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abstract

Let G = (V,E) be a graph with vertex set V and edge set E. A set S ⊂ V is: (i)

a dominating set if every vertex in V − S is adjacent to at least one vertex in S, (ii)

an independent set if no two vertices in S are adjacent, and (iii) a total dominating

set if every vertex in V is adjacent to at least one vertex in S. The domatic number

dom(G), idomatic number idom(G), and total domatic number tdom(G), of a graph G

equal the maximum order k of a partition π = {V1, V2, . . . , Vk} of V into {dominating

sets, independent dominating sets, total dominating sets}, respectively. A queens graph

Qn is a graph de�ned on the n2 squares of an n-by-n chessboard, such that two squares

are adjacent if and only if a queen on one square can move to the other square in one

move, that is, the two squares lie on a common row, column, or diagonal. In this note

we determine the value of these three numbers for Qn for the �rst several values of n.

In addition, we introduce the concepts of graphs being γ-domatic, i-domatic, α-domatic,

Γ-domatic, γt-domatic and Γt-domatic.
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1. Introduction

Let G = (V,E) be a graph with vertex set V of order n = |V |, and edge set E, of size

m = |E|. Given an edge uv ∈ E, we say that vertices u and v are adjacent and that they

are neighbors. The (open) neighborhood of a vertex u ∈ V is the set N(u) = {v : uv ∈ E}
of neighbors of u. The degree of a vertex is deg(u) = |N(u)|, the number of neighbors of
vertex u. The minimum degree of a vertex in a graph G is denoted by δ(G). The closed

neighborhood of a vertex u is the set N [u] = N(u) ∪ {u}.
A set S ⊂ V of vertices is independent if no two vertices in S are adjacent. The vertex

independence number α(G) equals the maximum cardinality of an independent set in G.

1.1. Dominating sets

A set S ⊂ V is a dominating set if every vertex in V −S is adjacent to at least one vertex

in S. The domination number γ(G) is equal to the minimum cardinality of a dominating

set in G. A minimum cardinality dominating set is called a γ-set. The upper domination

number Γ(G) is equal to the maximum cardinality of a minimal dominating set in G.

A set S is an independent dominating set if it is both an independent set and a domi-

nating set. The independent domination number i(G) is equal to the minimum cardinality

of an independent dominating set in G. A comprehensive treatment of independent dom-

ination is given in the 2013 survey by Goddard and Henning [5].

A set S is a total dominating set if every vertex in V is adjacent to at least one vertex

in S. The total domination number γt(G) is equal to the minimum cardinality of a total

dominating set in G. A minimum cardinality total dominating set is called a γt-set. The

upper total domination number Γt(G) is equal to the maximum cardinality of a minimal

total dominating set in G. A comprehensive treatment of total domination is given in the

2013 book by Henning and Yeo [8].

1.2. Queens graphs on chessboards

A queens graph Qn is a graph whose vertices correspond 1-to-1 with the n2 squares of

an n-by-n chessboard, and two squares are adjacent if and only if a queen on one square

can move to the other square in one move, that is, the two squares lie on a common row,

column, or diagonal. Notice that by de�nition the queens graph Qn applies only to n-by-n

square boards, as distinct from rectangular queens graphs Qm,n which apply to arbitrary

m-by-n chessboards. We should note that in the graph theory literature the notation Qn

is also used to denote the n-dimensional cube graph. Since our entire focus in this note

is on queens graphs, Qn will be reserved for these graphs.

The mathematical study of queens graphs dates back to the mid-to-late 1800s, most

notably with the Eight Queens Problem of determining the maximum number of ways

one can place 8 queens on a chessboard so that no two queens attack each other (lie on a

common row, column, or diagonal), and the Five Queens Problem, of placing 5 queens on

the board so that all unoccupied squares are attacked by at least one queen. The reader is

referred to the 1892 book by W. W. Rouse Ball [1], and the 1908 book by H.E. Dudeney

[4]. Two well-known solutions to the Five Queens Problem are shown in Figure 1.
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Interested readers are also referred to two surveys of queens domination problems by

Weakley [11], [12]. Other discussions of chessboard domination problems can be found in

the 1964 book by Yaglom and Yaglom [13], which contains a comprehensive collection of

results about independent, dominating, and independent dominating sets of a variety of

chess pieces. In addition, the reader is referred to the 2004 book by Watkins [10] and a

2022 chapter by Hedetniemi and Hedetniemi [7].

