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ABSTRACT. Redrawing lines for redistricting plans that represent
U.8. congressional districts is a tricky business. There are many laws
that dictate how lines can and cannot be drawn such as contiguity.
In fact, building all redistricting plans for a single U.S. state is an
intractable problem. Researchers have turned to heuristics in order
to analyze current redistricting plans. Many of these heuristics (e.g.
local search heuristics and Markov chain Monte Carlo algorithms)
used by researchers form new congressional districts by switching
the smaller pieces (e.g. precincts or census blocks) that make up
congressional districts from one congressional district to another. In
this paper, we discuss the various natural definitions involved in sat-
isfying rules for contiguity and simply connectedness of precincts or
census blocks and how these relate to contiguity and simply connect-
edness of congressional districts. We also propose and analyze several
constructions to alleviate violations of contiguity and simply connect-~
edness in precincts and census blocks. Finally, we develop efficient
algorithms that allow practitioners to assess redistricting plans us-
ing local search heuristics or Markov chain Monte Carlo algorithms
efficiently.
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1. INTRODUCTION

Every ten years, the United States redraws lines representing congres-
sional districts for each state in response to data provided by the national
census. The geometry representing all of the congressional districts of a
state is called a redistricting plan. The rules and laws governing how to
redraw congressional district lines varies from state to state. In the U.S,,
one iron-clad rules must be followed by all states: one-person one-vote.
That means the population in each congressional district in a state must
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have roughly the same population as any other congressional district in
that state.

People who redraw the district lines are typically the same people who
have a personal stake in retaining power or disadvantaging certain groups
such as minorities. Consequently, the past is riddled with cases of im-
plicit or overt favoritism towards one’s political party or socioeconomic
group. Take for instance the case of Elbridge Gerry, who was the gover-
nor of Massachusetts in the early nineteenth century. The legislature at
the time created congressional districts that highly favored one party and
Gerry signed the legislation for the oddly shaped redistricting plan. One
cartoonist likened one of the districts to that of a mythical salamander. A
portmanteau of Elbridge’s last name and the salamander from the cartoon
formed the term, gerrymandering. Specifically, if a particular group manip-
ulates the boundaries of any region for political advantage, then it is called
gerrymandering.

Assessing whether a congressional district has been gerrymandered has
proven difficult for many reasons. First and foremost, the geometry of state
borders is restricted by the geography of the land and water, (e.g. Hawaii).
Another limitation in determining whether a state has been gerrymandered
is a lack of consistent rules among states for redrawing lines for congres-
sional districts. There is also the complication of determining a “fair” met-
ric that would assess whether a redistricting plan has been gerrymandered.
Even if such a metric could be developed, one would still have to check all
redistricting plans with this metric. However, such an undertaking would
be an astronomically difficult task, as explained in Section 2. Instead of
determining all possible redistricting plans, researchers have used various
heuristics to explore a sampling of all the possible redistricting plans as a
proxy for finding all redistricting plans. One such heuristic is called a local
search heuristic.

Local searches are heuristics used to solve difficult optimization problems
by moving in a step-by-step manner “locally” in the solution space. The
aim is to find a new solution by improving on the current solution. One
modern type of algorithm that also moves in the same step-by-step manner
as local searches and is used to assess redistricting plans is called a Markov
chain Monte Carlo (MCMC) algorithm. An MCMC algorithm is a sampling
technique used on complicated distributions or on distributions we know
nothing about. It explores the solution space in a step-by-step manner by
randomly picking the next state based solely on the current state, just like
local searches.

Recently, MCMC algorithms have been built to assess redistricting plans
of congressional districts. This is done by dividing each congressional dis-
trict into smaller pieces, typically census blocks or voting tabulation dis-
tricts (precincts). For the sake of argument, suppose the congressional
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districts are divided into census blocks. Then one redistricting plan can
move to another redistricting plan by randomly selecting one census block
on the border between two congressional districts, and selecting a neigh-
boring congressional district. Finally, if the chosen census block and con-
gressional district pass predetermined criteria, the chosen census block is
moved into the chosen congressional district. Since MCMC algorithms and
local searches can be defined to move between redistricting plans in the
same manner, the same criteria can be used for local searches with the
addition of an objective function. Two criteria we will use to assess new
redistricting plans in this paper are contiguity and simply connectedness;
we will discuss these criteria further in Section 2. In Section 2, we also
describe various definitions for adjacency between census blocks that will
be used throughout this paper.

In Section 3, we describe several constructions that turns discontiguous
census blocks into contiguous census blocks and that turns non-simply con-
nected census blocks into simply connected census blocks. We also discuss
how these constructions and the choice of definitions from Section 2 can
impact data typically associated by the census blocks when using MCMC
algorithms or local searches.

In Section 4, we examine and discuss several algorithms that can be
used to check whether the census blocks or congressional districts on a
redistricting plan are contiguous and simply connected. Additionally, we
focus on determining whether the congressional districts of a redistricting
plan are contiguous and simply connected after each iteration of a local
search or MCMC algorithm has been applied to said redistricting plan. We
describe this iteration process in Construction 11.

Since we can form a graph that is similar to the dual graph on the
census blocks (call it G* for the sake of simplicity), we can leverage the
structure on G* to identify when census blocks or congressional districts are
contiguous or simply connected. In [15], when using a particular definition
for adjacency, contiguity, and simply connectedness, the authors showed
that all non-simply connected congressional districts could be identified in
O(k?) time on a redistricting plan where all k congressional districts are
contiguous and all census blocks are contiguous and simply connected. For
a census block v, let R(v) represent the set of census blocks that are adjacent
to v at at least one point. in [15], the authors also showed that discontiguous
congressional districts can be identified in O(R(v)) time for some census
block v after each iteration of a local search or MCMC algorithm. In
Section 4.1, we explain how to exploit articulation points (cut-vertices) on
G* to find all non-simply connected census blocks in O(|G*|) time if G* is
planar. Similarly, if G* is planar, we explain how to find all the non-simply
connected congressional districts in O(k) time where k is the number of
zones on a redistricting plan. This method can also be applied after each
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iteration of a local search or MCMC algorithm with the same efficacy as
described in Section 4.1. Note that using the articulation points on G* does
not require G* to be planar, and so we explain what this means when G*
is non-planar. See Section 4.1 for more details.

