regions. In particular, our methods address the
problems by Propp and Pachter mentioned above.

The paper is organized as follows. In Section 2, we remind the reader of
the properties of Kasteleyn matrices and Smith normal forms. In Section
3 we use properties of the adjacency matrix mod 2 to show a divisibility
result. In Section 4 we introduce channels and use them with the result of
Section 3 to show a 2-divisibility property of rectangles and give evidence
for Conjecture 1.2. In Section 5 we give a combinatorial proof of Proposition
1.3 for bipartite matrices. In Section 6 we apply the concepts from Section
5 to determine which rectangle grid graphs have an odd perfect matching
count. We conclude in Section 7 with some directions for future work.

2. PRELIMINARIES

All graphs in this paper are simple, undirected, and finite. If a graph
is bipartite, we will consider its vertices to be colored black and white.
Additionally, all matchings discussed will be perfect matchings, and thus
the word “perfect” will be omitted in the future for brevity. For a graph
G = (V, E), V denotes the vertex set, FE denotes the edge set, and A denotes
the adjacency matrix. For an edge e, we use the notation G — e to denote
the subgraph (V, E — e). For a vertex set S we use the notation G — S to
denote the subgraph of G induced by V — S. Recall that mg is the number
of matchings of G. As an exercise in this notation, we have the following
proposition.

Proposition 2.1. Let G be any graph, and let e = (v, vy) be any edge in
the graph. Then '

mG = MG—e + MG—{v;,v2}
Also, fix any vertex v. Then

mg = Z mg—{v,w'}
(v,v')EE

where the sum is over edges containing v.

Proof. For the first relation, notice that matchings of G — e are just match-
ings of G that do not use the edge e. The rest of the matchings of G do
use e, and therefore for these matchings the vertices v; and ve are never
in an edge with any vertex other than each other. Thus such matchings



are equivalent to matchings of G — {v,w}, plus the edge e, and the first
equation is shown.

For the second equation, partition the set of matchings of G based on the
vertex that v shares an edge with in the matching. By the same reasoning
as the last paragraph, the number of matchings in which v shares an edge
with v’ is mg_{y,»}- Summing over the possible edges shows the claim. [

Many of our examples will come from subgraphs of the square lattice
Z2. In this case there is a canonical identification between matchings of
the graph and domino tilings of a corresponding planar region, as shown
in Figure 2. We will typically show such examples as planar regions for
geometric intuition.
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FIGURE 2

Our main tools for Section 3 are the Kasteleyn matrix and the Smith
decomposition of a matrix.

Proposition 2.2 ([7]). Let G be a planar graph with adjacency matriz
A = (a;;). Then there exists a matriz K such that K = (%a;;), and

det K = m2,.
The matrix K is called a Kasteleyn matriz, and if a (not necessarily

planar) graph G' admits such a K, then G is said to have a Kasteleyn
signing. For bipartite graphs we may be more specific.

Definition 2.3. Let G be a bipartite graph with adjacency matrix A. The
bipartite adjacency matriz of G is the minor of A formed by selecting rows
from A associated to white vertices and columns from A associated to black
vertices.

The bipartite adjacency matrix has its own Kasteleyn matrix, called the
bipartite Kasteleyn matriz.

Proposition 2.4 ([13]). Let G be a bipartite planar graph with bipartite
adjacency matriz B = (b;;). Then there exists a matriz H, the bipartite
Kasteleyn matrix, such that H = (+b;;), and

det H = me.




We will want to diagonalize these matrices over the integers. The canon-
ical tool for doing so is called Smith normal form.

Proposition 2.5. Let A be a matriz over a principal ideal domain (PID)
R. Then there exrist matrices S, D, T over R with the following properties:

(i) A= SDT.

(it) S and T are invertible over R. For R = Z, this meansdet S,detT =
1.

(i) D s diagonal, with diagonal entries oy, ..., oy, satisfying
oy divides ap divides ... divides o,.
The matrices S, D, T are called a Smith decomposition for A.