2. Domatic numbers

The domatic number of a graph was introduced by Cockayne and Hedetniemi in 1975

[2] and subsequently studied by them in 1977 [3]. A domatic k-partition is a partition

π = {V1, V2, . . . , Vk} of V (G) into k pairwise-disjoint dominating sets. Thus, the domatic

number dom(G) is the maximum order k of a domatic k-partition. Note that many papers

studying the domatic number use the notation d(G). Here we use dom(G) to avoid possible

confusion with the use of d to denote either distance in graphs, or the degree of a vertex

in a graph, or the diameter of a graph.

Fig. 1. Two minimum dominating sets of 5 queens on Q8

To date approximately 280 papers have been published on various kinds of domatic

numbers. We will mention only the following two variants here: (i) the idomatic number

idom(G) equals the maximum order of a partition of V (G) into independent dominating

sets, while the (ii) total domatic number tdom(G) equals the maximum order of a partition

of V (G) into total dominating sets. Several survey papers and chapters have been written

on various kinds of domatic numbers; see for example a chapter by Zelinka in 1998 [15]

and a chapter by Goddard and Henning in 2021 [6].

The following basic results about the domatic number are worth mentioning.

Theorem 2.1. If G is a graph of order n, then dom(G) ≤ n
γ(G)

.

Theorem 2.2. [2] If G is a graph of order n and size m with dom(G) = d, and n = kd+r,
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where 0 ≤ r < d, then m ≥
(
d
2

)
(k + 1)−

(
d−r
2

)
.

Theorem 2.3. [3] For any graph G, dom(G) ≤ δ(G) + 1.

In 1983 Zelinka [14] established the following lower bound on the domatic number of a

graph.

Theorem 2.4. [14] If G is a graph of order n, then ⌊ n
n−δ(G)

⌋ ≤ dom(G).

In addition, one can show that for the complement G of a graph G, the following

inequality holds.

Theorem 2.5. For every graph G, dom(G) ≥ γ(G).

Theorem 2.6. [3] If G is a graph of order n, then dom(G) + dom(G) ≤ n+ 1.

3. Domatic numbers of queens graphs

In this paper we determine the value of dom(Qn) for 1 ≤ n ≤ 6 and n = 8, and provide

tight bounds for n = 7 and n = 9. In this regard, it will be helpful to note the following

upper bounds provided by Theorem 2.1 as shown in Table 1. In this table we have a slight

abuse of notation. In the upper bound of n/γ(G), n denotes the order of a graph G. In

this case the order of Qn is actually n2.

Table 1. dom(Qn) ≤ n2/γ(Qn)

n dom(Qn) ≤ n2/γ(Qn)

1 1 1/1 = 1

2 4 4/1 = 4

3 5 9/1 = 9

4 8 16/2 = 8

5 8 ⌊25/3⌋ = 8

6 10 36/3 = 12

7 11 or 12 ⌊49/4⌋ = 12

8 12 ⌊64/5⌋ = 12

9 12 or 13 ⌊81/5⌋ = 16

Since the entries in Q2, Q4, and Q5 in Figure 2 meet the upper bounds, they are best

possible, thereby establishing the facts that dom(Q2) = 4, dom(Q4) = 8 and dom(Q5) = 8.

The fact that dom(Q3) = 5 follows from the observation that γ(Q3) = 1, but there is one

unique dominating set of cardinality 1, the set consisting of the center square. All other

dominating sets of a domatic partition of Q3 will therefore have to have cardinality 2, and

as can be seen there are four of them, the vertices, or squares, numbered 2, 3, 4, and 5,

respectively. Thus, this solution is best possible.



on the domatic numbers of queens graphs 9

1 2

3 4

1 2

2

3

3

4

4

5

5

1

12

2

3

3

4

4

5

5

6

6

7 7

8 8

1

1

1

2

2

2

3

3

3

4

4

4

5

5

5

6

6

6

7

7

7

8 8

8

8

Fig. 2. dom(Q2) = 4, dom(Q3) = 5, dom(Q4) = 8, dom(Q5) = 8

The fact that dom(Q6) = 10 is shown in Figure 3. However, this solution does not

meet the theoretical upper bound of 12. The reason begins with the observation that

although γ(Q6) = 3, there is, up to isomorphism, only one unique dominating set of Q6

of cardinality 3, as shown by the three queens in Figure 4.
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Fig. 3. dom(Q6) = 10

Fig. 4. γ(Q6) = 3 and γ(Q7) = 4

This unique solution, however, requires the use of a corner square. Thus, through

rotations, any domatic partition of Q6 can have at most four dominating sets of cardinality

3. This leaves 36 - 12 = 24 squares yet to be covered, by dominating sets which must be
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of cardinality at least 4. Fortunately, the remaining uncovered 24 squares can be covered

perfectly by six pairwise-disjoint dominating sets of cardinality 4, numbered 5, 6, 7, 8, 9,

and 10, as shown in Figure 3.

