Congressus Numerantium www.combinatorialpress.com/cn

Cyclic ordering of edges without long acyclic subsequences

Yanting Liang^{1,⊠}, Sarah Locke², Andrea Trice³

¹ University of Wisconsin Oshkosh, Oshkosh, WI 54901

² University of Tennessee at Martin, Martin, TN 38238

³ West Virginia University, Morgantown, WV 26506

ABSTRACT

Let G be a connected graph with m edges. The density of a nontrivial subgraph H with $\omega(H)$ components is $d(H) = |E(H)|/(|V(H)| - \omega(H))$. A graph G is uniformly dense if for any nontrivial subgraph H of G, $d(H) \leq d(G)$. For each cyclic ordering $o = (e_1, e_2, \dots, e_m)$ of E(G), let h(o) be the largest integer k such that every k cyclically consecutive elements in o induce a forest in G; and the largest h(o), taken among all cyclic orderings of G, is denoted by h(G). A cyclic ordering o of G is a cyclic base ordering if $h(o) = |V(G)| - \omega(G)$. In [15], Kajitani et al proved that every connected nontrivial graph with a cyclic base ordering is uniformly dense, and conjectured that every uniformly dense graph has a cyclic base ordering. This motivates the study of h(G). In this paper, we investigate the value of h for some families of graphs and determine all connected graphs G with $h(G) \leq 2$.

Keywords: uniformly dense graphs, cyclic orderings, cyclic base ordering

2010 Mathematics Subject Classification: 05C15, 05C69.

1. Introduction

In this paper, graphs considered are finite and loopless. We follow [1] for undefined terms and notation. A graph is nontrivial if its edge set is not empty. For a nontrivial graph

 $[\]boxtimes$ Corresponding author.

E-mail address: liangy@uwosh.edu (Y. Liang).

Received 27 August 2024; accepted 8 January 2025; published 11 February 2025.

DOI: 10.61091/cn235-04

 $[\]odot$ 2025 The Author(s). Published by Combinatorial Press. This is an open access article under the CC BY license (https://creativecommons.org/licenses/by/4.0/).

G, let $\omega(G)$ be the number of connected components of G. Following the notations in [3], define the density d(G) and the fractional arboricity $\gamma(G)$ as follows:

$$d(G) = \frac{|E(G)|}{|V(G)| - \omega(G)} \text{ and } \gamma(G) = \max\{d(H) : \emptyset \neq E(H) \subseteq E(G)\}.$$

A graph G is uniformly dense if $\gamma(G) = d(G)$. Uniformly dense graphs have been considered as models of certain secured networks, as seen in [12]. There have been quite a few studies on uniformly dense graphs and matroids, as can be seen in [3, 2, 4, 5, 6, 8, 9, 10, 11, 12, 7, 14, 15, 13, 16, 17, 18, 19], and the references therein, among others.

Let *m* denote the number of edges of *G*. A sequence to list all the edges in *G* is a cyclic ordering of *G* if the subscripts of the sequence are taken modulo *m*. Let $\mathcal{O}(G)$ be the collection of all cyclic ordering of *G*. For each $o = (e_1, e_2, \dots, e_m) \in \mathcal{O}(G)$, let h(o) be the largest integer *k* such that every *k* cyclically consecutive elements in *o* induces a forest in *G*, where a forest is a graph that contains no cycles; and define $h(G) = \max\{h(o) : o \in \mathcal{O}(G)\}$. By definition, $1 \leq h(G) \leq |V(G)| - \omega(G)$ for any loopless nontrivial graph *G*. It is therefore of particular interests to investigate the conditions when equality holds in either the lower bound or the upper bound. A cyclic order $o \in \mathcal{O}(G)$ is a cyclic base ordering if $h(o) = |V(G)| - \omega(G)$. The following has been proved by Kajitani et al, relating cyclic orderings with the property of being uniformly dense in graphs.

Theorem 1.1. [15] Let G be a connected nontrivial graph on n vertices. If h(G) = n - 1, then G is uniformly dense.

Kajitani et al. in [15] proposed the conjecture that if G is uniformly dense, then h(G) = n - 1. Thus investigating the value of h(G) is of interests. The purpose of this study is to investigate the relationship between the value of h(G) and the structural properties of G which may measure the closeness for a graph G to being uniformly dense. In the next section, we present some preliminaries, and the main results are stated and proved in Section 3.

2. Preliminaries

Proposition 2.1. Let G be a connected nontrivial graph with n vertices. Then every cyclic ordering of G is a cyclic base ordering if and only if G is either a tree or a cycle.