For our purposes, R will be the integers or a finite field. Smith decom-
positions have many useful properties. We will want the following result in
particular.

Proposition 2.6. Let A = SDT be a Smith decomposition for a matriz A
over a PID. Then

ker A = ker D as abelian groups and det A = det D.
We are now prepared to study 2-divisibility of mg.

3. KASTELEYN 2-KERNELS

In this section we shall study graphs G with a Kasteleyn matrix K. As
described above, planarity is a sufficient condition for G to have a Kasteleyn
signing. Using the Smith normal form of K, we will find 2-divisibility results
for such graphs that we develop further in the next section.

Definition 3.1. For an integral matrix A, define the reduction of A modulo
2 to be the matrix Ao over Z/2Z given by reducing the entries of A mod 2
and considering them as elements of Z/2Z.

Define kerz A, the 2-kernel of A, to be the kernel of A, as a vector space
over Z/2Z.

Notice that for an adjacency matrix A and corresponding Kasteleyn
matrix K, we have A, = Ks. This follows from the definition of K as a
signed version of A. This is a key observation that will allow us to translate
our algebraic results in this section into geometric results in Section 4.
Before that, let us see what we can learn from reducing the Kasteleyn
matrix mod 2. Let the 2-nullity of a matrix be the dimension of its 2-
kernel:

null; A := dim ker, A.

Lemma 3.2. Let A be a square matriz with integer entries. Then
gl A | Jev A,



Proof. Let A = SDT be a Smith decomposition of A. Reducing modulo
2 gives Az = S2D,T,. One may check this is a Smith normal form of A,.
Then by Proposition 2.6, the kernel of As is isomorphic to the kernel of
Djy. Set k := nullp A = null, D. Since D, is diagonal, its kernel has a
basis consisting of standard basis vectors that indicate columns where the
diagonal entry is 0. Therefore there are exactly k such entries. Since 0
entries in D; correspond to even integral entries in D, there are exactly k
even entries on the diagonal of D. Thus the determinant of D contains at
least k factors of 2, and the result follows by Proposition 2.6. O

Applying this lemma to the Kasteleyn matrix or the bipartite Kasteleyn
matrix will let us use the 2-kernel to find powers of two in the number of
matchings of a graph.

Theorem 3.3. Let G be a graph with a Kasteleyn signing (e.g. a planar
graph). If A is the adjacency matriz of G, then

2mullz & divides m2,.

Proof. As remarked above, A; = Kj, so in particular nully A = null, K.
Additionally, by Proposition 2.2, the determinant of K is m%. Thus by
Lemma 3.2,

gnullz 4 _ onulls K givides det K = m2. O

Theorem 3.4. Let G be a bipartite graph with a Kasteleyn signing. If B
s the bipartite adjacency matriz of G, then

20l B givides mo.

Proof. Same as the previous theorem, using the bipartite Kasteleyn matrix.
O

We therefore may deduce powers of 2 dividing mg by finding elements
of the 2-kernel of A. The next section details how this may be done.

4. CHANNELS

Let G be a graph with adjacency matrix A. Then a vector z in kero A
has entries in Z/27Z, and can be lifted to a vector # with entries 0,1 € Z.
The condition Azx = 0 then becomes A% = 2y for some integral vector y.
Because each row of z corresponds to a vertex in G, we may interpret x as
the indicator function for a vertex set C, where a row with a 1 indicates
the vertex is in C and a row with a 0 indicates the vertex is not in C. This
leads to the following interpretation of 2-kernel elements.

Definition 4.1. Let G = (V,E) be any graph. A channel is a set C
of vertices such that every vertex in G is adjacent to an even number of
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vertices in C'. In other words, letting N(v) denote the neighborhood of »,
a channel satisfies

INw)NC|iseven forallv e V.

Let the set of channels in G be denoted C(G). If G is bipartite, let Cg(G)
be the subspace of C(G) consisting of channels that use only black vertices
from G.

