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abstract

A radio labelling of a graph G is a mapping f : V (G) → {0, 1, 2, . . .} such that |f(u) −
f(v)|≥ diam(G) + 1− d(u, v) for every pair of distinct vertices u, v of G, where diam(G)

is the diameter of G and d(u, v) is the distance between u and v in G. The radio number

rn(G) of G is the smallest integer k such that G admits a radio labelling f with max{f(v) :
v ∈ V (G)} = k. In this paper, we give a lower bound for the radio number of the Cartesian

product of a tree and a complete graph and give two necessary and su�cient conditions

for the sharpness of the lower bound. We also give three su�cient conditions for the

sharpness of the lower bound. We determine the radio number of the Cartesian product

of a level-wise regular tree and a complete graph which attains the lower bound. The

radio number of the Cartesian product of a path and a complete graph derived in [B. M.

Kim, W. Hwang, and B. C. Song, Radio number for the product of a path and a complete

graph, J. Comb. Optim., 30 (2015), 139�149] can be obtained using our results in a short

way.
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1. Introduction

The channel assignment problem is the problem of assigning a channel to each transmitter

in a radio network such that a set of constraints is satis�ed and the span is minimized.

The constraints for assigning channels to transmitters are usually determined by the geo-

graphic location of the transmitters; the closer the location, the stronger the interference

might occur. In order to avoid stronger interference, the larger frequency gap between

two assigned frequencies must be required. In [10], Hale designed the optimal labelling

problem for graphs to deal with this channel assignment problem. In this model, the

transmitters are represented by the vertices of a graph, and two vertices are adjacent if

the corresponding transmitters are close to each other. Initially, only two levels of in-

terference, namely avoidable and unavoidable, were considered which inspired Griggs and

Yeh [8] to introduce the following concept: An L(2, 1)-labelling of a graph G is a function

f : V (G) → {0, 1, 2, . . .} such that |f(u) − f(v)|≥ 2 if d(u, v) = 1 and |f(u) − f(v)|≥ 1

if d(u, v) = 2. The span of f is de�ned as max{|f(u) − f(v)|: u, v ∈ V (G)}, and the

λ-number (or the λ2,1-number) of G is the minimum span of an L(2, 1)-labelling of G.

The L(2, 1)-labelling problem has been studied extensively in the past more than two

decades, as one can �nd in the survey articles [5, 18].

Denote the diameter of a graph G by diam(G) (the diameter of a graph G is diam(G) =

max{d(u, v) : u, v ∈ V (G)}). In [7, 6], Chartrand et al. introduced the concept of the

radio labelling problem by extending the condition on distance in L(2, 1)-labelling from

two to the maximum possible distance in a graph, namely the diameter of a graph.

De�nition 1.1. A radio labelling of a graph G is a mapping f : V (G) → {0, 1, 2, . . .}
such that the following hold for every pair of distinct vertices u, v of G,

|f(u)− f(v)|≥ diam(G) + 1− d(u, v). (1)

The integer f(u) is called the label of u under f , and the span of f is de�ned as span(f) =

max{|f(u)− f(v)|: u, v ∈ V (G)}. The radio number of G is de�ned as

rn(G) = min
f

span(f)

with minimum taken over all radio labellings f of G. A radio labelling f of G is called

optimal if span(f) = rn(G).

Observe that the radio labelling problem is a min-max type optimization problem.

Without loss of generality, we may always assume that any radio labelling assigns 0 to

some vertex so that the span of a radio labelling is equal to the maximum label used.

Since d(u, v) ≤ diam(G), any radio labelling always assigns di�erent labels to distinct

vertices. Therefore, a radio labelling f of graph G with order m induces the linear order

V⃗f : a0, a1, . . . , am−1, (2)

of the vertices of G such that

0 = f(a0) < f(a1) < · · · < f(am−1) = span(f). (3)
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A linear order a0, a1, . . . , am−1 of V (T ) is called an optimal linear order if it induced by

some optimal radio labelling f of T .

Determining the radio number of graphs is a tough and challenging task. The radio

number is known only for very few graphs and much attention has been paid to special

families of graphs. It turns out that even for some special graph families the problem

may be di�cult. For example, the radio number of paths was determined by Liu and

Zhu in [17], and even for this basic graph family the problem is nontrivial. In [15, 16],

Liu and Xie determine the radio number for the square graph of paths and cycles. In [4],

Benson et al. determined the radio number of all graphs of order n ≥ 2 and diameter

n− 2. In [13], Liu gave a lower bound for the radio number of trees and a necessary and

su�cient condition for this bound to be achieved. The author also presented a special

class of trees, namely spiders, achieving this lower bound. In [12], Li et al. determined

the radio number of complete m-ary trees of height k, for k ≥ 1,m ≥ 2. In [9], Halász

and Tuza gave a lower bound for the radio number of level-wise regular trees and proved

further that this bound is tight when all the internal vertices have degree more than three.

