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abstract

An open-locating-dominating set of a graph models a detection system for a facility with a

possible �intruder� or a multiprocessor network with a possible malfunctioning processor.

A �sensor� or �detector� is assumed to be installed at a subset of vertices where each

can detect an intruder or a malfunctioning processor in its neighborhood, but not at

its own location. We consider a fault-tolerant variant of an open-locating-dominating

set called an error-correcting open-locating-dominating set, which can correct a false-

positive or a false-negative signal from a detector. In particular, we prove the problem of

�nding a minimum error-correcting open-locating-dominating set in an arbitrary graph is

NP-complete. Additionally, we characterize the existence criteria for an error-correcting

open-locating-dominating set in an arbitrary graph. We also consider extremal graphs

that require every vertex to be a detector and minimum error-correcting open-locating-

dominating sets in in�nite grids.

Keywords: detection system, open-locating-dominating sets, error-correction, cubic graphs,

NP-completeness, extremal graphs, in�nite grids
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1. Introduction

LetG be a graph with vertices V (G) and edges E(G); we assume that all graphs are simple,

undirected, and connected. For notation, we let n = |V (G)|, m = |E(G)|, deg(v) = |{ab ∈
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E(G) : v ∈ {a, b}}|, δ(G) = minv∈V (G) deg(v), and ∆(G) = maxv∈V (G) deg(v). The open-

neighborhood of a vertex v ∈ V (G), denoted N(v), is the set of all vertices adjacent to

v: {w ∈ V (G) : vw ∈ E(G)}. The closed-neighborhood of a vertex v ∈ V (G), denoted

N [v], is the set of all vertices adjacent to v, as well as v itself: N(v) ∪ {v}. A vertex set

S ⊆ V (G) is a (closed) dominating set if all vertices are within the closed neighborhood of

some v ∈ S; that is, ∪v∈SN [v] = V (G). Similarly, S ⊆ V (G) is an open-dominating set if

all vertices are within the open neighborhood of some v ∈ S; that is, ∪v∈SN(v) = V (G).

Assume that G models a facility with a possible �intruder� (or a multiprocessor network

with a possible malfunctioning processor), where we want to be able to precisely deter-

mine the location of the intruder by placing (the minimum number of) detectors. Much

work has been done on the topic of the graphical parameters involving various types of

detectors. If a detector at v can determine only whether or not the intruder is in N [v],

then the detection system is called an identifying code (IC) as introduced by Karpovsky,

Charkrabarty and Levitin [16]. A dominating set S of V (G) is an identifying code if for

any any two distinct vertices u, v ∈ V (G), we have N [u] ∩ S ̸= N [v] ∩ S. If a detector at

v can determine only whether or not the intruder is in N [v] but can di�erentiate v from

N(v), then the detection system is called a locating-dominating (LD) set, as introduced

in Slater [25]. A dominating set S of V (G) is a locating-dominating set if for any two

distinct vertices u, v ∈ V (G)− S, we have N(u) ∩ S ̸= N(v) ∩ S.
This paper focuses on a detection system where a sensor at vertex v can sense intruders

at adjacent vertices (i.e., within N(v)), but not at v itself. This type of detection system

is called an open-locating-dominating (OLD) set, as introduced by Honkala, Laihonen and

Ranto [11] and Seo and Slater [21]. An open-dominating set S ⊆ V (G) is an open-locating-

dominating set if for any two distinct vertices u, v ∈ V (G), we have N(u)∩S ̸= N(v)∩S.
Additional recent work on variations of OLD sets with larger detection ranges includes

Givens et al. [9]. Jean and Lobstein [12] have maintained a bibliography, currently with

more than 500 entries, for work on detection system related topics.

For an OLD set S ⊆ V (G) and u ∈ V (G), we let NS(u) = N(u) ∩ S denote the (open)

dominators of u and dom(u) = |NS(u)| denote the (open) domination number of u. A

vertex v ∈ V (G) is k-open-dominated by an open-dominating set S if |NS(v)|≥ k. If S is

an open-dominating set and u, v ∈ V (G), u and v are k-distinguished if |NS(u)△NS(v)|≥
k, where △ denotes the symmetric di�erence. If S is an open-dominating set and u, v ∈
V (G), u and v are k#-distinguished if |NS(u)−NS(v)|≥ k or |NS(v)−NS(u)|≥ k.

The purpose of k-domination in a detection system is to guarantee there are at least

k detectors monitoring each location in the graph simultaneously, which can allow for a

level of basic fault tolerance. A fault-tolerant variant of an OLD set is called a redundant

open-locating-dominating (RED:OLD) set which is resilient to a (single) detector being

destroyed or going o�ine [23]. That is, an OLD set S ⊆ V (G) is a RED:OLD set if ∀v ∈ S,

S−{v} is an OLD set. For fault-tolerance beyond simple k-redundancy, we conceptually

establish that all detectors transmit either 0 to represent the absence of an intruder, or

1 to represent the presence of an intruder. A false negative is therefore when a detector

incorrectly transmits a 0 instead of a 1, while a false positive is when a detector incorrectly

transmits a 1 instead of a 0. An OLD set is called an error-detecting open-locating-
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dominating (DET:OLD) set if it can tolerant any single false negative [23]. Extending

this, an OLD set is called an error-correcting open-locating-dominating (ERR:OLD) set,

if it can tolerate any single false positive. The following theorem characterizes OLD,

RED:OLD, DET:OLD, and ERR:OLD sets and they are useful in constructing those sets

or verifying whether a given set meets their requirements.