The 2-kernel also has an additive structure as a Z/2Z vector space. This
transfers to C(G) by defining the sum of Cy,Cs € C(G) to be

Ci @ Cy := (Cy UC,) — (Cy N Cs), the symmetric difference of C; and Cs.

A\ \
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FIGURE 3. A graph G with its three nonempty channels
indicated by shading. Any two of these form a basis for
the space C(G).

With these definitions, we have the following result.

Lemma 4.2. The spaces C(G) and kera A are isomorphic vector spaces
over Z/2Z.

If G is additionally bipartite, with bipartite adjacency matrix B, then
the results of the previous section indicate the following lemma.

Lemma 4.3. The spaces Cp(G) and kery B are isomorphic vector spaces
over Z/2Z. Additionally, if B is square, then dimCp(G) = 1dimC(G).

Combining these observations with the 2-divisibility results from the last
section, we have the following key theorem.

Theorem 4.4 (Channeling 2s). If {Cy,...,C,} is a linearly independent
set of channels in a graph G with a Kasteleyn signing, then

2" divides m%.
If additionally G is bipartite, and {C}, ...,Cpn} C Cg(G), then
2" divides mg.
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FIGURE 4

Example 4.5. We now have the tools we need to begin a study of the 2-
divisibility of rectangle grid graphs. Let R,,..,, denote the mxn rectangular
grid graph. The shading in Figure 4 shows a basis for Cp(R4x9). By
channeling 2s, we have that 2? divides mp,,,. And indeed, mp, , = 6336
is divisible by 4.

Our results from Example 4.5 help demonstrate why the step-diagonal
conjecture of Pachter should hold.

Proposition 4.6. Let G be the 2r x 2r grid graph shown in Figure 1. If
any k of the highlighted vertex pairs are removed, then

27k divides me.

Proof. For a 2rx2r square grid graph, we will find that the space C(Razrx2r)
has r independent channels which each intersect exactly one of vertex pairs
removed from the step diagonal. Thus removing k of the step diagonal
vertex pairs interrupts just k& of the channels. The other r — k channels
will still be present. The result then follows from channeling 2s once we
construct these channels.

Consider Figure 5. To construct each channel, pick a black vertex b on
the step diagonal. In Figure 5, these are the vertices along the diagonal
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FIGURE 5. An illustration of Proposition 4.6 for » = 4 and
k = 2. When the bolded vertex pairs are removed, the two
shaded channels on the left remain valid.

from the bottom left to the top right. Our channel will consist of four
diagonal segments of vertices. Two segments will intersect the step diagonal
transversally, one at b in the bottom left and one at b’s mirror image in
the top right. The other two segments will be parallel to the step diagonal
and placed so that the channel vertices along the sides of the grid graph
each have one vertex between them. It is straightforward to check that
each vertex of the grid graph is adjacent to an even number of elements of
this vertex set, so it is indeed a channel. By following this construction for
each b lying along the lower r black vertices of the step diagonal, we create
r channels that each contain a different vertex from the step diagonal, and
therefore must be independent. O
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5. COMBINATORIAL ARGUMENTS

In this section we give a combinatorial proof that existence of a nonempty
channel in G is necessary and sufficient for mg to be even. Lovéasz origi-
nally proved this for completely general graphs in [11], problem 5.18. His
argument studies the permanent of the adjacency matrix modulo 2, and is
of a surprisingly different nature from our methods in the previous section
that rely on a Kasteleyn signing. Our results in this section also do not
need a Kasteleyn signing but do require the graph be bipartite. We prove
the forward and backward directions separately.

5.1. Existence of a channel implies mg even. Our approach for this
direction will be to construct an involution on the set of matchings M(G).
If we can construct an involution with no fixed points, then we can pair
off elements of G that map to each other under the involution. This would
imply that |M(G)| = m¢ is even.