In Section 4.2, given a redistricting plan where all census blocks and
congressional districts are both simply connected and contiguous, we pro-
vide algorithms that can be applied to the redistricting plan formed after
each iteration of a local search or MCMC algorithm to determine whether
the congressional districts in this new redistricting plan are both contiguous
and simply connected in O(|R(v)|) time where v is a unit chosen by the
local search or MCMC algorithm. We prove these claims in Section 4.3.

2. BACKGROUND & DEFINITIONS

To assess whether a redistricting plan has been gerrymandered, one tech-
nique would be to examine the distribution of voting results for all redis-
tricting plans in comparison to the current redistricting plan. Building
the entire space of all possible redistricting plans on a set of census blocks
or precincts is astronomically large. Let us examine Hawaii, which is the
state with the smallest number of census blocks with at least two congres-
sional districts as of the 2010 national census. With 25,016 census blocks,
Hawaii has 2%5:016 ~ 107530 possible redistricting plans if no additional re-
quirements are placed on the redistricting plans. Even if we used precincts
instead of census blocks, Hawaii has 248 precincts, and so there would be
2248 ~; 10™ redistricting plans, which is slightly less than the number of
atoms in the universe (about 10%°), but more than the number of stars in
the universe (about 1024 according to the European Space Agency in 2015).
Now what?

Some researchers have turned to heuristics as a method to avoid finding
all possible redistricting plans. Kalcsics et al. [14] provided a detailed
description of several heuristic methods that went into these redistricting
problems. More recently, several groups have been utilizing heuristics based
on local search methods and computational geometry (15, 16, 17, 21] to
explore the space of all redistricting plans given a set of census blocks.
Other groups have been using MCMC algorithms with the Potts Model
[2, 5, 11, 13]. We will focus solely on local searches and MCMC algorithms
as was done in [2, 5, 9, 11, 13, 15, 16, 17].

2.1. Definitions. Depending on the discipline, a simple closed curve can
have several definitions. For our purposes, a simple curve is a curve that
does not intersect itself. A simple closed curve is a simple curve that begins
and ends at the same point. A wnit is the union of open sets in R? with
finite area. Essentially, each unit represents a geographic area. Let I/ be
the set of all units in R2. We call each disconnected open set of a unit v
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a piece. A more rigorous definition for a piece of a unit will be given after
we give various definitions for contiguity.

There are several possible candidates that can be used to represent a
unit. For example, one can use counties to represent units, although these
are sometimes partitioned by congressional districts due to population re-
strictions placed on redistricting plans. Another candidate that can be
used to represent units is a wvoting tabulation district (VID). These are
also sometimes called precincts, wards, voting precincts, municipalities, or
municipal wards. VTDs are typically smaller than a county, but are some-
times partitioned further by congressional districts due to the constraints
placed on the U.S. states by laws (e.g., one-person one-vote). The smallest
unit used for the entire U.S. that has accurate population data is the census
block. Census blocks are units built and maintained by the Census Bureau
every 10 years for the national census. We will primarily consider census
blocks as our unit even though we continue using the term “unit.”

We will use units to form a partition of congressional districts. As such,
we need a term for each part of our partition that will represent congres-
sional districts. A zone 2’ is the union of a set of non-overlapping (the
interiors of two units do not overlap) units. To make some explanations
that refer to both zones and units non-redundant, we define a region to
be either a zone or a unit; whenever we discuss the interactions between
several regions, either all regions are assumed to be zones or all regions
are assumed to be units. A map on a set of units U is defined as the set
of all units in & where each unit is assigned to exactly one zone. A re-
districting plan is an example of a map. An admissible map (admissible
redistricting plan) is a map that follows a set of conditions (e.g. contiguity
or simply connectedness) by which to judge the validity of a map. U.S.
states are an example of a map, congressional districts are an example of a
zone, and census blocks are an example of a unit. An assumption we will
make throughout this paper is that given a map M, there is a fixed integer
k > 2 representing the number of zones for which units in I are assigned.
Note that even though a zone is defined using units, it, too, is composed
of one or more simple closed curves. Note that it is rare to find U.S. state
redistricting legislation that defines these terms so carefully.

Unfortunately, there are few criteria that all U.S. states have agreed upon
when dictating rules to follow when building redistricting plans. Some cri-
teria that have been considered by both academics and governments include
the following: contiguity, compactness, simply connectedness, communities
of interest, and political subdivisions. We will discuss only contiguity and
simply connectedness in this paper, although it should be noted that com-
pactness is in the legislation for more than a third of U.S. states. We do
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not discuss compactness here since a thorough investigation into the com-
plexity and methods for calculating compactness of a congressional district
was conducted by Barnes and Solomon [3].

The most widely adopted rule in legislation regarding redistricting plans,
not including one-person one-vote, is the contiguity criterion. One way
some people define contiguity is as follows: a region is contiguous if one can
travel from any point in a region to any other point in a region while staying
in said region. Unfortunately, the manner in which contiguity is defined
varies from U.S. state to U.S. state. For example, consider the region
labeled v; in Figure 3(a). The laws of some U.S. states—such as South
Carolina [8]—would say that the left piece of v; in Figure 3(a) is connected
to the right piece of vy, while the laws of other states—such as Minnesota
[19]—would disagree. For the purposes of being as specific as possible, we
give three definitions of contiguity for a unit based on either definitions
used by other researchers, based on legislation, or based on definitions that
fit naturally with the other definitions we have already stated. We also give
three definitions for the adjacency between units and zones, and for when
a unit or zone is simply connected. All definitions are stated in terms of
units on R2.