Theorem 1.1. An open-dominating set is

(i) an OLD set if and only if every pair of vertices is 1-distinguished [14];

(ii) a RED:OLD set if and only if all vertices are 2-dominated and all pairs are 2-

distinguished [23];

(iii) a DET:OLD set if and only if all vertices are 2-dominated and all pairs are 2#-

distinguished [23];

(iv) an ERR:OLD set if and only if all vertices are 3-dominated an all pairs are 3-

distinguished.

In this paper, we will focus on the ERR:OLD parameter. As can be seen in Theo-

rem 1.1, each new fault-tolerant capability on top of the basic OLD set demands stronger

requirements for both the domination and distinguishing properties of the detector set.

To see why the requirements for DET:OLD are not su�cient for ERR:OLD, consider the

following two simple examples using detector set S ⊆ V (G). Firstly, if there is some

2-dominated vertex v, with NS(v) = {p, q}, then an intruder at v coupled with a false-

negative at p is indistinguishable from the absence of an intruder at v coupled with a

false-positive at q. Thus, 2-domination is insu�cient for an ERR:OLD set. And secondly,

if there are two vertices u, v with NS(u) ∩NS(v) = {a, b} and (u, v) are 2#-distinguished

with NS(v) − NS(u) = {p, q}, then (p, q, a, b) transmitting (0, 1, 1, 1) could be due to a

false-positive at q (in which case the intruder is at u) or a false-negative at p (in which

case the intruder is at v). Thus, we cannot eliminate either of u or v as the intruder

location, meaning 2#-distinguishing is insu�cient for an ERR:OLD. Indeed, it has been

shown that an ERR:OLD set, or rather an equivalent error-correcting separating set, re-

quires 3-domination and 3-distinguishing [24]. With both of these stronger properties, we

see that two previous problem cases are resolved.

(a) (b) (c) (d)

Fig. 1. Optimal OLD (a), RED:OLD (b), DET:OLD (c), and ERR:OLD (d) sets. Detectors are darkened.

For �nite graphs, the notations OLD(G), RED:OLD(G), DET:OLD(G), and ERR:

OLD(G) represent the cardinality of the smallest possible OLD, RED:OLD, DET: OLD,

and ERR:OLD sets on graph G, respectively [23]. From Figure 1, which shows op-

timal solutions on the given graph which we will call G, we see that OLD(G) = 6,

RED:OLD(G) = 7, DET:OLD(G) = 10, and ERR:OLD(G) = 11.
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In Section 2, we characterize the existence criteria for error-correcting open-locating-

dominating sets in an arbitrary graph. We also consider extremal graphs that require

every vertex to be a detector. In Section 3, we present a proof that the problem of

�nding a minimum error-correcting open-locating-dominating set in an arbitrary graph

is NP-complete. We conclude with Section 4 by establishing bounds on the minimum

densities of error-correcting open-locating-dominating sets on the in�nite square grid,

in�nite triangular grid, and in�nite king grid.

2. Existence of ERR:OLD sets and extremal graphs

In this section, we discuss the existence criteria of ERR:OLD sets and some extremal

graphs. But before this, we will �rst present previous results on the existence criteria

and some extremal graphs for the OLD, RED:OLD, and DET:OLD parameters. From

Theorem 1.1, it is not hard to see the following relationships between the minimum

cardinality of the four fault-tolerant OLD sets:

Observation 2.1. If G permits ERR:OLD, then

OLD(G) ≤ RED:OLD(G) ≤ DET:OLD(G) ≤ ERR:OLD(G).

OLD sets

From Theorem 1.1, by using S = V (G) we can arrive at the following existence criteria

for OLD on arbitrary graphs:

Theorem 2.2. [21] A graph G has an OLD set if and only if G satis�es δ(G) ≥ 1 and,

whenever u ̸= v, N(u) ̸= N(v).

Chellali et al. [2] proved the upper and lower bounds for OLD(G) on arbitrary graphs:

Observation 2.3. [2] If graph G has an OLD set, then 2 ≤ OLD(G) ≤ n.

The upper bound of OLD(G) = n is achievable, and Foucaud et al. [7] later provided

a full characterization for this class of extremal graphs:

De�nition 2.4. [6] For any k ∈ N, the half-graph, Hk is given by V = {v1, . . . , vk} ∪
{w1, . . . , wk} and E = {viwj : i ≤ j}.

Theorem 2.5. [7] OLD(G) = n if and only if G is a half-graph.

Seo and Slater established the existence criteria for trees, determined the lower and

upper bounds for OLD(G) on trees, and fully characterized the extremal trees which

achieve these upper and lower bounds [22].

Theorem 2.6. [22] A tree T of order n ≥ 2 has an OLD set if and only if every vertex
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is adjacent to at most one leaf.

Theorem 2.7. [22] If tree T has an OLD set, then ⌈n/2⌉+ 1 ≤ OLD(G) ≤ n− 1.

Henning and Yeo [10] determined the upper bound on OLD(G) when G is a cubic

graph.

Theorem 2.8. [10] If G is a twin-free cubic graph of order n, then OLD(G) ≤ 3
4
n.

RED:OLD sets

From Theorem 1.1, by using S = V (G), we can arrive at the following existence criteria

for RED:OLD on arbitrary graphs:

Theorem 2.9. A graph, G, has RED:OLD if and only if δ(G) ≥ 2 and for each distinct

u, v ∈ V (G), |N(u)△N(v)|≥ 2.