To construct such an involution, we shall employ a technique called cycle
flipping. This is a commonly used method to build involutions on perfect
matchings and show 2-divisibility results. See for example [1] or [12] to see
this applied to graphs with reflective symmetry, or [9] for disjoint unions of
two graphs. Given a perfect matching u € M(Q), the idea is to find a cycle
Y of edges in the graph such that every second edge in the cycle is in p.
We may then construct a new edge set u’ by replacing the edges of uNY
with the edges of Y — u. Since each vertex in Y is contained in exactly one
edge in either case, ' is also a perfect matching.

!

Y I
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FIGURE 6

For the map this produces to be an involution, the same cycle has to be
identified for both u and y/. The following results will show we can do so,
given a nonempty channel. First we set up a tool we will need to find our
cycle.

Definition 5.1. A pairing function across a vertex set C C V is a collection
of involutions f, associated to each v € V' which act on the edge set

{(v,v") € E'|v € C}
such that f, o f, =id and f, has no fixed points.
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The existence of a pairing function across C is a combinatorial realization
of the statement that the neighborhood N(v) contains an even number of
points from C for each vertex v. Applying this to the definition of a channel
gives the following lemma.

Lemma 5.2. Let G be a graph and let C C V be any vertex set. Then C
is a channel if and only if there exists a pairing function across C.

Now we may use the pairing function from this lemma to trace out a
path along edges of a matching. Finiteness of our graph will force this path
to eventually become a cycle with the properties we require.

Theorem 5.3. Let G be a bipartite graph with a nonzero channelC € C (G).
Then for each matching p of G there is a nonempty set of edges C(u) C E
satisfying the following properties.
(1) C(u) is a simple cycle of even length.
(%) Every second edge in C(u) is in p.
(1) C(u) depends only on the edges of u containing a vertex from C.
() If i’ is a matching satisfying C(u) = u @ i’ then C(') = C(y).

Proof. Fix a vp € C and pairing function f, across C.

We construct C'(u) as follows. For even n € N, set e, to be the edge
of the matching y that contains v,,, and set Vp+1 to be the other vertex
contained in that edge. For odd n € N, set e,, = fu, (én-1) and v,41 to be
the other vertex in e,,.

Because G is finite, we must have Up4p = ¥y, fOr some p > 0 and some
n 2 0. Let no be minimal among such = and let p be the smallest value
such that v,,1p = vy,-

We claim ng is even and p is even. That p is even follows from the
bipartiteness of G, since the sequence of vertices {v,} must alternate in
color. If ng were odd, then vn,4p € €ngip—1 € p and vy, = VUng+p € €ny € 1
SO €, = €n,4+p—1 Since vertices have degree one in u. But then the other
vertices in both edges are equal, giving Uno—1 = Uny4+p—1 and contradicting
the minimality of ng. Thus ng is even.

We claim

C(u) = {en | no < n < ng +p}
satisfies the above properties.
(i) C(p) is a simple cycle of even length:

C(p) is indeed a cycle, since by definition e, and e, share ver-
tex vpyg for all n € N and vpy4p = v,,. It is simple by minimality
of p, and it has even length since p is even.

(ii) Every second edge in C(u) is in u:
This follows from the definition of e,, for even n.
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(i)

(iv)

C(u) depends only on the edges of u containing a vertex from C:

The construction of {v,} and {e,} depended only on the choice
of the initial vertex vg, the pairing function f,, and edges containing
vertices from C. Thus C(ux) = C(y’) for matchings p, 1’ that differ
away from C.

If 1’ is a matching satisfying C(x) = p @ p' then C(i/') = C(u):

Denote the vertex and edge sequence associated to C(u') by
{v,} and {e;,} respectively. If » < ng, then e, is not contained in
C(p) by minimality of no. Additionally, if e,, € 4 then necessarily
e, € u' because # ® u' = C(u). Therefore for n even if v, = v/,
we find vn+1 = V41 The pa.iring function f,,“ is independent of u
S0 enty = €nt2 and vnyo = v}, 5. Since v{ = vp, induction gives
Uy = ¥, forn<n0anden-—e forn<n0