In [3], Bantva et al. gave a necessary and su�cient condition for the lower bound given

in [13] to be tight along with two su�cient conditions for achieving this lower bound.

Using these results, they also determined the radio number of three families of trees in

[3]. In [1], Bantva determined the radio number of some trees obtained by applying a

graph operation on given trees. In [14], Liu et al. improved the lower bound for the

radio number of trees. Recently, in [2], Bantva and Liu gave a lower bound for the radio

number of block graphs and, three necessary and su�cient conditions for achieving the

lower bound. The authors gave three other su�cient conditions for achieving the lower

bound and also discuss the radio number of line graphs of trees and block graphs in [2].

Using these results, the authors determine the radio number of extended star of blocks

and level-wise regular block graphs in [2].

In this paper, we give a lower bound for the radio number of the Cartesian product of

a path and a complete graph (Theorem 3.1). We also give two necessary and su�cient

conditions (Theorems 3.2 and 3.3) and three other su�cient conditions (Theorem 3.4) for

achieving the lower bound. Using these results, we determine the radio number of the

Cartesian product of a level-wise regular tree and a complete graph. The radio number

of the Cartesian product of a path and a complete graph given in [11] can be obtained

using our results in a short way.

2. Preliminaries

We follow [17] for standard graph-theoretic terms and notations. In a graph G, the

neighbourhood of any v ∈ V (G) is NG(v) = {u : u is adjacent to v}. The distance

between two vertices u and v in G, denoted by dG(u, v), is the length of the shortest path

joining u and v in G. The diameter of a graph G, denoted by diam(G), is diam(G) =

max{dG(u, v) : u, v ∈ V (G)}. We drop the su�x in above-de�ned terms when G is clear

in the context. A complete graph Kn is a graph on n vertices in which any two vertices are

adjacent. A tree is a connected acyclic graph. We �x V (T ) = {u0, u1, . . . , um−1} for tree
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T of order m and V (Kn) = {v0, v1, . . . , vn−1} throughout the paper. A vertex v ∈ V (T )

is an internal vertex of T if it has degree greater than one and is a leaf otherwise. In [3,

13], the weight of T from v ∈ V (T ) is de�ned as

wT (v) =
∑

u∈V (T )

d(u, v),

and the weight of T is de�ned as

w(T ) = min{wT (v) : v ∈ V (T )}.

A vertex v ∈ V (T ) is a weight center [3, 13] of T if wT (v) = w(T ). Denote by W (T ) the

set of weight centers of T . In [13], the following is proved about W (T ).

Lemma 2.1. [13] If r is a weight center of a tree T . Then each component of T − r

contains at most |V (T )|/2 vertices.

Lemma 2.2. [13] Every tree T has one or two weight centers, and T has two weight

centers, say, W (T ) = {r, r′} if and only if rr′ is an edge of T and T − rr′ consists of two

equal sized components.

A vertex u is called [3, 13] an ancestor of a vertex v, or v is a descendent of u, if u is on

the unique path joining a weight center and v. Let u ∈ V (T )\W (T ) be a vertex adjacent

to a weight center x. The subtree of T induced by u and all its descendants is called the

branch of T at u. Two vertices u, v of T are said to be in di�erent branches if the path

between them contains only one weight center and in opposite branches if the path joining

them contains two weight centers. We view a tree T rooted at its weight center W (T ): if

W (T ) = {r}, then T is rooted at r; if W (T ) = {r, r′}, then T is rooted at r and r′ in the

sense that both r and r′ are at level 0. In either case, for each u ∈ V (T ), de�ne

L(u) = min{d(u, x) : x ∈ W (T )},

to indicate the level of u in T , and de�ne

L(T ) =
∑

u∈V (T )

L(u),

the total level of T . For any u, v ∈ V (T ), de�ne

ϕ(u, v) = max{L(x) : x is a common ancestor of u and v},

δ(u, v) =

{
1, if |W (T )|= 2 and the (u, v)-path in T contains both weight centers,

0, otherwise.