These existence criteria can be simpli�ed when discussing regular graphs:

Theorem 2.10. [20] Let G be an r-regular graph with r ≥ 2. There exists a RED:OLD

set for G if and only if there exists an OLD set for G.

Further, we have the following results from Seo [20] when discussing cubic graphs

speci�cally:

Theorem 2.11. [20] Let G be a cubic graph. If G is C4-free, then V (G) is a RED:OLD

set.

Theorem 2.12. [20] Let G be a cubic graph of order n. Then we have

2

3
n ≤ RED:OLD(G) ≤ n.

Seo [20] has also constructed an in�nite family of �nite cubic graphs exhibiting the

extremal value of RED:OLD(G) = 2
3
n.

DET:OLD sets

Similar to the existence criteria for OLD and RED:OLD sets, one can simply use Theo-

rem 1.1 with S = V (G) to arrive at the existence criteria for DET:OLD sets in arbitrary

graphs. While there are no simpler existence criteria on arbitrary graphs, the following

necessary conditions have been found:

Observation 2.13. [13] If G permits DET:OLD, then every v ∈ V (G) has at most one

degree 2 neighbor.

Theorem 2.14. [13] If Gn,m has DET:OLD, then m ≥
⌈
3n−⌊n

2
⌋

2

⌉
.
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Further, we have the following results from Seo [20] when discussing cubic graphs

speci�cally:

Theorem 2.15. [20] If G is a C4-free cubic graph, then for any vertex x ∈ V (G), V (G)−
{x} is a DET:OLD set for G.

Theorem 2.16. [20] A cubic graph permits DET:OLD if and only if it is C4-free.

Theorem 2.17. [13, 20] If G is a C4-free cubic graph, then 6
7
≤ DET:OLD%(G) ≤ 30

31
.

The lower bound from Theorem 2.17 is achieved by the in�nite hexagonal grid [23] and

an in�nite family of �nite cubic graphs [20].

ERR:OLD Sets

Because an ERR:OLD set requires 3-domination, many graphs do not allow an ERR:OLD

set to exist. In light of this, our next theorem characterizes all graphs that permit an

ERR:OLD set.

Theorem 2.18. A graph G permits an ERR:OLD set if and only if δ(G) ≥ 3 and for

every C4 subgraph, abcd, |N(a)△N(c)|≥ 3.

Proof. First, assume to the contrary that there exists a vertex v with deg(v) ≤ 2; then, v

cannot be 3-dominated, a contradiction. Similarly, if we assume there exists a, c ∈ V (G)

with |N(a)△N(c)|≤ 2, then a and c could not be 3-distinguished, a contradiction.

For the converse, suppose G satis�es both properties of the theorem statement. To

demonstrate the existence of ERR:OLD, we will conservatively let S = V (G) be the

detector set. Clearly, δ(G) ≥ 3 guarantees all vertices will be 3-dominated, so we need only

show that all vertex pairs are 3-distinguished. Let u, v ∈ V (G) with u ̸= v. If d(u, v) ≥
3 then u and v will have non-intersecting neighborhoods and thus be 3-distinguished;

otherwise, we can assume d(u, v) ≤ 2. Suppose d(u, v) = 2, and let uxv be a path from u

to v. If |N(u) ∩N(v)|= 1, then u and v must be 4-distinguished, and we would be done,

so assume {x, y} ⊆ N(u) ∩N(v) with x ̸= y. Then we have a C4 subgraph, uxvy, so by

hypothesis |N(u)△N(v)|≥ 3 and (u, v) are 3-distinguished. Finally, suppose d(u, v) = 1.

If there is some p ∈ (N(u)△N(v)) − {u, v}, then u and v will be 3-distinguished by

{u, v, p}, and we would be done; otherwise, we assume thatN(u)△N(v) = {u, v}. Because
δ(G) ≥ 3, it must be that ∃p, q ∈ N(u) ∩N(v) with p ̸= q. Then we have a C4 subgraph

upvq, so by hypothesis u and v must be 3-distinguished, completing the proof.

From Theorem 2.18, it is clear that checking whether or not a graph permits an

ERR:OLD set can be done in polynomial time.

Corollary 2.19. A C4-free graph, G, permits an ERR:OLD set if and only if δ(G) ≥ 3.

Two distinct vertices u, v ∈ V (G) are said to be twins if N [u] = N [v] (closed twins) or
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N(u) = N(v) (open twins). From Theorem 2.18, we see that if G has twins u and v, then

it cannot have an ERR:OLD set since deg(u) = deg(v) ≤ 2 or u and v form the corners

of a C4 subgraph with |N(u)△N(v)|≤ 2.

Corollary 2.20. If G permits an ERR:OLD set, then G is twin-free.

Next, we will show that there are no graphs with ERR:OLD sets on n ≤ 6 vertices.

Theorem 2.21. If G has an ERR:OLD set, then n ≥ 7.

Proof. Firstly, we know that G cannot be acyclic because an ERR:OLD set requires

δ(G) ≥ 3. Thus, G has a cycle, which we will exploit in casing. We will proceed by casing

on the size of the smallest cycle, which implies that edges cannot be added between the

vertices of said smallest cycle. We assume n ≤ 6, as otherwise we would be done. If

the smallest cycle is Ck for 5 ≤ k ≤ 6, then every vertex in the cycle must have a third

dominator, and these additional k vertices must all be distinct to avoid creating smaller

cycles; thus n ≥ 2k ≥ 10 > 6, a contradiction. Suppose the smallest cycle is a C4

subgraph abcd, then each vertex in the cycle must have a third dominator, a′, b′, c′, and

d′ adjacent to a, b, c, and d, respectively. We see that a′ ̸= b′ ̸= c′ ̸= d′ ̸= a′; however,

because n ≤ 6 it must be that a′ = c′ and b′ = d′. We see that a and c cannot have any

additional edges without creating a smaller cycle, but they are open twins and so cannot

be 3-distinguished, a contradiction. Thus, we can assume that G has a triangle.