Now, since e;, must contain v, = vy, and vy, is in C(x) =
©“ @ /.b, it follows that e}, must be in exactly one of u and C(u).
Since v}, = vp, isa vertex in C(u), by item (ii) the edge containing
it in p 1s in C(u). Thus if e;, were in y, then it would also be in
C(u), a contradiction. Therefore e, is in C(u) and not in w. Since
C(u) is a simple cycle, vno is only contalned in the edges e,, and
€no+p Within C(u), so e, must be one of those edges It cannot
be en, since this is contamed in p, so we must have e, = en,4p—1
and therefore v, 1 = vpy4p—1 as well. Then since

f'vno-l-p—l (eno+P—2) = e;a.g
we get
fvn0+p_1 (e! ) = enO'HJ"'

and therefore e, ., = en,4p—2 and v not2 = ”no+p-2 Proceeding

by induction shows that for &k < p, we have Yotk = ‘Uno+p—k and
€no+k—1 = €no+p—k- Thus in particular n{ = ny and p’ = p, since
the first repetition in the {v],} vertex sequence is vl =

Therefore

C(y) = {e;, | no < n < np +p},

which is just the elements of C(u) in reverse order. Hence C(u) =
C(u') as claimed.

no+p’

0

Corollary 5.8.1. Let G be a bipartite graph. If C(G) contains a nonempty
channel, then mg is even.

Proof. If C € C(G) is nonzero, then we claim the map on matchings of &
given by

pr—p = p®Cu)
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1S an involution with no fixed points. By our discussion at the start oI tne
section, we just need to show that C(u’) = C(u). This follows directly from
Theorem 5.3(iv). O

Remark 5.4. It is interesting (and rather inconvenient) to note that the
action of channels on matchings we define above can not in general be
extended to a group action of C(G) or Cg(G) since, for instance, the action
of two distinct channels need not commute. Such a group action would be
a very useful combinatorial tool. We give some thoughts on this at the end
of the paper.

5.2. Even m¢ implies existence of a channel. Proving the converse
statement will take some different machinery, which will turn out to have
more general applications. First, a useful notation.

Definition 5.5. Let G be a graph and v be a vertex. Define C[v](G) to be
the subspace of channels in C(G) that do not contain .

The following lemma describes how channels are affected by removal of
an edge. We restrict to bipartite G to clean up the statement of the result,
but the arguments will generalize if care is taken about how vertices can
appear in channels. Recall that Cg(G) denotes the channels in a bipartite
graph G containing only black vertices.

Lemma 5.6 (Channel Digging Lemma). Let G = (V, E) be any bipartite
graph, and fix an edge e = (b, w) (with vertices the corresponding colors).
Define the subgraphs
G*=G—e
and
G =G - {bw}.
Then the following statements hold:

(i) Cp[b)(G) = Cp[b)(G®) = Cp(G®) NCp(G").

() If Cp[b](G®) # Cp(G®), then there is a bijection Cp(G) + Cg(G’)
preserving Cg[b](G).

Proof.

(i) First, notice that G and G® have the same vertex set, and G —
{b,w} = G° — {b,w}. Thus for any channel C of G or G* that
does not contain b, the intersection N(v) N C will be the same for
all vertices in both graphs. Therefore Cg[b](G) = Cp[b](G®). It
also follows that channels of G not containing b will be channels of
G’ = G — {b,w} since the only neighborhoods of white points that
differ between these graphs are again those containing b.

Conversely, let C be a channel in both G¢ and G’. Then C does

not contain b or w, since G’ does not have those vertices. And since
C € Cp(G*®) it is also in Cg[b](G®) as desired.
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(ii) Let B = {C1,...,Cy} be a basis for Cg(G*®). If any of the basis
elements contain b, we may reorder them so that C; contains b.
We may then eliminate b from the rest of the basis elements by
replacing a channel C; containing b with C; @ C;. We then have
two cases. If b is contained in any element of C(G*), then

Cs [b] (Gc) EE Spa'n{c27 erey Cn}
Otherwise, if b is not contained in any element of Cp(G®),
Colbl(G*) = C5(G*).