Proof. We prove the sufficiency first. If G is a tree, then |E(G)| = n - 1. Clearly, for any cyclic ordering o of G, h(o) = h(G) = n - 1 and so it is a cyclic base ordering. Now we suppose G is a cycle. We know |E(G)| = n and h(G) < n. Notice that every set of n - 1 edges induces a path. Therefore, for any cyclic ordering o of G, h(o) = n - 1 and so h(G) = n - 1. Every cyclic ordering of G is a cyclic base ordering.

We prove the necessity by contradiction. Suppose every cyclic ordering of G is a cyclic base ordering but G is neither a tree nor a cycle. Since G is connected, $|E(G)| \ge n$ and G contains a cycle C but $G \ne C$. Without loss of generality, suppose E(G) = $\{e_1, e_2, \dots, e_m\}$ and $C = e_1 e_2 \cdots e_i e_1$ is a cycle of G. Consider the cyclic ordering o = $(e_1, e_2, \dots, e_i, e_{i+1}, \dots, e_m)$. We have $h(o) < i \le n-1$ because $e_1e_2 \cdots e_ie_1$ is a cycle and $G \ne C$. However, by the assumption, it is a cyclic base ordering of G, so h(o) = n-1, a contradiction. This completes the proof.

Suppose $u, v \in V(G)$. Let $E_{uv} = \{e \in E(G) | e \text{ is incident with both } u \text{ and } v\}$, and $m_{uv} = |E_{uv}|$. If there is no edge between u and v, then $E_{uv} = \emptyset$ and $m_{uv} = 0$. Let $\Delta_m(G) = \max\{m_{uv} | u, v \in V(G)\}$. We prove the following.

Lemma 2.2. For every graph G, if $|E(G)| < (i+1)\Delta_m(G)$, then $h(G) \leq i$ where $i \geq 1$.

Proof. Assume that $h(G) \ge i + 1$. Suppose $|E_{uv}| = \Delta_m(G)$ where $u, v \in V(G)$. Then for any cyclic ordering, every i + 1 cyclically consecutive elements induce a forest in G, and contain at most one edge in E_{uv} . Then $m \ge (i + 1)\Delta_m(G)$. It contradicts to $m < (i + 1)\Delta_m(G)$. Hence $h(G) \le i$. \Box

Corollary 2.3. For a nontrivial graph G, $m < 2\Delta_m(G)$ if and only if h(G) = 1.

Proof. We prove the necessity first. It is known that $h(G) \ge 1$. By Lemma 2.2, $h(G) \le 1$. Therefore, h(G) = 1. It remains to prove the sufficiency. Assume that $m \ge 2\Delta_m(G)$. Suppose $E_{uv} = \{e_1, \dots, e_{\Delta_m(G)}\}$, where $u, v \in V(G)$. Since $m \ge 2\Delta_m(G)$ and $|E_{uv}| = \Delta_m(G)$, we can put at least one edge after e_i and the edges between e_i and e_{i+1} are different for $1 \le i \le \Delta_m(G)$ and $e_{\Delta_m(G)+1} = e_1$. Then we have a cyclic ordering o such that $h(o) \ge 2$. It is a contradiction to h(G) = 1. Thus $m < 2\Delta_m(G)$. \Box

3. Results

In this section, we study h(G) of the complete graph on three vertices, denoted by K_3 , where multiple edges are allowed. Also, we prove a formula for obtaining h(G) under a particular set of constraints. Finally, we propose the structure for all graphs with $h(G) \leq 2$ and prove the necessity of the conjecture.

Theorem 3.1. Let G be the graph $(m_1, m_2, m_3)K_3$ where m_1, m_2, m_3 are the number of edges between two vertices and $m_1 \leq m_2 \leq m_3$. Then

$$h((m_1, m_2, m_3)K_3) = \begin{cases} 1, & \text{if } m_3 > m_1 + m_2 \\ 2, & \text{if } m_3 \le m_1 + m_2 \end{cases}$$
(1)

Proof. Let $V(G) = \{v_1, v_2, v_3\}$, E_i be the set of all edges with endpoints v_i and v_{i+1} for $1 \leq i \leq 2$, E_3 be the set of all edges with endpoints v_3 and v_1 , and $m_i = |E_i|$ for $i \in \{1, 2, 3\}$. Then $m_3 = \Delta_m(G)$.

If $m_3 > m_1 + m_2$, then $m = m_1 + m_2 + m_3 < 2m_3 = 2\Delta_m(G)$. By Corollary 2.3, h(G) = 1. Now suppose $m_3 \leq m_1 + m_2$. Let $E_i = \{e_1^i, e_2^i, ..., e_{m_i}^i\}$. Then there exists a cyclic ordering o such that the ordering alternates between an edge from E_3 and an edge from E_1 or E_2 . Since $m_3 \leq m_1 + m_2$, there are at least as many edges in $E_1 \cup E_2$ as in E_3 . So $h(G) \geq 2$. Notice that $h(G) \leq |V(G)| - 1 = 2$. Therefore, h(G) = 2.