The following three competing definitions for adjacency between two
units can be attributed to GIS software and the Dimensionally Extended
Nine-Intersection Model (DE-9IM) (6, 7]. For each v € U, let d(v) be the
set of points representing the boundary of v.

(A1) Let U be a set of units. Two units are rook-adjacent if and only if
they share a boundary of some positive length in common. That
is, two units u,v are rook-adjacent if and only if the length of
d(u) N (v) is positive (the length of boundary shared by v and
v is positive).

(A2) Let U be a set of units. Let X = {X, : v € U} where X, is a
finite set of points on d(v) and for each pair of units, vy,v2 € U,
let X,, NX,, = @. Let w,v € U. Then u and v are semi-queen-~
adjacent if and only if either the length of 3(u) N d(v) is positive or
u and v share at least one point from X, U X,,.

(A3) Let U be a set of units. Two units u,v € U are queen-adjacent if
and only if {9(u) N d(v)| > 0.

Definitions (A1) and (A3) are used in several geospatial software such as
the R package spdep [22].

To make defining contiguity easier, we denote the interior of a unit v as
INT(v).

(B1) Let U be a set of units. Then v € U is rook-contiguous if and only if
for each pair of points in INT(v), there exists a simple curve entirely
contained in INT(v).
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(B2) Let U be a set of units. Let Y = {Y, : v € U} where Y, is a
finite set of points in d(v) and for each pair of units v; and vy,
Y,, NY,, = &. Then v € U is semi-queen-contiguous if and only if
for each pair of points in INT(v) U Y,,, there exists a simple curve
that only contains points in INT(v) UY,,.

(B3) Let U be a set of units. Then v € U is queen-contiguous if and
only if for each pair of points in INT(v), there exists a simple curve
entirely contained in INT(v) U 8(v).

Rook-contiguous and queen-contiguous can be found in [24]. Definition (B2)
is based on the description for contiguity provided by the state of South
Carolina for building redistricting plans [8].

Now that we have defined contiguous, we can properly define a piece of
a unit. Let contiguity be defined by either Definition (B1), (B2), or (B3).
A piece P of a unit v is a contiguous (either rook-, semi-queen-, or queen-
contiguous) union of open sets from v where for each piece P’ of v disjoint
from P, PU P’ is discontiguous.

Although it is not as widely discussed as contiguity, holes in congressional
districts are sometimes defined or discussed using the term simply connected
[1, 23]. There are some mediums for which ensuring that a zone is simply
connected is a desirable trait [12, 20, 25]. Like the various definitions of
contiguity, we provide three definitions for simply connected. Typically, a
unit v is defined as simply connected if any simple closed curve in v can be
shrunk to a point continuously. The variations in the definitions below for
a simply connected unit stem from whether a simple closed curve is allowed
to pass through the boundary of the unit. We present three options for the

“ definition of a simply connected unit based on this premise.

(C1) Let U be a set of units. Then v € U is simply interior-connected
(simply i-connected) if and only if any closed simple curve in INT(v)
can be shrunk to a point continuously.

(C2) Let U be a set of units. Let W = {W,, : v € U} where W, is a
finite set of points from 8(v) and for each pair of units v; and vs,
Wy, "W, = &. Then v € U is simply semi-boundary-connected
(or simply sb-connected) if and only if any simple closed curve in
INT(v) U W, can be shrunk to a point continuously.

(C3) Let U be a set of units. Then v € U is simply boundary-connected
(or simply b-connected) if and only if any simple closed curve in
INT(v) U 8(v) can be shrunk to a point continuously.

Note that when we say two units are adjacent, or a unit is contiguous, or a
unit is simply connected, then it is assumed we could be using any of the
above respective definitions. If v is not simply connected, we say v has a
hole and if there exists a simple closed curve in v that entirely contains a
unit w, then we say w is @ hole in v or w is a hole of v. Since zones are
a partition of U, two zones 2y, z3 are adjacent if a unit in z, is adjacent
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to zo. Similarly, a zone z; is contiguous if the union of all units in 2y is
contiguous. Finally, a zone 2z, is simply connected if the union of all units
in z1 is simply connected.

There are situations when a unit can have a hole regardless of the defini-
tion used for simply connectedness. For example, no matter which simply
connected definition is chosen, v; is always a hole and v, always has a hole
in Figure 1. That is not the case with the map in Figure 2. In Figure 2,
vg has a hole by Definition (C3), sometimes has a hole by Definition (C2),
and has no hole by Definition (C1). In Figure 2, vy is called a degenerate
hole.

v u | v
V2
V4
FiGURE 1. Example of a FIGURE 2. Example of a
unit with a non-degenerate unit that may or may not
hole be a hole

A serious complication can arise from conflicts between the definitions
we defined above for adjacency, contiguity, and simply connectedness. For
example, if M is the map in Figure 2, then using Definitions (A3) and (C3)
would mean v, is a hole in v;, and vy is adjacent to w3, yet v; is not
simply connected. We propose a reasonable assumption to resolve this
discrepancy (supported by topological definitions of simply connectedness)
that would need to hold for any combination of definitions described above
for adjacency, contiguity, and simply connectedness. Recall that a region
is either a unit or a zone.

(2.1) If a region u or piece of u is in a hole of region v, then all
of the area enclosed by u must also be in some hole in v, and any
region adjacent to u must also be in a hole in v.

In other words, if a region u or piece of u is in a hole of region v, then u
cannot be adjacent to any unit that is not in a hole of v besides v itself.
Below, we give the 3-set combinations of definitions for adjacency, contigu-
ity, and simply connectedness that satisfy Assumption (2.1) above. Let D
be the following set of 3-sets of definitions:

{(A1), (B1), (C3)}, {(A1), (B1), (C2)}, {(AL), (B1),(C1)},
{(41), (B2), (C1)}, {(A1),(B3), (C1)}, {(42), (B1),(C1)},

{(42), (B2), (C1)},{(A2), (B3), (C1)},{(43), (B1), (C1)},
{(43), (B2), (C1)},{(A43),(B3),(C1)}.
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D represents the set of allowable combinations of definitions for adjacency,
contiguity, and simply connectedness by Assumption (2.1). To make nota-
tion easier, for example, instead of saying that a map M is using Defini-
tions (A1), (B1), and (C3), we will say that M is using definition

{(41), (B1), (C3)}.