Next, suppose there exists a 4-Cycle abcd with bd ∈ E(G), which we call a �diamond�

subgraph. If ac /∈ E(G) then distinguishing a and c will result in n ≥ 7, a contradiction;

thus, we can assume that ac ∈ E(G), meaning we have a K4 subgraph. By symmetry, we

can assume that a, b, and c have third dominators a′, b′, and c′. If a′, b′, and c′ are all

distinct, then n ≥ 7 and we would be done; otherwise without loss of generality assume

a′ = b′. Suppose a′ = b′ = c′; then we require da′ ∈ E(G) to be able to distinguish d and a′,

and by symmetry we have ∃x ∈ N(d)−N(a′)−{a, b, c, d, a′}. We now have a K5 subgraph

plus an extra vertex x ∈ N(d). Distinguishing a and b requires without loss of generality

x ∈ N(a), but then a and d cannot be 3-distinguished, a contradiction. Otherwise, we can

assume a′ = b′ ̸= c′; we see that distinguishing a and b requires, without loss of generality,

bc′ ∈ E(G). If a′d ∈ E(G) then dc′ ∈ E(G) to distinguish a and d; however, b and d can

no longer be 3-distinguished, a contradiction, so we assume a′d /∈ E(G) and dc′ /∈ E(G).

If a′c ∈ E(G) then b and c cannot be 3-distinguished, a contradiction, so by symmetry we

assume a′c /∈ E(G) and c′a /∈ E(G). Thus, 3-dominating a′ and c′ requires a′c′ ∈ E(G),

but then c and a′ cannot be 3-distinguished, a contradiction. Thus, the existence of a

diamond subgraph implies that n ≥ 7.

At this point, we know that G has a triangle, say abc. To 3-dominate the vertices in abc,

assume ∃a′ ∈ N(a)− {b, c}, ∃b′ ∈ N(b) = {a, c}, and c′ ∈ N(c)− {a, b}. Additionally, we
can assume a′, b′, and c′ are distinct because otherwise we produce a diamond subgraph.

To 3-dominate a′, b′, and c′ without producing a diamond subgraph, it must be that

{a′b′, b′c′, c′a′} ⊆ E(G). At this point we can no longer add any edges without producing
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a diamond subgraph, but a′ and b are not 3-distinguished, a contradiction, completing

the proof.

Figure 2 shows the �rst graphs with an ERR:OLD set in the lexicographic ordering

of (n,m) tuples; i.e., the graphs with the smallest number of edges given the smallest

number of vertices. For ERR:OLD, this is n = 7 and m = 12.

(a) (b)

Fig. 2. The two smallest graphs supporting ERR:OLD, which have n = 7 and m = 12

Next, we will show the relation between the existence of ERR:OLD sets and DET:OLD

sets for regular graphs.

Observation 2.22. If A and B are sets with |A|= |B|, then |A−B|= k implies |A△B|=
2k.

Proof. Suppose |A − B|= k. Then |A ∩ B|= |A|−k = |B|−k. Therefore |A△B|=
|A − B|+|B − A|= k + (|B|−|B ∩ A|) = k + (|B|−(|B|−k)) = k + k, completing the

proof.

Suppose G is a regular graph with DET:OLD. We can conservatively let S = V (G)

be the set of detectors. Then every vertex pair in G must be 2#-distinguished; thus,

Theorem 2.22 yields that every vertex pair is 4-distinguished, which is su�cient for the

distinguishing requirement of ERR:OLD.

Proposition 2.23. A regular graph G with δ(G) = ∆(G) ≥ 3 has a DET:OLD set if and

only if it has an ERR:OLD set.

A graph is cubic or 3-regular if every vertex is of degree 3. Jean and Seo [13] have

previously proven that a cubic graph has a DET:OLD set if and only if the graph is

C4-free; thus, we have the following existence criteria.

Corollary 2.24. A cubic graph G has an ERR:OLD set if and only if G is C4-free.

Now we consider extremal graphs with ERR:OLD(G) = n with least m. If a graph G

has an ERR:OLD set, then Theorem 2.18 yields that δ(G) ≥ 3, which serves as a lower

bound for the least m, namely m ≥ 3n
2
. Figures 2 and 3 show extremal graphs with

ERR:OLD(G) = n with the fewest number of edges when 7 ≤ n ≤ 9. For even n ≥ 10,

we will show that cubic graphs exist which meet the theoretical lower bound of m = 3n
2
.

For odd n ≥ 11, this bound of m = 3n
2
is trivially unobtainable, but we introduce a new
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class of �almost-cubic� graphs meeting the lower bound of m = 3n+1
2

. In either case, we

provide an extremal graph for each n ≥ 10.

(a) (b)

Fig. 3. Extremal graphs with ERR:OLD(G) = n with the fewest number of edges when n = 8 and

n = 9.

De�nition 2.25. G is quasi-cubic if every vertex is degree 3 aside from one degree-4

vertex.

When n ≥ 10, cubic and quasi-cubic graphs together form the entire family of extremal

graphs with ERR:OLD(G) = n which have the minimum number of edges for a given n.

