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abstract

Let G be a connected graph with m edges. The density of a nontrivial subgraph H

with ω(H) components is d(H) = |E(H)|/(|V (H)|−ω(H)). A graph G is uniformly

dense if for any nontrivial subgraph H of G, d(H) ≤ d(G). For each cyclic ordering

o = (e1, e2, · · · , em) of E(G), let h(o) be the largest integer k such that every k cyclically

consecutive elements in o induce a forest in G; and the largest h(o), taken among all cyclic

orderings of G, is denoted by h(G). A cyclic ordering o of G is a cyclic base ordering if

h(o) = |V (G)|−ω(G). In [15], Kajitani et al proved that every connected nontrivial graph

with a cyclic base ordering is uniformly dense, and conjectured that every uniformly dense

graph has a cyclic base ordering. This motivates the study of h(G). In this paper, we

investigate the value of h for some families of graphs and determine all connected graphs

G with h(G) ≤ 2.
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1. Introduction

In this paper, graphs considered are �nite and loopless. We follow [1] for unde�ned terms

and notation. A graph is nontrivial if its edge set is not empty. For a nontrivial graph
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G, let ω(G) be the number of connected components of G. Following the notations in [3],

de�ne the density d(G) and the fractional arboricity γ(G) as follows:

d(G) =
|E(G)|

|V (G)|−ω(G)
and γ(G) = max{d(H) : ∅ ≠ E(H) ⊆ E(G)}.

A graph G is uniformly dense if γ(G) = d(G). Uniformly dense graphs have been

considered as models of certain secured networks, as seen in [12]. There have been quite

a few studies on uniformly dense graphs and matroids, as can be seen in [3, 2, 4, 5, 6, 8,

9, 10, 11, 12, 7, 14, 15, 13, 16, 17, 18, 19], and the references therein, among others.

Let m denote the number of edges of G. A sequence to list all the edges in G is a

cyclic ordering of G if the subscripts of the sequence are taken modulo m. Let O(G)

be the collection of all cyclic ordering of G. For each o = (e1, e2, · · · , em) ∈ O(G),

let h(o) be the largest integer k such that every k cyclically consecutive elements in

o induces a forest in G, where a forest is a graph that contains no cycles; and de�ne

h(G) = max{h(o) : o ∈ O(G)}. By de�nition, 1 ≤ h(G) ≤ |V (G)|−ω(G) for any loopless

nontrivial graph G. It is therefore of particular interests to investigate the conditions when

equality holds in either the lower bound or the upper bound. A cyclic order o ∈ O(G) is

a cyclic base ordering if h(o) = |V (G)|−ω(G). The following has been proved by Kajitani

et al, relating cyclic orderings with the property of being uniformly dense in graphs.

Theorem 1.1. [15] Let G be a connected nontrivial graph on n vertices. If h(G) = n−1,

then G is uniformly dense.

Kajitani et al. in [15] proposed the conjecture that if G is uniformly dense, then

h(G) = n − 1. Thus investigating the value of h(G) is of interests. The purpose of

this study is to investigate the relationship between the value of h(G) and the structural

properties of G which may measure the closeness for a graph G to being uniformly dense.

In the next section, we present some preliminaries, and the main results are stated and

proved in Section 3.

2. Preliminaries

Proposition 2.1. Let G be a connected nontrivial graph with n vertices. Then every

cyclic ordering of G is a cyclic base ordering if and only if G is either a tree or a cycle.

Proof. We prove the su�ciency �rst. If G is a tree, then |E(G)|= n − 1. Clearly, for

any cyclic ordering o of G, h(o) = h(G) = n− 1 and so it is a cyclic base ordering. Now

we suppose G is a cycle. We know |E(G)|= n and h(G) < n. Notice that every set of

n − 1 edges induces a path. Therefore, for any cyclic ordering o of G, h(o) = n − 1 and

so h(G) = n− 1. Every cyclic ordering of G is a cyclic base ordering.