Additionally, if we are using definition D € D and Definition (A1) is in
D, we will simply say (Al) € D. As a justification for why a 3-set D ¢
D violates Assumption (2.1), see either Figure 4(a) (when (43) € D) or
Figure 7 (when (A1) € D).

A dual graph G* of a planar graph G is a graph where each vertex in
G represents a face of G (including the outside face), and for each edge
e in G, join two vertices u,v € V(G*) if the two faces in G that represent
u and v both contain the edge e on the boundary of their respective faces.
Note that a dual graph is allowed to have multiedges or loops, but both
multiedges and loops are meaningless in the context of redistricting plans.
(Perhaps one day someone will find meaning behind multiedges and loops.)
Dual graphs can also be formed from a set of units by using the boundaries
of units just like edges in a graph. To account for the multiedges, loops,
and the multiple definitions for adjacency, we will need to build a new
definition for a dual graph. Let Uy D U be the set of units in R? that
includes a dummy unit ug that corresponds to the single infinite area in
R% —{. We also assign this dummy unit to zone 0, a dummy zone. An
augmented dual graph G* of a set of units U is a graph where each unit
(including the dummy unit) represents a vertex in G* and two vertices in
G* are adjacent if the respective units are adjacent. We follow the example
set by [15, 16, 17] and build a structure from this augmented dual graph
called a geo-graph. A geo-graph, G(M) = (V, E, 8, 20, k,Uo, X, Y, Z, D), is
an augmented dual graph of a map M with & zones on the units in U using
definition D € D where the following hold:

® V and E are the vertex and edge sets of the augmented dual graph
respectively,

¢ Jis a boundary function that maps each unit v € U to all of the
simply closed curves that represent v denoted as d(v),

® z:U — {1,...,k} is a zoning function that maps each unit v € U
to exactly one zone according to M, and zy : U — {0,...,k} is a
zoning function such that z(v) = z(v) for all v € U and zp(ug) = 0,
and

o X,Y, Z are each a set of sets of points as defined in Definitions (A2),
(B2), (C2) respectively (but X,Y,Z may be empty if we are not
using the respective definition in {(A2), (B2), (C2)}).

Even though each geo-graph contains a large list of specific variables, we will
assume that % is fixed; the zoning assignment is based on M; M is defined

133



based on the structure of U; X, Y, Z are all defined based on D; and D was
already set when M was defined. In this way, we will treat G(M) just like
another graph G = (V, E) almost exclusively. To help identify the units in
a particular zone, we let Upr(j) C U denote the set of units in zone j on
map M.

Note that the definitions for adjacency, contiguity, and simply connect-
edness used in {15, 16, 17] are equivalent to definition {(A1), (B1), (C1)}.

For all maps M on U, it is assumed that the boundary of each unit is
a collection of simple closed curves. We make the additional assumption
that the intersection of the interior of any two regions is empty (i.e. there
is no area shared between any pair of regions). We assume that all sets of
units U are connected, that is, for each pair of points p;, ps in units in U,
there exists a simple curve through the units in / connecting p1 and p2.

3. REDUCING COMPUTATIONAL DIFFICULTIES THROUGH GEOMETRY

In this section, we propose several constructions to address when units
that are discontiguous or not simply connected by building a new set of
units. We also address the flow of data typically associated with units. For
each unit, we will assume the following additional information has been
associated with each unit: perimeter, area, number of votes for each party
candidate, the total population of the unit, the voting age population, and
total population for each demographic. An entire paper could be devoted
solely to a discussion on the manner and difficulty of collecting all of this
data, but we will forgo this experience.

There are two broad categories of violations on the boundaries of units
that we consider in this paper: contiguity and simply connectedness. Note
that these violations on the boundaries of the units were called a piece vio-
lation and a hole violation respectively in [16]. Depending on the definition
used from D, there will be distinctive differences in the manner in which
on the boundaries of the units occur.

Note that an analysis of various on the boundaries of the units was
conducted in [16] along with several proposed ways in which to resolve
each geometry, using only definition D = {(A1l), (B1), (C1)}.

3.1. Contiguity. We still assume that we are operating under a definition
in D and Assumption (2.1), but we are aiming to fix contiguity violation,
so we allow an initial set of units U to violate Assumption (2.1) in this
section. Since we are entirely concerned with contiguity in this section, we
will disregard concerns of simply connectedness.

For the purpose of making contiguous units from discontiguous units,
we build constructions in the spirit of certain methods described in [16].
Visualizations of these constructions are shown in Figure 3.
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FIGURE 3. Five methods to resolve discontiguous units:
(a) original map, (b) violation resolved with Construc-
tion 1, (c) violation resolved with Construction 2, (d) vio-
lation resolved with Construction 3, (e) violation resolved
with Construction 4, and (f) violation resolved with Con-
struction 5.

Construction 1. Let U be the set of units on R? and let v € U be discon-
tiguous where v’ and v” are two pieces of v that share a point . Let v; be
formed from v by joining v and v into one continuous open set defined by
a single simple closed curve by creating an ¢ radius ball B around z, and
“widening” the point  between all pieces of v with non-empty intersection
with B. Let U C U be a set of units such that ¥ € U if and only if the
intersection of ¥’ and v has non-empty area. Let U’ = {tN%7 : v € U}
where 77 is the complement of v; in R2. Form a new set of units 2/’ by
replacing {v} UU in U with {vy} U U"’. This is called opening. W

In the next construction, we use a term from Euclidean geometry to
describe how to change units called uniform scaling. Uniform scaling is a
linear transformation that enlarges or shrinks an object by a scale factor
that is the same in all directions.