If S is an ERR:OLD set, we know that v ∈ S if ∃w ∈ N(v) with deg(w) = 3. Because

every vertex in a cubic or quasi-cubic graph is adjacent to a degree-3 vertex, these classes

or graphs require RED:OLD(G) = n if they permit ERR:OLD.

Theorem 2.26. If G is cubic or quasi-cubic, then G has an ERR:OLD set if and only if

G is C4-free.

Proof. Suppose G has a C4 subgraph, abcd. Because G is cubic or quasi-cubic, at most

one vertex in abcd can be degree 4, and all others will be degree 3. By symmetry, assume

deg(a) = deg(c) = 3. Then a and c cannot be 3-distinguished, implying G does not have

ERR:OLD.

For the converse, suppose G does not have ERR:OLD. Because δ(G) ≥ 3, we know that

an ERR:OLD set not existing implies ∃u, v ∈ V (G) where u and v are not 3-distinguished.

Regardless of whether or not uv ∈ E(G), we see the only way to have u and v not be

3-distinguished is by having |N(u) ∩N(v)|≥ 2, which creates a C4 subgraph, completing

the proof.

Suppose we have a cubic graph G that permits an ERR:OLD set. Then, we can

construct a quasi-cubic graph from G as shown in the next theorem.

Theorem 2.27. Let G be a cubic graph with ERR:OLD where a, b, c, d ∈ V (G) and

ab, cd ∈ E(G) such that ab and cd are not part of a triangle or the terminal edges of a P5

subgraph. Construct quasi-cubic graph G′ from G by deleting edges ab and cd and adding

a new vertex x with N(x) = {a, b, c, d}. Then G′ has an ERR:OLD set.

Proof. By Theorem 2.26, we know that G is C4-free and we need only show that G′ is

likewise C4-free. Suppose for a contradiction that G′ has a C4 subgraph; then due to
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G being C4-free, the C4 subgraph must involve vertex x, which is an endpoint of every

new edge in G′. By symmetry, we can reduce the problem to two possible cases: the

C4 includes edges {ax, xb} or edges {ax, xc}, and we will consider y ∈ V (G) to be the

opposite vertex of x in the C4 subgraph. If we are in the {ax, xb} case, we see that any

choice of y results in aby forming a triangle in G, a contradiction. Otherwise, in the

{ax, xc} case we see that y ̸= b and y ̸= d because ab, cd /∈ E(G′), so y causes ab and cd

to be the ends of a P5 subgraph in G, a contradiction, completing the proof.

3. NP-Completeness of ERR:OLD minimization

It has been shown that determining many graphical parameters related to detection sys-

tems, such as the minimum cardinality of an IC, LD, or OLD set, are NP-complete

problems on arbitrary graphs [1, 3, 4, 21]. Similarly, the problems involving RED:OLD

and DET:OLD parameters have been known to be NP-complete [5, 13]. We will now

prove that the problem of determining the smallest ERR:OLD set is also NP-complete.

For additional information about NP-completeness, see Garey and Johnson [8].

3-SAT

INSTANCE: Let X be a set of N variables. Let ψ be a conjunction ofM clauses, where

each clause is a disjunction of three literals from distinct variables of X.

QUESTION: Is there is an assignment of values to X such that ψ is true?

ERR:OLD Minimization

INSTANCE: A graph G and integer K with 7 ≤ K ≤ |V (G)|.
QUESTION: Is there an ERR:OLD set S with |S|≤ K? Or equivalently, is ERR:OLD(G)

≤ K?

f

d

b

c

a

e

g

Fig. 4. Subgraph G7

Lemma 3.1. Given a graph G, let G7 be the subgraph shown in Figure 4, where vertices

{b, c, d, e} have no additional edges in the larger graph but {a, f, g} are permitted to have

additional edges to vertices outside of this subgraph. If S is an ERR:OLD set for G, then

V (G7) ⊆ S.

Proof. To 3-distinguish b and c, we require {b, c, d} ⊆ S. To 3-dominate b, we additionally

require {a, f} ⊆ S. By symmetry, we have that V (G7) ⊆ S, completing the proof.
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Hj

yj

Fi
xixi

pi qi

Fig. 5. Variable (Fi) and clause (Hj) graphs

𝑦1 𝑦2 𝑦3

x3x3

p3 q3

x2x2

p2 q2

x1

x1p1

q1

x4

x4
p4

q4

Fig. 6. Construction of G from (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x4) ∧ (x1 ∨ x3 ∨ x4) with N = 4, M = 3,

K = 109.

Theorem 3.2. The ERR:OLD Minimization problem is NP-complete.

Proof. Clearly, the ERR:OLD minimization is NP, as every possible candidate solution

can be generated nondeterministically in polynomial time (speci�cally, O(n) time), and

each candidate can be veri�ed in polynomial time using Theorem 1.1 (iv). To complete

the proof, we will now show a reduction from 3-SAT to ERR:OLD minimization.

Let ψ be an instance of the 3-SAT problem with M clauses on N variables. We will

construct a graph, G, as follows. For each variable xi, create an instance of the Fi graph

(Figure 5); this includes a vertex for xi and its negation xi. For each clause yj of ψ, create

a new instance of the Hj graph (Figure 5). For each clause yj = α ∨ β ∨ γ, create an

edge from the yj vertex to α, β, and γ from the variable graphs, each of which is either

some xi or xi; for an example, see Figure 6. The resulting graph has precisely 25N +8M

vertices and 51N + 17M edges, and can be constructed in polynomial time. To complete

the problem instance, we de�ne K = 22N + 7M .