Lemma 2.3 ([3, Lemma 2.1]). Let T be a tree with diameter d ≥ 2. Then for any

u, v ∈ V (T ) the following hold:

(a) ϕ(u, v) ≥ 0;
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(b) ϕ(u, v) = 0 if and only if u and v are in di�erent or opposite branches;

(c) δ(u, v) = 1 if and only if T has two weight centers and u and v are in opposite

branches;

(d) the distance d(u, v) in T between u and v can be expressed as

d(u, v) = L(u) + L(v)− 2ϕ(u, v) + δ(u, v). (4)

De�ne

ε(T ) =

{
1, if |W (T )|= 1,

0, if |W (T )|= 2.

Let G = (V (G), E(G)) and H = (V (H), E(H)) be two graphs. The Cartesian product

of G and H is the graph G□H with V (G□H) = V (G) × V (H) such that two vertices

(a, b) and (c, d) are adjacent if a = c and (b, d) ∈ E(H) or b = d and (a, c) ∈ E(G). It is

clear from the de�nition that dG□H((x1, y1), (x2, y2)) = dG(x1, x2) + dH(y1, y2).

Observation 2.4. For a tree T of order m (m ≥ 2) and a complete graph Kn,

(a) |V (T□Kn)|= mn, and

(b) diam(T□Kn) = diam(T ) + 1.

Let V⃗ = (w0, w1, . . . , wmn−1) be an ordering of V (T□Kn), where |T |= m. Then each

wt (0 ≤ t ≤ mn− 1) is an ordered pair (uit , vjt) with uit ∈ V (T ) and vjt ∈ V (Kn). Hence

each vertex ui, i = 0, 1, . . . ,m− 1 appears n times and each vertex vj, j = 0, 1, . . . , n− 1

appears m times in T□Kn. For wa = (uia , vja), wb = (uib , vjb) ∈ V (T□Kn) (0 ≤ a, b ≤
mn− 1), vja and vjb are called distinct if ja ̸= jb. For any wa = (uia , vja), wb = (uib , vjb) ∈
V (T□Kn) (0 ≤ a, b ≤ mn− 1), the distance between wa and wb is given by

d(wa, wb) = L(uia) + L(uib) + δ(uia , uib)− 2ϕ(uia , uib) + d(vja , vjb). (5)

3. A tight lower bound for rn(T□Kn)

In this section, we continue to use terms and notations de�ned in the previous section.

We �rst give a lower bound for the radio number of the Cartesian product of a tree and

a complete graph. Next we give two necessary and su�cient conditions and three other

su�cient conditions for achieving the lower bound.

Theorem 3.1. Let T be a tree of order m and diameter d ≥ 2. Denote ε = ε(T ). Then

rn(T□Kn) ≥ (mn− 1)(d+ ε)− 2nL(T ). (6)

Proof. It is enough to prove that any radio labelling of T□Kn has no span less than that

of the right-hand side of (6). Suppose f is any radio labelling of T□Kn which induces

an ordering V⃗f = (w0, w1, . . . , wmn−1) such that 0 = f(w0) < f(w1) < · · · < f(wmn−1).

Denote diam(T□Kn) = d′. By the de�nition of a radio labelling, f(wt+1) − f(wt) ≥
d′ + 1 − d(wt, wt+1) for 0 ≤ t ≤ mn − 2. Since d′ = d + 1 by Observation 2.4, we have
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f(wt+1) − f(wt) ≥ d + 2 − d(wt, wt+1) for 0 ≤ t ≤ mn − 2. Summing up these mn − 1

inequalities, we obtain

span(f) = f(wmn−1) ≥ (mn− 1)(d+ 2)−
mn−2∑
t=0

d(wt, wt+1). (7)

Case 1. |W (T )|= 1. In this case, δ(uit , uit+1) = 0 by the de�nition of δ, ϕ(uit , uit+1) ≥ 0

and 0 ≤ d(vjt , vjt+1) ≤ 1 for all 0 ≤ t ≤ mn− 2. Hence, using (5), we obtain

mn−2∑
t=0

d(wt, wt+1) =
mn−2∑
t=0

[L(uit) + L(uit+1)− 2ϕ(uit , uit+1) + d(vjt , vjt+1)]

≤
mn−2∑
t=0

[L(uit) + L(uit+1) + d(vjt , vjt+1)]

≤ 2n
m−1∑
i=0

L(ui) + (mn− 1)− L(ui0)− L(uimn−1)

≤ 2nL(T ) +mn− 1.

Substituting this into (7), we have span(f) ≥ (mn− 1)(d+ 1)− 2nL(T ).