Construction 2. Let I/ be the set of units on R? and let v € I be discon-
tiguous where v’ and v” are two pieces of v that share a point z. Let v; be
formed from v by joining v and v" into one continuous open set defined by
a single simple closed curve by creating an ¢ radius ball B around z, and
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“widening” the point z between all pieces of v with non-empty intersection
with B while shrinking the area of the joined pieces v* and v” with uniform
scaling. That is, after widening the point at z and uniformly scaling v' and
v”, the area in v; will be the same as v, and any unit in U\ {v} adjacent to
v will fill in the area that was occupied by v by not by v;. Let U C U\ {v}
be a set of units that had their boundaries changed in this process. Let U’
be the new units formed from units in U. Form a new set of units U’ by
replacing {v}UU in U with {v; }UU’. This is called a proportional opening.
|

Construction 3. Let I be the set of units on R? and let v € U be dis-
contiguous. Let vy, vq,...,v; be units in U such that for each v;, there is
a piece of v that is in a hole of v;. For each ¢ € {1,...,t}, form a unit v;
from v; by removing all pieces from v that are in a hole in v;, and taking
the union of v; and all of these pieces of v; let v* be the unit formed from v
by removing all of the pieces that were in holes in some v;. Then we form
a new set of units U’ by replacing v, vy, vg,...,v; in Y with v/, v}, v5,...,v;
respectively. This is called annering. =

Construction 4. Let I be the set of units on B2 and let v € U be dis-
contiguous. For each piece 9; in v, designate an adjacent unit v; € U \ {v}.
For each i € {1,...,t}, form a unit v} from v; by removing #; from v, and
taking the union of v; and v;; let v’ be the unit formed from v by removing
each 9;. Then we form a new set of units /' by replacing v, vy, v, ..., in
U with v/, v, vg,...,v; respectively. This is called merging. u

Construction 5. Let U be the set of units on R? and let v € U be discon-
tiguous. Let v{,v5,...,v; be each piece of v. Then we form a new set of
units U’ by replacing v with v}, v},...,v;. This is called splitting. =

3.1.1. Opening. Note that the proof to Theorem 2 in [16] gives an explana-
tion for another way to perform Construction 1 without a ball of radius «.
Let U be a set of units under definition D € D. We discuss both Construc-
tions 1 and 2 in this section. We skip an analysis of how Construction 1
affects the solution space of maps when using D = {(Al), (B1),(C1)} as
this was thoroughly done in [16]. Correspondingly, we need not discuss how
Construction 2 impacts the redistricting plans under the same definition.
Since we are interested in contiguity violations, we are assuming two pieces
of some unit v are non-adjacent, and since Definition (B3) implies that all
pieces can be adjacent at a point, we will ignore the case where (B3) € D.
Similarly, since the case when (B2) € D will be identical to either the
case when (B1) € D or (B3) € D, we will ignore this case as well. For
the remainder of this section, we will assume that (B1) € D unless stated
otherwise.

Since both area and perimeter are used for some compactness calcu-
lations, it is worth noting that Construction 1 will change the area and
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FIGURE 4. Example of a hole being created after multiple
applications of Construction 1

perimeter of several units and Construction 2 will change the area of the
neighbors of a particular unit. Since the widening of the gap between the
two pieces of some unit v is accomplished by using a ball of radius ¢ in
either construction, there is a small change to the area or perimeter of the
affected units. Additional concern should be paid to the effect Construc-
tion 1 or 2 has on the various population and voting data stored. If none of
these values change after using Construction 1 or 2, this would imply that
the population is zero in the area that changed from one unit to another
unit. This is not an entirely unreasonable assumption, as the amount of
area that changes from one unit to another unit is dictated by the ball of
radius €. The advantage that Construction 2 has over Construction 1 is
that the area of one unit is preserved. Unfortunately, Construction 2 may
be difficuit to execute in practice.

There are two additional concerns about the use of Construction 1 or 2
in any map. The first of these occurs when applying Construction 1 or 2
multiple times. If Construction 1 or 2 is used to fix all of the discontiguity
problems in unit v; in Figure 4, we have created a contiguous region v,
but, at the same time, we have also created a hole under any simply con-
nected definition. The second concern occurs when using Definition (A3).
In Figure 4(a), vz is adjacent to ve under Definition (A3), but after us-
ing Construction 1 or 2, that adjacency is deleted from the augmented
dual graph of I{. Under certain definitions, edges in the geo-graph can
be deleted, which would decrease the number of redistricting plans in the
solution space.

A useful consequence of Construction 1 is that it provides the architec-
ture necessary to show that G(M) is planar under certain definitions in D.
Note that the next lemma is only true for certain definitions in D. For this
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reason we define a subset of D. Let D’ C D be the set containing
{(A1), (B1), (C3)},{(A1), (B1), (C2)}, {(Al), (B1),(C1)},
{(A1), (B2), (C1)}, {(A2), (B1),(C1)}.

Lemma 6. Let U be a set of contiguous units under definition D € D'.

Let G be the augmented dual graph of U. Then G is planar. Furthermore,
if De D\ D', then G is non-planar.

Proof. Since simply connectedness plays no role in whether G is planar, it
does not matter if (C1) € D, (C2) € D, or (C3) € D. It is clear that G is
planar for {(A1), (B1), (C1)}, {(AL), (B1),(C2)}, and {(A1), (B1),(C3)}
since a dual graph is planar and defined using Definitions (A1) and (B1).

Suppose that D = {(Al),(B2),(C1)}. For any unit w, if two pieces
of w are adjacent at a point z, then there are no other units with two
or more pieces adjacent only at x. Thus, for each unit w, we can apply
Construction 1 to U at each point in Y, € Y to form U’ using a ball of
radius € > 0. Let G’ be the augmented dual graph of U’. Since all units
are contiguous and all adjacencies are defined by Definition (A1), G’ must
be planar for the same reason that a dual graph of planar graph is planar.