Our hypothesis states that we are in the first case. By part (i) we
may write Cg[b](G) = span{Cy,...,C,}. Extend this to a full basis
of Cp(QG) given by {Cs,...,Cpn,Cri1, ...y Crym}- In particular all of
{Cr+1,---sCnim} contain b. We construct a bijection

Ce(G) « Cp(G")
by sending channels in Cg(G) according to

C ifbg C
: C —p :
f {C&EBC ifbe C

We check the image of f is indeed in Cg(G’). That C is in Cp(G")
for b ¢ C follows from part (i). Otherwise, b € C. Then the
symmetric difference Cy @ C does not contain b or w and thus is a
vertex set of G’. Any white vertex v € G’ is adjacent to an even
number of elements in both C; and C by the evenness constraint
of channels. Therefore v is also adjacent to an even number of
elements in C; @ C by properties of the symmetric difference. This
implies Cy @ C is indeed a channel in Cp(G).

We define the inverse map similarly. For a channel C in Cg(G’),

C if IN(w) N C| is even
CioC if [INw)NClisodd

We check the image of g is indeed in Cg(G). Notice that the only
way a channel C' in Cg(G’) may fail to be a channel in C5(G) is if
w is adjacent to an odd number of points in C, since the evenness
constraint is imposed on every other white vertex in G. Thus if
|N(w) N C| is even, all evenness constraints are satisfied and C is
also a channel in Cg(G). Otherwise, [N (w)NC| is odd. We also have
that |N(w) N Cy] is odd, since the evenness constraint is satisfied
at w before including b in N(w). Therefore |N(w)NCy & C| is even
and the evenness constraint holds everywhere. Thus C1 ® Cs is a
channel in Cg(G).

Both maps are the identity on Cg[b](G): all channels in this
set do not contain b and do have |N(w) N C| even, so the first

g:Cr—}{
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condition for is satisfied for both f and g. For channels in Cg(G)
that do contain b, the set C; & C has odd intersection with the
neighborhood of w and therefore g o f is the identity. Channels in
Cp(G’) do not contain b, so those that have odd intersection with
the neighborhood of w map to a channel C; ® C which contains b.
Thus f o g is the identity as well, and the claim follows.

|

Channel digging is a versatile tool. To begin with, let us use it to prove
constructively the claim titling this section.

Theorem 5.7. If a bipartite graph G has an even number of matchings,
then it has a nonempty channel.

Proof. First note that G is nonempty, since the empty graph has one match-
ing. We proceed by induction on |V'| + |E|. If every white vertex of G has
even degree, then we can take the black vertices of V' to be our chan-
nel. Otherwise, some white vertex w has odd degree. Then for some edge
e = (b, w), the subgraph G — {b, w} has an even number of matchings, since
otherwise by Proposition 2.1

mg = Z maG—{bw}
(b,w)EE

would be the sum of an odd number of odd numbers, and thus odd, a
contradiction. Define G := G — e and G’ := G — {b,w}. Now, because
mg is even, so is
meag — Mg = Mge.

Thus by the inductive hypothesis both G’ and G°® have nonempty channels
(G’ cannot be the empty graph since that would imply G is a single edge,
which would have an odd number of matchings). By channel digging (i)
and (ii), either |Cp(G)| > |C(G®)| or |C(G)| = |Cs(G’)|, and in both
cases we have a channel for G. O

6. DIGGING CHANNELS

Channel digging allows us to remove one pair of vertices at a time from
our graph while keeping track of the available channels. In some cases,
repeated application of this process can reduce our graph to one with known
properties. The following theorem describes one use of this process.

Theorem 6.1. Let G be a bipartite graph with n vertex disjoint edges
e1 = (b1, w1), ..., &n = (bn,wn) selected. Set

G*=G—{e1,....,en}

G’ =G — {b]_,‘wl, ...,bn,wn}.
If dimCg(G®) > n, then mg and mg' have the same parity.