The fact that dom(Q8) = 12 is shown in Figure 5. It is best possible since it achieves

the proven upper bound of ⌊64/5⌋ = 12.
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Fig. 5. dom(Q8) = 12

The situation for dom(Q7) is a bit more complex. There are 13 minimum dominating

sets of Q7, each of cardinality 4, such as the example shown in Figure 4. If 12 minimum

dominating sets can be used, then dom(Q7) = ⌊49/4⌋ = 12. The example given in

Figure 6 establishes that dom(Q7) ≥ 11. Here we have used 8 minimum dominating sets

of cardinality 4, and three minimal dominating sets, numbered 9, 10, 11, of cardinality 5.

The two unnumbered squares can be assigned any number between 1 and 11.
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Fig. 6. 11 ≤ dom(Q7) ≤ 12

The situation for dom(Q9) is also a bit more complex. There is, up to isomorphism,

only one unique minimum dominating set of cardinality 5, as shown in Figure 7.

But this set contains a queen on the central square. And therefore, in any domatic

partition of Q9, only one set can have cardinality 5. Thus, dom(Q9) ≤ ⌊1+ (81− 5)/6⌋ =
13. By adding an extra column to the left of the �rst column of Q8 in Figure 5 and an
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Fig. 7. Unique minimum dominating set for Q9

extra row above the top row in Figure 5 we can produce a domatic 12-partition of Q9 in

which the entries in Figure 5 are unchanged, as shown in Figure 8. Thus, we can conclude

that 12 ≤ dom(Q9) ≤ 13.
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Fig. 8. 12 ≤ dom(Q9) ≤ 13

4. Idomatic numbers of queens graphs

A graph G = (V,E) is called idomatic if its vertex set can be partitioned into independent

dominating sets. It is easy to see that not all graphs are idomatic, for example the cycle

C5 is not idomatic. The question then is: are all queens graphs idomatic? If a queens

graph is idomatic, its idomatic number idom(Qn) is the maximum order of a partition of

the vertices of Qn into independent dominating sets.

Figure 9 shows that Q2 and Q3 are idomatic, and Figure 10 shows that Q4 is idomatic,
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as well. Since it is known that i(Q4) = 3, it follows that idom(Q4) ≤ ⌊16/3⌋ = 5, which

is achieved in Figure 10.
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Fig. 9. idom(Q2) = 4, idom(Q3) = 5
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Fig. 10. idom(Q4) = 5

Figure 11 shows that Q5 and Q6 are also idomatic.
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Fig. 11. idom(Q5) = 7 and idom(Q6) = 8

Proposition 4.1. The queens graph Q5 is idomatic and idom(Q5) = 7.

Proof. Let π = {V1, V2, . . . , Vk} be a maximum order partition of Q5 into independent

dominating sets. It is well-known that i(Q5) = 3 and α(Q5) = 5. Thus, for 1 ≤ i ≤ k,

3 ≤ |Vi|≤ 5. In any idomatic partition of Q5 the center square must appear in exactly one

set. We can assume without loss of generality that the center square appears in set V1. It

can be shown by enumeration that, subject to rotations and re�ections, there is only one

independent dominating set of Q5 that contains the center square, and it has cardinality

5; it consists of the center square and four squares on the outermost columns and rows,

each symmetrically adjacent to a corner square, as shown in Figure 11, where these �ve

squares in Q5 are numbered 4. Thus, we can assume that |V1|= 5. The remaining 25 - 5

= 20 squares are in independent dominating sets of cardinality 3 or 4. Thus, there can
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be at most 6 other independent dominating sets, and hence, idom(Q5) ≤ 7. The solution

in Figure 11, which was found by computer search, shows that 7 is achievable.

Proposition 4.2. The queens graph Q6 is idomatic and idom(Q6) = 8.

Proof. It is well known that i(Q6) = 4, and thus, in theory, Q6 could be partitioned

into 9 independent dominating sets of cardinality 4. It is known that up to isomorphism

there are 17 minimum independent dominating sets of cardinality 4 in Q6. Computer

search, however, shows that no collection of 9 minimum independent dominating sets can

partition the vertices of Q6, while 948 idomatic partitions of Q6 of order 8 exist, such as

that shown in Figure 11. Thus, idom(Q6) = 8.