Suppose S ⊆ V (G) is an ERR:OLD set on G with |S|≤ K. By Lemma 3.1, we require at

least all of the 21N+7M detectors shown by the shaded vertices in Figure 5. Additionally,

in each Fi the vertices pi and qi require xi ∈ S or xi ∈ S in order to be 3-dominated.



34 jean and seo

Thus, we �nd that |S|≥ 22N + 7M = K, implying that |S|= K, so |{xi, xi} ∩ S|= 1 for

each i ∈ {1, . . . , N}. For each Hj, we see that yj is not 3-dominated unless it is adjacent

to at least one additional detector from its three neighbors in the Fi graphs; therefore, ψ

is satis�able.

For the converse, suppose we have a solution to the 3-SAT problem ψ; we will show

that there is a ERR:OLD, S, on G with |S|≤ K. We construct S by �rst including all

of the 21N + 7M vertices as shown in Figure 5. Next, for each variable, xi, if xi is true

then we let the vertex xi ∈ S; otherwise, we let xi ∈ S. Thus, the fully-constructed S

has |S|= 22N + 7M = K. It can be shown that every vertex pair is now 3-distinguished,

and that every vertex which is not a yj clause vertex is 3-dominated. Because we selected

each xi ∈ S or xi ∈ S based on a satisfying truth assignment for ψ, each yj must be

adjacent to at least one additional detector vertex from the Fi graphs. Thus, all vertices

are 3-dominated, implying S is an ERR:OLD set for G with |S|≤ K, completing the

proof.

4. ERR:OLD on in�nite grids

In this section we will explore constructions of minimum-sized ERR:OLD sets on three

popular in�nite grids explored in literature: the in�nite square grid (SQR), the in�nite

triangular grid (TRI), and the in�nite king grid (KNG). Given this goal, a natural question

is how we are to de�ne such a �minimum-sized� in�nite subset of an in�nite vertex set.

For this, we employ the concept of the density of a set of vertices and employ notations

such as ERR:OLD%(G) to denote the minimum density of an ERR:OLD set on G, rather

than the cardinality [23]. Formally, where Br(v) = {u ∈ V (G) : d(u, v) ≤ r}, a subset

S ⊆ V (G) on a locally-�nite (i.e. Br(v) �nite for any �nite r) (connected) graph G has

density lim supr→∞
|Br(v)∩S|
|Br(v)| for any v ∈ V (G). Notably, the choice of center vertex v can

a�ect the result of this calculation, in which case the density of the graph as a whole

is not well-de�ned in practice. However, it has been proven that any graph satisfying

the �slow-growth� property, limr→∞
|Br+1(v)|
|Br(v)| = 1 for some v ∈ V (G), have the additional

property that the density is invariant of the choice of center point [18].

Figure 7 shows an ERR:OLD set with the minimum density we have found so far

for the three in�nite grids. One can verify that each of these ERR:OLD sets satis�es

the domination and distinguishing requirements in Theorem 1.1. Figure 7 (a) shows

an ERR:OLD set with a tiling of SQR where seven out of eight vertices are detec-

tors, so ERR:OLD%(SQR) ≤ 7
8
. Similarly, we obtain ERR:OLD%(TRI) ≤ 4

7
and

ERR:OLD%(KNG) ≤ 4
9
from Figure 7 (b) and (c), respectively.

To establish lower bound densities for domination-based parameters in in�nite graphs,

we employ a concept termed a share argument, originally introduced by Slater [26] and

extensively utilized by other literature [14, 19]. Essentially, this technique inverts the

problem: instead of directly seeking a lower bound for the density of an ERR:OLD set,

we determine an upper bound on the average share of a detector vertex v ∈ S, denoted

sh(v) =
∑

u∈N(v)
1

dom(u)
, representing its total contribution to the domination of its neigh-
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(a) (b) (c)

Fig. 7. Our best constructions of ERR:OLD sets on SQR (a), TRI (b), and KNG (c).

bors. Because S is an open-dominating set, every vertex is 1-open-dominated, and each

vertex with dom(u) = k contributes precisely 1
k
to the share of each of its k dominators,

for a total of 1 per vertex in V (G). Therefore, an upper bound for the inverse average

share of all detectors forms a lower bound for the density of S in V (G).

As an example of how share could be used to produce a lower bound for ERR:OLD,

suppose G is k-regular and let v ∈ S be an arbitrary detector vertex in an ERR:OLD

set S ⊆ V (G). We know that v has k neighbors and each neighbor must be 3-dominated

due to S being an ERR:OLD set. Therefore, sh(v) ≤ 1
3
+ 1

3
+ . . . + 1

3
+ 1

3
= k

3
. Because

v was selected arbitrarily, this value of k
3
serves as an upper bound for the average share

of all detectors, and so its inverse, 3
k
, represents a lower bound for the minimum density

of an ERR:OLD in G. Applying this �nding to the in�nite grids we will cover, we have

the following naive lower bounds: ERR:OLD%(SQR) ≥ 3
4
, ERR:OLD%(TRI) ≥ 1

2
, and

ERR:OLD%(KNG) ≥ 3
8
.

In what follows, we will augment these same naive share arguments with a few additional

pieces of information in order to arrive at much higher lower bounds. As a shorthand,

we will let σA denote
∑

k∈A
1
k
for some sequence of single-character symbols, A. Thus,

σa =
1
a
, σab =

1
a
+ 1

b
, and so on.