We prove the necessity by contradiction. Suppose every cyclic ordering of G is a cyclic

base ordering but G is neither a tree nor a cycle. Since G is connected, |E(G)|≥ n

and G contains a cycle C but G ̸= C. Without loss of generality, suppose E(G) =

{e1, e2, · · · , em} and C = e1e2 · · · eie1 is a cycle of G. Consider the cyclic ordering o =



cyclic ordering of edges without long acyclic subsequences 43

(e1, e2, · · · , ei, ei+1, · · · , em). We have h(o) < i ≤ n− 1 because e1e2 · · · eie1 is a cycle and

G ̸= C. However, by the assumption, it is a cyclic base ordering of G, so h(o) = n− 1, a

contradiction. This completes the proof.

Suppose u, v ∈ V (G). Let Euv = {e ∈ E(G)| e is incident with both u and v}, and
muv = |Euv|. If there is no edge between u and v, then Euv = ∅ and muv = 0. Let

∆m(G) = max{muv|u, v ∈ V (G)}. We prove the following.

Lemma 2.2. For every graph G, if |E(G)|< (i+ 1)∆m(G), then h(G) ≤ i where i ≥ 1.

Proof. Assume that h(G) ≥ i + 1. Suppose |Euv|= ∆m(G) where u, v ∈ V (G). Then

for any cyclic ordering, every i + 1 cyclically consecutive elements induce a forest in

G, and contain at most one edge in Euv. Then m ≥ (i + 1)∆m(G). It contradicts to

m < (i+ 1)∆m(G). Hence h(G) ≤ i.

Corollary 2.3. For a nontrivial graph G, m < 2∆m(G) if and only if h(G) = 1.

Proof. We prove the necessity �rst. It is known that h(G) ≥ 1. By Lemma 2.2, h(G) ≤ 1.

Therefore, h(G) = 1. It remains to prove the su�ciency. Assume that m ≥ 2∆m(G).

Suppose Euv = {e1, · · · , e∆m(G)}, where u, v ∈ V (G). Since m ≥ 2∆m(G) and |Euv|=
∆m(G), we can put at least one edge after ei and the edges between ei and ei+1 are

di�erent for 1 ≤ i ≤ ∆m(G) and e∆m(G)+1 = e1. Then we have a cyclic ordering o such

that h(o) ≥ 2. It is a contradiction to h(G) = 1. Thus m < 2∆m(G).

3. Results

In this section, we study h(G) of the complete graph on three vertices, denoted by K3,

where multiple edges are allowed. Also, we prove a formula for obtaining h(G) under

a particular set of constraints. Finally, we propose the structure for all graphs with

h(G) ≤ 2 and prove the necessity of the conjecture.

Theorem 3.1. Let G be the graph (m1,m2,m3)K3 where m1,m2,m3 are the number of

edges between two vertices and m1 ≤ m2 ≤ m3. Then

h((m1,m2,m3)K3) =

{
1, if m3 > m1 +m2

2, if m3 ≤ m1 +m2
(1)

Proof. Let V (G) = {v1, v2, v3}, Ei be the set of all edges with endpoints vi and vi+1

for 1 ≤ i ≤ 2, E3 be the set of all edges with endpoints v3 and v1, and mi = |Ei| for
i ∈ {1, 2, 3}. Then m3 = ∆m(G).

If m3 > m1 + m2, then m = m1 + m2 + m3 < 2m3 = 2∆m(G). By Corollary 2.3,

h(G) = 1. Now suppose m3 ≤ m1 + m2. Let Ei = {ei1, ei2, ..., eimi
}. Then there exists a

cyclic ordering o such that the ordering alternates between an edge from E3 and an edge
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from E1 or E2. Since m3 ≤ m1 +m2, there are at least as many edges in E1 ∪ E2 as in

E3. So h(G) ≥ 2. Notice that h(G) ≤ |V (G)|−1 = 2. Therefore, h(G) = 2.

Let SG be the graph obtained from G by combining all multiple edges between two

vertices to only one edge. Let g(SG) be the girth of SG, which is the length of the shortest

cycle in SG. See Figure 1 for an example. If SG is a tree, we de�ne g(SG) = ∞.