Let S_G be the graph obtained from G by combining all multiple edges between two vertices to only one edge. Let $g(S_G)$ be the girth of S_G , which is the length of the shortest cycle in S_G . See Figure 1 for an example. If S_G is a tree, we define $g(S_G) = \infty$.

Fig. 1. G and S_G where $g(S_G) = 3$

Theorem 3.2. For a graph G, suppose $g(S_G) \ge i + 1$. Then each of the following holds.

- (i) If $i\Delta_m(G) \leq m$, then $h(G) \geq i$.
- (ii) If $m \leq (i+1)\Delta_m(G) 1$, then $h(G) \leq i$.

Proof. Let $E(S_G) = \{e_1, e_2, \dots, e_t\}, E_i$ be the set of all edges in G that were combined to e_i in S_G and $E_i = \{e_1^i, e_2^i, \dots, e_{m_i}^i\}$ where $m_i = |E_i|$ for $1 \le i \le t$. Without loss of generality, we suppose $\Delta_m(G) = m_1 \ge m_2 \ge \dots \ge m_t$. For each cyclic ordering of $G, (e_{j_1}^1, \dots, e_{j_2}^1, \dots, e_{j_{\Delta_m(G)}}^1, \dots)$ where $\{j_1, j_2, \dots, j_{\Delta_m(G)}\} = \{1, 2, \dots, \Delta_m(G)\}$, the edges $\{e_{j_1}^1, e_{j_2}^1, \dots, e_{j_{\Delta_m(G)}}^1\}$ in E_1 divide the ordering into $\Delta_m(G)$ intervals with the first edges from E_1 .

If $m \ge i\Delta_m(G)$, since $g(S_G) \ge i+1$, there is a cyclic ordering o such that each interval has at least i edges and no multiple edges from the same E_i are in the same interval for $1 \le i \le t$. So $h(G) \ge h(o) \ge i$. This proves part (i).

Suppose $m \leq (i+1)\Delta_m(G) - 1$. To prove by contradiction, assume that G has a cyclic order o with $h(o) \geq i + 1$. The edges in E_1 divide the ordering into $\Delta_m(G)$ intervals. If one such interval has at most i edges, then length of this interval together with the edges from E_1 on both sides of the interval is at most 1 + (i-1) + 1 = i + 1 and it contains a 2-cycle, contrary to $h(o) \geq i + 1$. Hence, every interval must have at least i + 1 edges. So $m \geq \Delta_m(G)(i+1)$.

Suppose $g(S_G) = 3$. Let $\Delta_{\Delta} = \max\{\lceil \frac{m_1 + m_2 + m_3}{2} \rceil \mid (m_1, m_2, m_3) K_3 \text{ is a subgraph of } G\}$. If $g(S_G) > 3$, we define $\Delta_{\Delta} = 0$. Let $\ell = m - m_1 - m_2 - m_3$.

We propose a structure for all graphs that satisfy h(G) = 2 and prove the necessity. Below, we use Δ_m for $\Delta_m(G)$.

Conjecture 3.3. Let G be a connected graph. Then

$$\begin{cases} 2\Delta_m \le m \le 3\Delta_m - 1, & \text{if } \Delta_\Delta \le \Delta_m \\ \ell < \Delta_\Delta, & \text{if } \Delta_\Delta > \Delta_m \end{cases}$$

if and only if h(G) = 2.

Theorem 3.4. Let G be a connected graph. If

$$\begin{cases} 2\Delta_m \le m \le 3\Delta_m - 1, & \text{if } \Delta_\Delta \le \Delta_m \\ \ell < \Delta_\Delta, & \text{if } \Delta_\Delta > \Delta_m \end{cases}$$

then h(G) = 2.

Proof. If $g(S_G) > 3$, then G has no 3-cycle and $\Delta_{\Delta} = 0 \leq \Delta_m(G)$. If $2\Delta_m \leq m \leq 3\Delta_m - 1$, by Theorem 3.2, h(G) = 2.