6

74

3 8

9

5

x 2

1

10

11

12

Fig. 8. SQR labeling scheme. Vertices v1, v2, . . . , v12 are labeled as 1, 2, . . . , 12

Theorem 4.1. The in�nite square grid, SQR, has ERR:OLD%(SQR) ≥ 6
7
.

Proof. Let S be an ERR:OLD set on SQR and let x ∈ S be an arbitrary detector;

we will use the labeling scheme shown in Figure 8. We see that in order to distinguish

vertices v1 and v2 we require |{v5, v7, v8, v12}|≥ 3. By symmetry, we also �nd that for any
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A ∈ {{v8, v9, v11, v12}, {v5, v6, v10, v11}, {v6, v7, v9, v10}}, |A ∩ S|≥ 3. Suppose v6 /∈ S; then

we require {v5, v7, v9, v10, v11} ⊆ S due to overlapping A-sets, as well as {v8, v12} ⊆ S to

3-dominate v1 and v2. Then sh(x) ≤ σ3344 =
7
6
and we would be done; otherwise, we can

assume that v6 ∈ S and by symmetry {v8, v10, v12} ⊆ S as well. Suppose v5 /∈ S; then

we also require {v7, v11} ⊆ S due to overlapping A-sets. Then sh(x) ≤ σ3344 =
7
6
and we

would be done; otherwise, we can assume that v5 ∈ S and by symmetry {v7, v9, v11} ⊆ S

as well. Then sh(x) ≤ σ4444 <
7
6
, completing the proof.

1

2

34

5

6

11

10

9

8

12

18

17

16

15

14 13

7

x

Fig. 9. TRI labeling scheme. Vertices v1, v2, . . . , v18 are labeled as 1, 2, . . . , 18

Theorem 4.2. The in�nite triangular grid, TRI, has ERR:OLD%(TRI) ≥ 6
11
.

Proof. Let S be an ERR:OLD set on TRI and let x ∈ S be an arbitrary detector; we

will use the labeling scheme shown in Figure 9. We know that every vertex must be

3-dominated; suppose {v1, v3, v5} are all exactly 3-dominated. If v2 ∈ S, then we see that

v1 and v3 (which are exactly 3-dominated) cannot be 3-distinguished, a contradiction;

otherwise we can assume that v2 /∈ S and by symmetry v4, v6 /∈ S as well. Then to

3-dominated x, we require {v1, v3, v5} ⊆ S. If at least two vertices in {v2, v4, v6} are

4-dominated, then sh(x) ≤ σ344333 = 11
6
and we would be done; otherwise, without loss

of generality assume that dom(v2) = dom(v4) = 3. We see that v6 is already adjacent

to three detectors, implying v7 /∈ S, and by symmetry v9 /∈ S as well. Then v1 cannot

be 3-dominated, a contradiction. Otherwise, we know that there must be at least one

4-dominated vertex in {v1, v3, v5}, and symmetry yields a second 4-dominated vertex in

{v2, v4, v6}, giving sh(x) ≤ σ443333 =
11
6
and completing the proof.
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19 17 16 15
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20 4
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1 122

x

Fig. 10. KNG labeling scheme. Vertices v1, v2, . . . , v24 are labeled as 1, 2, . . . , 24
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Fig. 11. The four non-isomorphic valid con�gurations to distribute three 4-dominated vertices in N(x).

Red and blue vertices represent 3- and 4-dominated vertices, respectively

Theorem 4.3. The in�nite king grid, KNG, has ERR:OLD%(KNG) ≥ 5
12
.

Proof. Let S be an ERR:OLD set on KNG and let x ∈ S be an arbitrary detector;

we will use the labeling scheme shown in Figure 10. To begin, suppose that each vertex

v ∈ {v1, v2, v3} has dom(v) = 3. We see that |NS(v1)∩NS(v2)|≥ 1 due to x; if this intersect

reaches size 2, then v1 and v2 will not be able to be 3-distinguished. Thus, we can assume

that ((N(v1) ∩ N(v2)) − {x}) ∩ S = ∅; that is, {v3, v9, v10} ∩ S = ∅, and by symmetry

{v1, v12, v13} ∩ S = ∅ as well. We see that v2 cannot be 3-dominated, a contradiction;

therefore, we can assume that at least one vertex in {v1, v2, v3} is 4-dominated, and by

symmetry we also have that for any A ∈ {{v3, v4, v5}, {v5, v6, v7}, {v7, v8, v1}}, there is at
least one vertex in A which is 4-dominated.

In order to simultaneously satisfy all four A-sets (�corners�), we require at least two

vertices which are 4-dominated. There exists only one non-isomorphic con�guration with

the minimum of two such vertices, so without loss of generality let dom(v1) ≥ 4 and

dom(v5) ≥ 4 with all other vertices in N(x) being (exactly) 3-dominated. Similar to

before, we see that x ∈ NS(v2) ∩ NS(v3), implying that {v1, v12, v13} ∩ S = ∅ and by

symmetry {v5, v14, v20, v21, v22} ∩ S = ∅ as well. Applying the same reasoning to v2 and

v4 gives us v3 /∈ S, and by symmetry v7 /∈ S as well. Applying this again to v2 and v8 gives

v9 /∈ S, and by symmetry v17 /∈ S. To 3-dominate each vertex in {v2, v3, v4, v6, v7, v8},
we require {v2, v4, v6, v8, v10, v11, v15, v16, v18, v19, v23, v24} ⊆ S. We see that dom(v1) =

dom(v5) = 5, so sh(x) = σ55333333 = 12
5
and we would be done. Otherwise, we know

that there must be at least three vertices in N(x) which are 4-dominated. If N(x) has at

least four vertices which are 4-dominated, then sh(x) ≤ σ44443333 <
12
5
and we would be

done; otherwise, we may assume there are precisely three such vertices. Additionally, if

any of these three vertices is 5-dominated, then sh(x) ≤ σ54433333 <
12
5
and we would be

done; otherwise, we may assume N(x) contains exactly three vertices which are exactly

4-dominated, and all other vertices in N(x) are exactly 3-dominated. There are four non-

isomorphic con�gurations which satisfy these constraints, as shown in Figure 11. We will

now show that each of these cases has sh(x) ≤ 12
5
.