Now we need to show that G is a subgraph of G’ since this shows G
is planar. The vertex sets of G and G’ are the same since Construction 1
does not delete any units. It is clear that all edges between vertices in G
representing units that did not intersect the ball of radius £ will still be
edges in G'. By our choice in definitions, if there is a ball of radius ¢ at a
point z, we can choose £ to be small enough that the only adjacencies lost
at  would be between units that were adjacent at x. However, our choice
of definition D prevents this, so no adjacencies were lost in the formation
of G’ . Thus G = G’ and so G is planar.

Suppose that D = {(A2), (B1),(C1)}. By the definition of X in Defini-
tion (A2), if a point z € X, for some unit v, then for each unit u € U\ {v},
z ¢ X,. This means that G must be planar as we could place a ball of
radius € at each point in each X,, € X just as we did in the argument above.

When D is any other set in D, we can form a map whose geo-graph
is a Ks, clearly non-planar. Figure 5(a) produces a Ky for definitions
{(43), (B1),(C1)}, {(A3),(B2),(C1)}, and {(A3),(B3),(C1)} when zone
1 is {v1,v2}, zone 2 is {v3,v4}, zone 3 is {vs, v}, zone 4 is {vr}, and zone 5
is {vs}. Figure 5(b) produces a Kj5 for definition {(A2), (B2),(C1)} when
zone 1 is {v1}, zone 2 is {vy, v3}, zone 3 is {vy,vs}, zone 4 is {vg }, and zone
5 is {vr}. Figure 5(c) produces a Kj for definitions {(A1), (B3), (C1)} and
{(A2), (B3),(C1)} when zone 1 is {v,1}, zone 2 is {vs}, zone 3 is {vs, v4},
zone 4 is {vs}, and zone 5 is {vg}.

3.1.2. Annexing and Merging. Since Constructions 3 and 4 are quite simi-
lar, we shall discuss them at the same time.
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FIGURE 5. Examples that would produce a K3 in the geo-
graph for various definitions in D

A similar procedure to Construction 3 was described in [16], but there
were extra conditions that needed to be met. In [16], to annex pieces of
a unit, all of the pieces of some unit » must be in holes of the same unit.
Additionally, there must be only one piece of v that is not in a hole, and
this one piece needs to be adjacent to the same unit as all of the other
pieces of v. It is quite easy to fail any one of these requirements as seen
in Figure 3(a). The benefits of performing Construction 3 under these
restrictions is that no adjacencies are gained or lost from the augmented
dual graph of I to the augmented dual graph of U’. However, ti is possible
that Construction 3 may force the removal of some maps from the set of all
contiguous maps with k zones if the additional restrictions in [16] are not
followed.

Construction 4 has similar concerns as Construction 3. Also, as with
Construction 3, the authors of [16] have similar procedures with additional
requirements for a process similar to that stated in Construction 4. The
authors of [16] intended to merge units only when all pieces of a discon-
tiguous unit are adjacent to the same unit to prevent loss of edges in the
geo-graph. Unfortunately, it is possible that even while using the restric-
tions outlined in {16], some redistricting plans may be removed from the
solution set after using Construction 4. For example, if Construction 4
is applied to Figure 6(a) to form Figure 6(b), then we have lost the map
where v; and vs are in one zone while v, is in a different zone. There is also
the possibility of choice for Construction 4, which adds to the ambiguity
of this construction. We can merge as shown in Figure 6(b) or as shown
in Figure 6(c). There is no discernible reason why one would choose Fig-
ure 6(b) over Figure 6(c) or vice versa without more information. In fact,
deciding how to merge may have to be manually executed without creat-
ing a random assignment, making this construction difficult to execute in
practice. We forgo discussing the impact of the various definitions in D, as
there is already too much variability to give an appropriate assessment of
the impact from Constructions 3 and 4.
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FIGURE 6. Various ways to use Construction 4 on a map:
(a) original map, (b) merged v; with v, (c) merged v
with vs ‘

The movement of the data associated with the units complicates the
use of Constructions 3 and 4 quite a bit more, especially the voting and
population data. Consider the use of Construction 3 on the map in Fig-
ure 3(a) to build the map in Figure 3(d). When two of the pieces of unit
v in Figure 3(a) are joined with v, there are two natural ways to resolve
the voting results and various population data. The first is to do noth-
ing. That is, if at least one piece of the unit v involved in Construction 3
still exists, have v retain all of its population numbers and voting results.
As suggested in [16], this assumes that the pieces that were annexed into
other units were unpopulated. In most cases, this seems reasonable as most
instances of discontiguous units have one large piece with all other pieces
being relatively small. But there are still a non-trivial number of units like
in Figure 3(d) where each piece has less than half of the area of the whole
unit. For example, in the state of Georgia, there are 291,086 census blocks,
and of those there are 333 discontiguous census blocks. Of these 333 dis-
contiguous census blocks, there are 49 census blocks where the area of each
piece of a unit is less than half of the area of the whole unit.

An alternative to doing nothing with the data would be to move the
population and voting results proportionally using some metric. The choice
of metric can depend on the availability of data. We propose three metrics
on which to base this movement of the various population measures and
voting data. For each discontiguous unit v affected by Construction 3, one
can split the population and voting results to each piece of v based on the
following:

(a) the proportion of area of a piece to the overall area of the unit,

(b) the proportion of registered voters of a piece to the overall number
of registered voters in the unit, or

(c) the proportion of voting-age population of a piece to the overall
voting-age population for the unit.

There are several advantages and disadvantages to each of these approaches
depending on the unit. If a unit is a VTD, then there are no values collected
for the metrics (b) or (c), so one would need to aggregate the data from
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the census blocks to the VI'Ds. But this will not work for metric (b) as
the registered voter data has not been collected at the census block level.
In fact, the smallest refinement for registered voter data is census tracts (a
much larger unit than census blocks) which are sometimes smaller or larger
than VTDs, and typically overlap VI'Ds in unhelpful ways.