Proposition 4.3. The queens graph Q7 is idomatic and idom(Q7) = 10.

Proof. Figure 12 shows an idomatic partition ofQ7 of order 10, which has one independent

dominating set of minimum cardinality 4 (numbered 1 in Figure 12) and nine independent

dominating sets of cardinality 5; thereforeQ7 is idomatic. Since it is known that i(Q7) = 4,

it follows that 10 ≤ idom(Q7) ≤ ⌊49/4⌋ = 12.

But idom(Q7) < 11 for the following reason. It is known not only that i(Q7) = 4, but

there is only one minimum independent dominating set of Q7 up to isomorphism, and

every re�ection or rotation of this one set uses a middle square in an outer row or column;

notice the square numbered one in the middle of the bottom row of Figure 12. There are

only four such squares.

Thus, we can use up at most 4 x 4 squares with independent dominating sets of car-

dinality 4. All other independent dominating sets must have cardinality 5, 6, or 7, and

this must �ll up the remaining 49 - 16 = 33 squares. However, there can be at most

⌊33/5⌋ = 6 such sets, thus allowing at most 4 + 6 = 10 disjoint independent dominating

sets. Thus, idom(Q7) = 10.
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Fig. 12. idom(Q7) = 10

The following Figure 13, found by a computer search, shows that Q8 is idomatic. Since

α(Q8) = 5, it is possible that Q8 can be partitioned into at most ⌊64
5
⌋ = 12 independent

dominating sets. Thus, Figure 13 con�rms that idom(Q8) = 12.
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Fig. 13. idom(Q8) = 12

The following Table 2 summarizes what is known about idomatic queens graphs and

their idomatic numbers. We have heard from Alice McRae [9] that her genetic algorithm

has found an idomatic partition of Q9 of order 11.

Table 2. Idomatic queens graphs

n idomatic? idom(Qn)

1 yes 1

2 yes 4

3 yes 5

4 yes 5

5 yes 7

6 yes 8

7 yes 10

8 yes 12

9 yes ≥ 11

5. Total domatic numbers of queens graphs

For the purposes of this paper, we will say that a graph G = (V,E) is called domatic

if its vertex set V can be partitioned into minimal dominating sets. In determining the

domatic number dom(G) it does not matter if any of the sets Vi in a k-domatic partition

are minimal dominating sets, only that they are dominating sets. Thus, for the �ve-cycle

C5, dom(C5) = 2, but the vertices of C5 cannot be partitioned into minimal dominating

sets. Thus, C5 is not a domatic graph.

Similarly, a graphG = (V,E) is called total domatic if its vertex set V can be partitioned

into minimal total dominating sets. As with C5, not all graphs are total domatic, for

example, C5 is also not total domatic, nor is Q3, as can be seen by considering Q3 as

shown in Figure 2. For Q3, γt(Q3) = 2, but Q3 does not have a minimal total dominating

set of cardinality 3. As can be easily seen, the vertices of Q3 can be partitioned into three

minimum total dominating sets, each of cardinality 2, and a fourth total dominating set



on the domatic numbers of queens graphs 15

of cardinality 3, but this fourth set cannot be a minimal total dominating set. Thus, Q3

is not total domatic. The following theorem, however, shows that except for for n ̸= 1, 3,

all queens graphs Qn are both domatic and total domatic.

Theorem 5.1. For n ≥ 4, Qn is both domatic and total domatic.

Proof. For n ≥ 4, de�ne the following partition of the vertices of Qn of order n + 2,

π = {Vc1, Vr1, Vcn,

Vrn, V2, . . . , Vn−1}, as follows: (i) Vc1 contains all n−1 squares in the �rst (leftmost column)

excluding the top-left corner square, (ii) Vr1 contains the leftmost n − 1 squares in the

top-row, excluding the top-right corner square, (iii) Vcn contains the topmost n−1 squares

in the rightmost column, excluding the bottom-right corner square, (iv) Vrn contains the

n − 1 rightmost squares in the bottom row, excluding the leftmost corner square. Each

of the n− 2 sets V2, . . . , Vn−1 contain the n− 2 squares in a middle column between the

topmost and bottommost squares of that column, as shown in Figure 14.
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Fig. 14. Domatic and total domatic Q4 and Q5

It is easy to see that each of these n + 2 sets is both a minimal dominating set and a

minimal total dominating set, since in each set, every queen has several external private

neighbors, that is, squares it attacks that no other queen of the same color attacks.