Case 1: Suppose dom(v1) = dom(v4) = dom(v6) = 4 and all other vertices in N(x) are

exactly 3-dominated. We �rst see that x ∈ N(v3)∩N(v7), implying that {v1, v5}∩S = ∅.
Applying this same logic to v2 and v5 gives us v3 /∈ S, and by symmetry v7 /∈ S as well.

Applying this to v3 and v5 gives us v4 /∈ S, and v6 /∈ S by symmetry. We see that x
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cannot be 3-dominated, a contradiction, completing this case.

Case 2: Suppose dom(v3) = dom(v5) = dom(v7) = 4 and all other vertices in N(x)

are exactly 3-dominated. Applying similar logic as before, from v1 and v2, we see that

{v3, v9, v10}∩S = ∅, and by symmetry {v7, v24}∩S = ∅ as well. Applying this to v2 and

v4 gives us v13 /∈ S, and v21 /∈ S by symmetry. Next, applying this to v4 and v6 gives us

{v5, v17} ∩ S = ∅. Finally, applying this to v2 and v8 gives us v1 /∈ S. To 3-dominated

each vertex in {v1, v2, v8}, we require {v2, v8, v11, v12, v22, v23} ⊆ S. To distinguish v1 and

x, we require {v4, v6} ⊆ S. Because v3 is now 4-dominated, it must be that v14 /∈ S, and

v20 /∈ S by symmetry. Then to 3-dominate v4 and v6 we require {v15, v16, v18, v19} ⊆ S.

However, this causes v5 to be 5-dominated, a contradiction, completing this case.

Case 3: Suppose dom(v2) = dom(v5) = dom(v7) = 4 and all other vertices in N(x) are

exactly 3-dominated. Applying the usual reasoning to v3 and v4 yields {v5, v13, v14}∩S =

∅, and by symmetry {v7, v9, v24} ∩ S = ∅ as well. Applying this again to v4 and v6 gives

v17 /∈ S, and by symmetry v21 /∈ S as well. With v1 and v4, we have v3 /∈ S, and by

symmetry v1 /∈ S as well. With v1 and v3, we have v2 /∈ S. To dominate each vertex

in {v1, v2, v3, v4, v8}, we require {v4, v8, v10, v11, v12, v15, v16, v22, v23} ⊆ S. To 3-dominate

x, we require v6 ∈ S. Then v5 and v7 become 4-dominated, implying v18, v20 /∈ S,

contradicting dom(v6) = 3 and completing this case.

Case 4: Suppose dom(v1) = dom(v2) = dom(v5) = 4 and all other vertices in N(x) are

exactly 3-dominated. Applying the usual logic to v3 and v4 yields {v5, v13, v14} ∩ S = ∅.
Applying this to v6 and v7 yields {v20, v21}∩S = ∅. Vertices v7 and v8 yield {v1, v22}∩S =

∅. Vertices v6 and v8 yield v7 /∈ S, and vertices v4 and v6 yield v17 /∈ S. To 3-dominate

v6 and v7, we require {v6, v8, v18, v19} ⊆ S. If v4 ∈ S, then v5 would become 4-dominated,

implying v3, v16 /∈ S, contradicting that v4 is 3-dominated; otherwise, we may assume that

v4 /∈ S. To distinguish v7 and x, we require v2, v3 ∈ S. We see that v1 is 4-dominated,

implying that {v9, v10, v24} ∩ S = ∅. Finally, we �nd that v8 cannot be 3-dominated, a

contradiction, completing the proof.

The following theorem summarizes bounds for minimum ERR:OLD set densities in

three in�nite grids: the in�nite square grid (SQR), the in�nite triangular grid (TRI), and

the in�nite king grid (KNG).

Theorem 4.4. The following are upper and lower bounds for ERR:OLD%(G) on several

in�nite grids:

(i) For SQR, 6
7
≤ ERR:OLD%(SQR) ≤ 7

8
.

(ii) For TRI, 6
11

≤ ERR:OLD%(TRI) ≤ 4
7
.

(iii) For KNG, 5
12

≤ ERR:OLD%(KNG) ≤ 4
9
.

Table 1 concludes this section with the upper and lower bounds for other fault-tolerant

OLD sets on four of the most studied in�nite grids including the in�nite hexagonal grid

(HEX). Note that ERR:OLD%(HEX) = 1 because HEX is cubic, which requires every

vertex to be a detector.
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Table 1. Minimum densities for Fault-tolerant OLD sets in the four in�nite grids

parameter hexagonal square triangular king

OLD [17, 19, 21] 1
2

2
5

4
13

[
6
25
, 1
4

]
RED:OLD [15, 23] 2

3
1
2

3
8

[
3
10
, 1
3

]
DET:OLD [14, 23] 6

7
3
4

1
2

[
3
8
, 13
30

]
ERR:OLD 1

[
6
7
, 7
8

] [
6
11
, 4
7

] [
5
12
, 4
9

]
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