109



Proof. 1f any nonempty channel in Cp{(G*) does not use any of by, ..., by,
then it is also a channel in G’ and so both mg and mg- are even. Otherwise
there exists a basis B = {C}, ..., Cp} for Cg(G*®) such that each C; contains
b; and does not contain b; with j # . This follows since if any two distinct
basis vectors C; and C; contained the same b;, then we could replace C;
with C; @ C; to get a basis with one less repeated b. If the basis had more
elements than n we would be able to remove all bs from one of the basis
elements and reduce to the previous case. Thus dimCg(G®) = n and we
have a basis as described.

As a result of this, we may apply channel digging (ii) to remove each
{b,w} pair. Removing {b,w} preserves all channels that do not contain
b. Thus condition (ii) of channel digging continues to apply, and we may
remove all n pairs of vertices while preserving |Cg(G)|. Thus

ICB(&)| = |ICa(G")]
and the result follows. O

Proposition 6.2. If ged(m + 1,n+ 1) = 1, then the m x n rectangle grid
graph has an odd number of matchings.

Proof. Refer to Figure 7. Without loss of generality, m < n. Set r = [m/2].
Let ey, ..., e be the edges between the vertices indicated in bold in Figure 7
and set G¢ = G — {ey, ..., &, }. The channels constructed in Proposition 4.6
give r independent channels in Cg(R,,«m). These are also valid channels
of G¢. Thus by Theorem 6.1 we may remove black vertices in column m
and white vertices in column m+ 1 while preserving the parity of mg. Any
matching of the resulting graph G’ must use all remaining edges between
vertices in columns m and m + 1. Thus we may remove the rest of the
vertices in those columns without changing the number of tilings. The
resulting graph will be the disjoint union of a m x (m — 1) rectangle and a
m X (n —m — 1) rectangle. The result then follows by induction on the size
of the rectangle, since

ged(m+1,n—m—1+1) = ged(m+1,7n+1) = 1 and ged(m+1, m—1+1) = 1.
O

7. CONCLUSION

In addition to the results we have shown, channels may be used to give
lower bounds supporting Conjectures 1, 2, 4, and 5 in [12] and likely for
Problems 15 and 30 in [14] as well. As we have seen, channels provide an
effective lower bound on the power of two dividing a matching count. In
addition, when there are no nonzero channels they tell us that power is
exactly 0. It would be nice to find exact powers of two more generally.
This prompts a natural question.
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FIGURE 7. The shaded sets are channels of G¢, where ¢;
and ey are the edges that cross the bold lines. Thus, using
Theorem 6.1, the number of matchings of G’ (the third
figure) has the same parity as that of the original graph.
Any matching of G’ will use the edges between the dashed
vertices, so this result continues to hold if we remove them.

Problem 7.1. Determine when the number of channels is the exact power
of two dividing m?2,. Even better, determine how many additional powers
of two are carried by each channel more generally. Alternatively, provide a
method for determining an upper bound on powers of two dividing mg.

For more on how additional powers of two are distributed in the Smith
normal form of the Kasteleyn matrix (and therefore among channels), see
[10]. Additional powers of two may be associated to a result such as Ciucu’s
Factorization Theorem (Proposition 1.1). Indeed, graphs where this theo-
rem applies tend to have additional powers of two beyond what channels
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would predict (see for example the Aztec Diamond [2]). One possible route
for approaching Problem 7.1 is to consider factoring out the action of chan-
nels in some manner, and examining the remaining structure. Another
route may arise by solving the following problem.

Problem 7.2. Find a combinatorial proof of Theorem 4.4.

Since Theorem 4.4 requires the Kasteleyn signing of G, such a proof
would likely invoke planarity. As mentioned in Remark 5.4, one possible
approach to this is constructing a free action of Cg(G) on the set of match-
ings of G. For the general, non-bipartite case we would want an action
of C(G) on pairs of matchings. Because the definition of channels involves
neighborhoods of even size, searching for an action that uses properties of
Eulerian circuits may yield productive results.
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