Theorem 5.1 shows that for n ≥ 4, n + 2 ≤ dom(Qn) and n + 2 ≤ tdom(Qn). This

suggests the introduction of new parameters, which, in this case equal the minimum

orders of a k-domatic, k-idomatic, and k-total domatic partition of a graph G. Figure 14

raises the following two questions: is it possible to partition Qn into fewer than n + 2

minimal dominating sets or fewer than n+ 2 minimal total dominating sets? At the risk

of abusing notation, and looking for a good notation, we could de�ne dom(G) to equal

the minimum order of a partition of V (G) into minimal dominating sets, and dom(G) to

equal the maximum order of a partition of V (G) into minimal dominating sets. Thus,

for queens graphs dom(Qn) ≤ n + 2 ≤ dom(Qn) ≤ dom(Qn), and similarly, tdom(G) ≤
n+ 2 ≤ tdom(Qn) ≤ tdom(Qn).

Table 3 provides the limited preliminary results for the total domatic numbers of the

queens graphs, where for example, the paritition of Q4 into a maximum possible eight

minimum total dominating sets is shown in Figure 15.

Figures 15 and 16 establish the total domatic numbers of Q2, Q3, Q4, Q5, Q6.
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Table 3. Total domatic numbers of Qn

n 1 2 3 4 5 6 7 8

γt(Qn) X 2 2 2 3 4 4 5

tdom(Qn) X 2 4 8 8 9 11 12
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Fig. 15. tdom(Q2) = 2, tdom(Q3) = 4, and tdom(Q4) = 8
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Fig. 16. tdom(Q5) = 8 and tdom(Q6) = 9

Theorem 5.2. For the queens graph Q7, tdom(Q7) = 11.

Proof. Let the squares of the queens graph Q7 be numbered as in Figure 17.

A computer program has shown that γt(Q7) = 4 and there are precisely 22 minimum

total dominating sets. One can partition these 22 γt-sets into six groups as in Table 4,

where the γt-sets in Groups II through VI are the four γt-sets obtained by rotations of

one γt-set.

One can see that eight of the 49 squares of Q7 never appear in a γt-set; they are the

squares numbered 10, 12, 16, 20, 30, 34, 38, 40. Thus, only 41 squares can be used in a

partition of Q7 into γt-sets. Therefore, in a maximum order partition of Q7 into total

dominating sets there can be at most 10 sets of cardinality 4 and only one other set of

cardinality 5 or greater.

Figure 18 shows a partition of Q7 into 11 minimal total dominating sets. Therefore,

tdom(Q7) = 11.

A further analysis of the 22 γt-sets of Q7 given in the proof of Theorem 5.2 shows that,

in fact, in any partition of Q7 into a maximum number of total dominating sets, at most

six γt-sets can appear, and the remaining �ve total dominating sets must have cardinality

�ve, as shown in Figure 18. This can be seen by considering the graph G22 of order n = 22,
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Fig. 17. Q7 numbered

Table 4. The 22 γt-sets of Q7

Group I Group II Group III

{1, 19, 31, 49} {1, 9, 27, 39} {2, 8, 27, 45}

{7, 17, 33, 43} {7, 13, 23, 39} {6, 14, 15, 39}

{11, 23, 41, 49} {5, 23, 42, 48}

{11, 27, 37, 43} {11, 35, 36, 44}

Group IV Group V Group VI

{6, 14, 23, 47} {4, 25, 32, 39} {13, 19, 25, 37}

{11, 29, 42, 48} {23, 24, 25, 28} {9, 25, 33, 41}

{3, 27, 36, 44} {11, 18, 25, 46} {13, 25, 31, 37}

{2, 8, 21, 39} {22, 25, 26, 27} {9, 17, 25, 41}
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Fig. 18. tdom(Q7) = 11

whose vertices correspond 1-to-1 with the 22 minimum total dominating sets of Q7, and

two vertices are adjacent if and only if the corresponding two minimum total dominating
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sets have a vertex in common. It can be seen that the vertex independence number of

this intersection graph G22 is six, that is, α(G22) = 6.