Even though metric (b) would likely be the most accurate, metric (c) is
the next best alternative. If the unit is a census block, then metric (c¢) is not
viable, as we would need to know the voting-age population for each piece
of a census block, and census blocks are the most refined measurement used
by the Census Bureau. Luckily, metric (a) will always work as the shapefile
provided by the Census Bureau can be used to find the area of the pieces of
census blocks. Unfortunately, metric (a) supposes the population is evenly
spread throughout each census block, which may add bias to any study
conducted in this area. However, if we use census blocks as units, this
is our best alternative without more refined geographic units than census
blocks or more accurate data at the census block level.

3.1.3. Splitting. The last construction we will examine that will heal conti-
guity violations is called splitting (see Figure 3(f)). This method has a clear
advantage over all other constructions presented thus far, as it can be used
on any set of units with discontiguous units. Unlike Construction 4, there
is no ambiguity with how to carry out the construction. As mentioned in
Section 3.1.2, we would need to either choose to do nothing, or use one of
the three metrics ((a), (b), or (c)) to separate the population and voting
results data when each discontiguous unit is split.

It is possible that splitting discontiguous units will add more admissible
maps, but Construction 5 will never remove maps from the set of all maps
on U. It is easy to see that we do not lose any maps in the set of all
redistricting maps on U by splitting a discontiguous unit v since we can
choose all pieces of v to be in the same zone. In the same way, by not
choosing all pieces of a split unit to be in the same zone, we will produce
new maps.

3.2. Simply Connectedness. Suppose that all units in I/ are contiguous
and that the units in I/ satisfy Assumption (2.1).

vy
v2
vy | vs [{f] | vs i
v2
FIGURE 7. Example of a FIGURE 8. Unit that has a
unit that has a degenerate hole in a hole

hole
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In [16], the authors proposed a method to eliminate holes by merging
hole(s) with the units that have holes; the areas, population counts, votes,
etc. were combined as in Section 3.1.2. We handle the data associated with
each unit by summing together all interval metric data, similar to what we
did in Section 3.1.2. In this way, we avoid losing any data and retain all
relevant records.

Recall that Assumption (2.1) ensures that if a piece of a unit is in a hole
of some unit v, then the entire unit is in holes of v. When writing code to
merge the holes with the violating unit, it should be noted that since there
is a possibility of having a hole inside of a hole, the unit that is in a hole
may change during this process (see Figure 8).

Construction 7 merges holes in a similar manner to that in Construc-
tion 3. The main difference is that we have assumed that all units are
already contiguous.

Construction 7. Let U be a set of units using definition D € D. Let
v,vy € U where v is in a hole of v. Form a new set of units 4’ from U by

replacing vy and v with the union of v and v;. This is called merging holes.
[ |

Note that using Construction 7 may not fill a hole in a traditional sense.
For example in Figure 8, if we aim to use Construction 7 to fill a hole
in v with vy, we will form a discontiguous unit. However, by applying
Construction 7 enough times to “fill all holes,” the resulting map will have
all units that are contiguous and simply connected.

Lemma 8. Let U be a set of contiguous units under definition D € D and
Assumption (2.1). LetU’ be constructed from U using multiple applications
of Construction 7 until all units are simply connected. Then all units in U’
are also contiguous.

Proof. Let U = Uy,Us,...,U; = U’ be a sequence of sets of units where
U; is the set of units formed by applying Construction 7 to U;_, for each
i € {2,...,t}. Let U; contain a discontiguous unit v. Let v1,vs,...,v, be
all of the pieces of v. By definition D and Assumption (2.1), all but one
piece of v is surrounded by some other piece of v, say v;. That is, without
loss of generality there exists a simple closed curve in »; that encloses each
piece in {vg,...,v,}. For each simple closed curve in v; that encloses some
v; € {v2,...,%p}, this simple closed curve also encloses another unit or piece
of a unit w that is in a hole of »;. Since w is in a hole of v, Construction 7
will eventually join w with v, thus either reducing the number of pieces
of v or reducing the area represented by holes in v. Either way, when
Construction 7 cannot be used anymore, we will have a set of units /' that
are all contiguous. O
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A benefit of using Construction 7 is that no redistricting plans were
created or destroyed. Recall our discussion in Section 2.1 about how zones
are adjacent, contiguous, or simply connected.

Lemma 9. Let U; be a set of contiguous units under definition D € D
and Assumption (2.1). LetUs be the set of units constructed from Uy using
multiple applications of Construction 7 until all units are contiguous. Let
Q1 be the collection of all maps on Uy with k contiguous and simply con-
nected zones and Qy be the collection of all maps on Uy with k contiguous
and simply connected zones. Then ) = Qs.

Proof. By Lemma 8, the units in U5 are contiguous and simply connected.
Suppose that €y # Q5. Then either there exists a map M; € Q; and
M; & Qg or there exists a map Mz € Q2 and My ¢ ;. Suppose that
there exists a map M; € Q; and M; ¢ Q. Since Construction 7 only
merges holes with units that have holes, there must be a zone z; in M;
that contains a unit v that is in a hole of u but u is in a zone 23 # 2;.
When the two units v,u are merged in Ms, then they will be in the same
zone. Since U4; has only contiguous units, Assumption (2.1) is satisfied, and
all zones in M; are contiguous, it follows that either contiguity of units is
violated, contiguity of zones is violated, or Assumption (2.1) is violated,
ultimately leading to a contradiction.

Now suppose that there exists a map M € Q3 and M, ¢ Q4. Since
Construction 7 only merges units, M, € Q; and thus we have a contradic-
tion. O

3.3. Corrections on the Initial Redistricting. Weighing all of the ad-
vantages and disadvantages of the various constructions, to ensure we get
a map where all units and zones are contiguous and simply connected, we
use Constructions 5 and 7. The greatest advantage these two construc-
tions possess is that they can always be applied regardless of the map.
Additionally, as we show in the next corollary, we do not lose any feasible
solutions by filling holes and splitting pieces. Corollary 10 follows directly
from Lemma 8 and the discussion provided in Section 3.1.3.