It is sufficient to prove the case when $g(S_G) = 3$. If $\Delta_{\Delta} \leq \Delta_m$, then $2\Delta_m \leq m \leq 3\Delta_m - 1$. By Lemma 2.2, $h(G) \leq 2$. And by Corollary 2.3, $h(G) \neq 1$. Therefore, h(G) = 2. If $\Delta_{\Delta} > \Delta_m$, suppose $(m_1, m_2, m_3)K_3$ satisfies Δ_{Δ} . Since $\Delta_{\Delta} > \Delta_m$, $m \geq m_1 + m_2 + m_3 \geq 2\Delta_{\Delta} - 1$ by the definition of Δ_{Δ} . Therefore, $m > 2\Delta_m - 1$, i.e. $m \geq 2\Delta_m$. By Corollary 2.3, $h(G) \geq 2$. Assume that $h(G) \geq 3$. Let o be the cyclic ordering such that $h(o) \geq 3$. Then every 3 cyclically consecutive elements in o has at most two edges in $(m_1, m_2, m_3)K_3$. Then $\ell \geq \frac{m_1 + m_2 + m_3}{2}$, so $\ell \geq \Delta_{\Delta}$. It contradicts to $\ell < \Delta_{\Delta}$. Thus h(G) = 2.

Acknowledgements

We would like to express our sincere gratitude to Dr. Hong-Jian Lai for his introducing the concept of h(G) and proposing the research problems.

Declarations

The authors declare no conflict of interest.

References

- [1] J. A. Bondy and U. S. R. Murty. *Graph Theory*. Springer, 2008.
- [2] P. A. Catlin, J. W. Grossman, and A. M. Hobbs. Graphs with uniform density. Congressus Numerantium, 65:281–286, 1988.
- [3] P. A. Catlin, J. W. Grossman, A. M. Hobbs, and H.-J. Lai. Fractional arboricity, strength, and principal partition in graphs and matroids. *Discrete Applied Mathematics*, 40:285–302, 1992.
- C. C. Chen, K. M. Koh, and Y. H. Peng. On the higher-order edge toughness of a graph. Discrete Mathematics, 111:113-123, 1993. https://doi.org/10.1016/0012-365X(93) 90147-L.
- [5] Z.-H. Chen and H.-J. Lai. The higher-order edge toughness of a graph and truncated uniformly dense matroids. *Journal of Combinatorial Mathematics and Combinatorial Computing*, 22:157–160, 1996.
- [6] R. Cordovil and M. L. Moreira. Base-cobase graphs and polytopes of matroids. *Combina-torica*, 13:157–165, 1993.

- [7] J. v. den Heuvel and S. Thomasse. Cyclic ordering of matroids. Journal of Combinatorial Theory, Series B, 102:638-646, 2012.
- [8] R. Godorvil and M. L. Moreira. Base-cobase graphs and polytotes of matroids. Combinatorica, 13:157-165, 1993.
- [9] D. Goncalves. Étude de différents problèmes de partitions de graphes. PhD thesis, Université de Bordeaux I, 2006. Received May 6, 2007.
- [10] X. Gu, K. Horacek, and H.-J. Lai. Cyclic base orderings in some classes of graphs. *Journal* of Combinatorial Theory and Combinatorial Computing, 88:39–50, 2014.
- [11] A. M. Hobbs. Computing edge-toughness and fractional arboricity. Contemporary Mathematics, 89:89-106, 1989.
- [12] A. M. Hobbs. Survivability of networks under attack. In J. G. Michaels and K. H. Rosen, editors, Applications of Discrete Mathematics, pages 332–353. 1991.
- [13] L. Kannan, A. M. Hobbs, and H. Y. Lai. Transforming a graph into a 1-balanced graph. Discrete Applied Mathematics, 157:300-308, 2009. https://doi.org/10.1016/j.dam. 2008.03.012.
- [14] Y. Kazitani and K. Sugishita. Ordering of elements of a matroid such that its consecutive r elements are independent. In Proceedings of the Technical Group Circuits and Systems, Institute of Electrical and Communications Engineering of Japan, pages 89–94, 1983. CAS830124.
- Y. Kazitani, S. Ueno, and H. Miyano. Ordering the elements of a matroid such that its consecutive w elements are independent. Discrete Mathematics, 72:187-194, 1988. https://doi.org/10.1016/0012-365X(88)90209-9.
- [16] H.-J. Lai and H. Y. Lai. A note on uniformly dense matroids. Utilitas Mathematica, 40:251– 256, 1991.
- H.-J. Lai and H. Y. Lai. Every matroid is a submatroid of a uniformly dense matroid. Discrete Applied Mathematics, 63:151-160, 1995. https://doi.org/10.1016/0166-218X(94)00029-D.
- [18] H. Narayanan and N. Vartak. An elementary approach to the principal partition of a matroid. Transactions of the Institute of Electrical and Electronics Engineers Japan, E64:227– 234, 1981.
- [19] N. Tomizawa. Strongly irreducible matroids and principal partition of a matroid into strongly irreducible minors. *Electronics and Communications in Japan*, 59A(2):1–10, 1976.