We conclude this section with the results of an exhaustive computer search which has

found the following partition of Q8, shown in Figure 19, into 12 total dominating sets,

eight of cardinality 5 and four of cardinality 6. A partition of Q8 into 12 total dominating

sets is best possible since γt(Q8) = 5 and ⌊64
5
⌋ = 12. Thus, tdom(Q8) = 12.
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Fig. 19. tdom(Q8) = 12

6. Several new classes of domatic graphs

As shown in Figure 20, the vertices of Q5 can, in fact, be partitioned into 5 maximum

independent sets.
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4

4

5

5
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Fig. 20. Q5 is α-domatic

This raises the following concept. A graph G is called α-domatic if its vertices can

be partitioned π = {V1, V2, . . . , Vk} into k independent dominating sets such that for all

i ∈ [k], |Vi|= α(G), that is each set Vi is in fact a maximum cardinality independent set. It

is easy to see that all complete graphs Kn are α-domatic, as are all complete multipartite

graphs of the form Kn1,n2,...,nk
, where n1 = n2 = . . . = nk. Since Q1 ≃ K1, and Q2 ≃ K4,

it follows from Figures 9 and 20 that Q1, Q2, and Q5 are all α-domatic, but Q3, Q4, and

Q6 are not α-domatic. This raises the question: which queens graphs Qn are α-domatic?

And, in general, which graphs G are α-domatic?
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Similarly, one can de�ne a graph G of order n to be:

γ-domatic if it has a vertex partition into n/γ(G) minimum dominating sets,

i-domatic if it has a vertex partition into n/i(G) minimum independent dominating

sets,

α-domatic if it has a vertex partition into n/α(G) maximum independent sets,

Γ-domatic if it has a vertex partition into n/Γ(G) maximum cardinality minimal dom-

inating sets,

γt-domatic if it has a vertex partition into n/γt(G) minimum total dominating sets,

Γt-domatic if it has a vertex partition into n/Γt(G) maximum cardinality minimal total

dominating sets.

7. Open problems and questions

1. Are all queens graphs Qn idomatic? In particular, are Q8 and Q9 idomatic?

2. Is the function dom(Qn) monotonic nondecreasing?

3. Is the function idom(Qn), when de�ned, monotonic nondecreasing?

4. What can you say about dom(Qn) and dom(Qn)?

5. What can you say about tdom(Qn) and tdom(Qn)?

6. What can you say about the values of dom(Qn) + dom(Qn)?

7. What are the values of dom(Q7) and dom(Q9)?

8. What are the values of tdom(Q8) and tdom(Q9)?

9. For n ∈ {10, 11}, γ(Qn) = 5, and furthermore, there is up to isomorphism, only one

unique dominating set in each of Q10 and Q11 of cardinality 5. This suggests that in

a domatic partition of these two queens graphs, only four minimum dominating sets

can appear, through rotations and/or re�ections, and these will occupy 20 squares.

All other dominating sets, therefore, will have to have cardinality of at least 6 and

will occupy the remaining n2 − 20 squares. This shows that the upper bounds for

dom(Qn) for n ∈ {10, 11} are as follows:

(i) n = 10: n2 = 100, 100− 20 = 80, and therefore dom(Q10) ≤ ⌊4 + 80/6⌋ = 17;

(ii) n = 11: n2 = 121, 121−20 = 101, and therefore, dom(Q11) ≤ ⌊4+101/6⌋ = 20.

10. For n = 12, γ(Q12) = 6, but there is up to isomorphism, only one unique minimum

dominating set of cardinality 6, and it uses a corner square. Thus, again, at most

four minimum dominating sets can appear in any domatic partition of Q12, which

gives an upper bound for Q12 of dom(Q12) ≤ ⌊4 + 120/7⌋ = 21.

11. Notice in Figures 15 and 16 that Q2, Q4 and Q6 can all be partitioned precisely

into minimum total dominating sets. Thus, Q2, Q4, and Q6 are all γt-domatic.

The �nal Table 5 summarizes what we have established about the domatic numbers,

idomatic numbers, and total domatic numbers of queens graphs.
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Table 5. Known domatic, idomatic and total domatic numbers of queens graphs

n 1 2 3 4 5 6 7 8 9

γ(Qn) 1 1 1 2 3 3 4 5 5

i(Qn) 1 1 1 3 3 4 4 5 5

γt(Qn) X 2 2 2 3 4 4 5 6

dom(Qn) 1 4 5 8 8 10 11,12 12 12,13

idom(Qn) 1 4 5 5 7 8 10 ≤ 12 ≤ 16

tdom(Qn) X 2 4 8 8 9 11 12 11-15
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