Fig. 1. G and SG where g(SG) = 3

Theorem 3.2. For a graph G, suppose g(SG) ≥ i+ 1. Then each of the following holds.

(i) If i∆m(G) ≤ m, then h(G) ≥ i.

(ii) If m ≤ (i+ 1)∆m(G)− 1, then h(G) ≤ i.

Proof. Let E(SG) = {e1, e2, · · · , et}, Ei be the set of all edges in G that were combined

to ei in SG and Ei = {ei1, ei2, ..., eimi
} where mi = |Ei| for 1 ≤ i ≤ t. Without loss of

generality, we suppose ∆m(G) = m1 ≥ m2 ≥ · · · ≥ mt. For each cyclic ordering of

G, (e1j1 , · · · , e
1
j2
, · · · , e1j∆m(G)

, · · ·) where {j1, j2, · · · , j∆m(G)} = {1, 2, · · · ,∆m(G)}, the edges
{e1j1 , e

1
j2
, · · · , e1j∆m(G)

} in E1 divide the ordering into ∆m(G) intervals with the �rst edges

from E1.

If m ≥ i∆m(G), since g(SG) ≥ i+1, there is a cyclic ordering o such that each interval

has at least i edges and no multiple edges from the same Ei are in the same interval for

1 ≤ i ≤ t. So h(G) ≥ h(o) ≥ i. This proves part (i).

Suppose m ≤ (i+1)∆m(G)− 1. To prove by contradiction, assume that G has a cyclic

order o with h(o) ≥ i + 1. The edges in E1 divide the ordering into ∆m(G) intervals. If

one such interval has at most i edges, then length of this interval together with the edges

from E1 on both sides of the interval is at most 1 + (i− 1) + 1 = i+ 1 and it contains a

2-cycle, contrary to h(o) ≥ i+1. Hence, every interval must have at least i+1 edges. So

m ≥ ∆m(G)(i+ 1).

Suppose g(SG) = 3. Let ∆∆ = max{⌈m1+m2+m3

2
⌉ | (m1,m2,m3)K3 is a subgraph of G}.

If g(SG) > 3, we de�ne ∆∆ = 0. Let ℓ = m−m1 −m2 −m3.

We propose a structure for all graphs that satisfy h(G) = 2 and prove the necessity.

Below, we use ∆m for ∆m(G).

Conjecture 3.3. Let G be a connected graph. Then{
2∆m ≤ m ≤ 3∆m − 1, if ∆∆ ≤ ∆m

ℓ < ∆∆, if ∆∆ > ∆m

if and only if h(G) = 2.
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Theorem 3.4. Let G be a connected graph. If{
2∆m ≤ m ≤ 3∆m − 1, if ∆∆ ≤ ∆m

ℓ < ∆∆, if ∆∆ > ∆m

then h(G) = 2.

Proof. If g(SG) > 3, then G has no 3-cycle and ∆∆ = 0 ≤ ∆m(G). If 2∆m ≤ m ≤
3∆m − 1, by Theorem 3.2, h(G) = 2.

It is su�cient to prove the case when g(SG) = 3. If ∆∆ ≤ ∆m, then 2∆m ≤ m ≤
3∆m − 1. By Lemma 2.2, h(G) ≤ 2. And by Corollary 2.3, h(G) ̸= 1. Therefore,

h(G) = 2. If ∆∆ > ∆m, suppose (m1,m2,m3)K3 satis�es ∆∆. Since ∆∆ > ∆m, m ≥
m1+m2+m3 ≥ 2∆∆−1 by the de�nition of ∆∆. Therefore, m > 2∆m−1, i.e. m ≥ 2∆m.

By Corollary 2.3, h(G) ≥ 2. Assume that h(G) ≥ 3. Let o be the cyclic ordering such

that h(o) ≥ 3. Then every 3 cyclically consecutive elements in o has at most two edges

in (m1,m2,m3)K3. Then ℓ ≥ m1+m2+m3

2
, so ℓ ≥ ∆∆. It contradicts to ℓ < ∆∆. Thus

h(G) = 2.
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