Corollary 10. Let U; be a set of units under definition D € D and As-
sumption (2.1). Let U be a set of contiguous and simply connected units
formed from Uy using Construction 5 and T multiple times. Let 1y be the
collection of all maps on Uy with k contiguous and simply connected zones
and (g be the collection of all maps on Uy with k contiguous and simply
connected zones. Then Q1 C Q5.

4. ALGORITHMS

143



4.1. Articulation Points. Let M be a map on the units in #4. From the
perspective of graph theory, ensuring that local search and MCMC algo-
rithms will not form a discontiguous zone when a single unit v is removed
from a zone j is equivalent to identifying whether vertex v is an articulation
point in the induced subgraph of G(M) on U (7) (set of units in zone j on
map M). This was mentioned in both [16, 21], but the authors were using
definition D = {(Al),(B1),(C1)}. We can also take what they said one
step further to identify holes.

Assumption (2.1) allows us to use the geo-graph to find a hole using the
articulation points. In terms of the geo-graph, Assumption (2.1) ensures
that if u is a hole in v, then all paths (walks on a graph that do not repeat
any vertices) with u as an endpoint must contain v if the other endpoint of
the path is any vertex representing a unit in ¢/ \ {v} that is not a hole in
v. In other words, v represents an articulation point (a cut-vertex) in the
geo-graph. Since all definitions in D satisfy Assumption (2.1), a unit u that
is a hole in some unit v is adjacent only to v itself or other units that are
holes in v. Thus, if v is an articulation point and not the dummy unit (unit
representing the unbounded area), then all disconnected components in the
graph G(M) — v (remove vertex v and all incident edges) not containing
the dummy unit represent holes in v. So as long as we can identify all
articulation points, we can identify all units or zones that have holes. As
stated in [10, 18], the set of units with holes (articulation points) can be
identified in O(|U|) time for a geo-graph. Further, it is said that holes in
any unit of I can be identified while finding the articulation points. Thus,
all units with holes and in holes can be identified in O(|U4|) time. If G(M) is
non-planar, then by the work in [10, 18], we can find all of the articulation
points in O(|U| + |E(G(M))|) time where E(G(M)) is the set of edges in
G(M). Hence, as long as Assumption (2.1) is satisfied, we can can find all
units that have holes and all units in holes in G(M) in O(|U| + |E(G(M))])
time under any definition in D.

We can also perform a similar action to find all zones with holes and
zones in holes. We first need to build the graph G,(M), the zone dual
graph. Let G,(M) be the dual graph of the zones in M where each vertex
is represented by a zone in M and two vertices z;, 27 are adjacent if there is
a unit in z; adjacent to a unit in 29. Recall that due to the adjacency rule in
D, we can attribute the same adjacency definitions to the zones as we do for
units. Similarly, we can attribute the contiguity and simply connectedness
definitions in D to each zone as well. Thus, by our above discussion on
identifying holes in units, if we are using definition D € 7', then we can
find all articulation points in G,(M) in O(|V(G.(M))|) = O(k) time, and
we can also find all zones with holes and zones in holes in O(k) time with
the Hopcroft-Tarjan algorithm in [10, 18]. If G, (M) is non-planar, then we
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can find all zones with holes and all zones in holes in O(k + |E(G . (M))|)
times for the same reason as explained in the previous paragraph.

A similar argument can be made for assessing contiguity since articula-
tion points signify when a zone can become discontiguous after using Con-
struction 11. Unfortunately, it will take O(|Ups(z(v))|) time and Ups(z(v))
could be considerably large as compared to the number of zones depending
on the number of units in a zone. In the context of congressional districts
and census blocks, the average number of units per zone will be large, mean-
ing {Uns(z(v))| will be large in comparison to the number of zones in this
context.

4.2. Main Algorithm. Before we can talk about the main algorithm, we
need to make some assumptions about the state of the map, which are
the same assumptions made by most scholars when performing local search
heuristics or MCMC algorithms [2, 5, 9, 11, 13, 15, 16, 17]. All algorithms
described in this section assume that all units and zones are initially con-
tiguous and simply connected.

The following construction is applied to a geo-graph as part of a local
search heuristic (such as steepest descent [16]) or an MCMC algorithm (see
[2, 5, 11, 13]) to move one unit locally from one zone into an adjacent zone.

Construction 11. Let M be a map on a set of units I{ where each unit in
U and zone in M is contiguous and simply connected. Let X be the set of
pairs (v, 2’) where v is a unit on the boundary of at least one zone adjacent
to another zone (not the dummy zone) and 2’ be one zone (not the dummy
zone) to which v shares a boundary. Then take one pair (v, 2’) uniformly
at random from X. Form a new map M’ where zps(u) = zpp (u) for all
ueld\ {v} and zpp (v) = 2’. il

As this construction is stated, it is possible that applying Construction 11
could make the zones in M’ discontiguous and/or not simply connected,
even though M contains only contiguous and simply connected zones. We
utilize the algorithms below to check that all zones are contiguous and
simply connected after applying Construction 11.

Let D € D. Let M be a map as defined in Construction 11. Then, by
Lemma 6, G(M) is planar. The beginning of our main algorithm depends
on another algorithm for finding planar embeddings. Boyer and Myrvold
[4] showed the following result regarding planar embeddings.

Theorem 12. [4] Given a planar graph G with n vertices, algorithm PLA-
NARITY in [4] produces a planar embedding of G in O(n) time.

Since G(M) is planar, we can find a planar embedding of G(M) in O(JU|)
time.

Since G(M) contains information about the boundary of v, we can form
a clockwise ordered list R(v) of the queen-adjacencies of v using the planar
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