Case 2. |W (T )|= 2. In this case, 0 ≤ δ(uit , uit+1) ≤ 1, ϕ(uit , uit+1) ≥ 0 and 0 ≤
d(vjt , vjt+1) ≤ 1 for all 0 ≤ t ≤ mn− 2. Hence, using (5), we obtain

mn−2∑
t=0

d(wt, wt+1) =
mn−2∑
t=0

[L(uit) + L(uit+1) + δ(uit , uit+1)− 2ϕ(uit , uit+1)

+d(vjt , vjt+1)]

≤
mn−2∑
t=0

[L(uit) + L(uit+1) + 1 + d(vjt , vjt+1)]

≤ 2n
m−1∑
i=0

L(ui) + (mn− 1) + (mn− 1)− L(ui0)− L(uimn−1)

≤ 2nL(T ) + 2(mn− 1).

Substituting this into (7), we have span(f) ≥ (mn− 1)d− 2nL(T ).

Theorem 3.2. Let T be a tree of order m and diameter d ≥ 2. Denote ε = ε(T ). Then

rn(T□Kn) = (mn− 1)(d+ ε)− 2nL(T ), (8)

if and only if there exists an ordering w0, w1, . . . , wmn−1 of V (T□Kn) such that the fol-

lowing hold:

(a) L(ui0) = L(uimn−1) = 0;

(b) vjt and vjt+1 are distinct for all 0 ≤ t ≤ mn− 2;

(c) for wa = (uia , vja), wb = (uib , vjb) (0 ≤ a < b ≤ mn − 1), the distance between any

two vertices uia and uib satis�es
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d(uia , uib) ≥
b−1∑
t=a

[L(uit) + L(uit+1)− (d+ ε)] + (d+ 1). (9)

Moreover, under these conditions (a)-(c), the mapping f de�ned by

f(w0) = 0, (10)

f(wt+1) = f(wt) + d+ ε− L(uit)− L(uit+1), 0 ≤ t ≤ mn− 2, (11)

is an optimal radio labelling of T□Kn.

Proof. Necessity. Suppose that (8) holds. Note that (8) holds if equality hold in (1)

and everywhere in the proof of Theorem 3.1. Again observe that if the equality holds

everywhere in the proof of Theorem 3.1 then an ordering w0, w1, . . . , wmn−1 of V (T□Kn)

induced by f satis�es the followings: (1) L(ui0) = L(uimn−1) = 0, (2) uit and uit+1 are

in di�erent branches when |W (T )|= 1 and in opposite branches when |W (T )|= 2 for

all 0 ≤ t ≤ mn − 2, (3) vjt and vjt+1 are distinct for all 0 ≤ t ≤ mn − 2. Hence in

this case the de�nition of radio labelling f can be written as f(w0) = 0 and f(wt+1) =

f(wt)+d′+ε−L(uit)−L(uit+1)−1 = f(wt)+d+ε−L(uit)−L(uit+1) for 0 ≤ t ≤ mn−2,

where d′ = diam(T□Kn). Summing this last equality for wa to wb (0 ≤ a < b ≤ mn− 1),

we obtain

f(wb)− f(wa) =
b−1∑
t=a

[d+ ε− L(uit)− L(uit+1)].

Since f is a radio labelling of T□Kn, we have f(wb) − f(wa) ≥ d′ + 1 − d(wa, wb) =

d + 2 − d(wa, wb). Also note that d(wa, wb) = d(uia , uib) + 1 by (5). Substituting these

into the above equation, we obtain

d(uia , uib) ≥
b−1∑
t=a

[L(uit) + L(uit+1)− (d+ ε)] + (d+ 1).

Su�ciency. Suppose there exists an ordering (w0, w1, . . ., wmn−1) of V (T□Kn) satis�es

the conditions (a)-(c) and f is de�ned by (10) and (11). Note that it is enough to prove

that f is a radio labelling of T□Kn and the span of f is the right-hand side of (8). Denote

diam(T□Kn) = d′. Let wa and wb (0 ≤ a < b ≤ mn− 1) be two arbitrary vertices.

f(wb)− f(wa) =
b−1∑
t=a

(f(wt+1)− f(wt)),

=
b−1∑
t=a

(d+ ε− L(uit)− L(uit+1)),

= d+ 1− d(uia , uib),

= d+ 2− (d(uia , uib) + 1),

= d′ + 1− d(wa, wb).
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The span of f is

span(f) = f(wmn−1)− f(w0),

=
mn−2∑
t=0

(f(wt+1)− f(wt)),

=
mn−2∑
t=0

(d+ ε− L(uit)− L(uit+1)),

= (mn− 1)(d+ ε)− 2
mn−1∑
t=0

L(uit) + L(ui0) + L(uimn−1),

= (mn− 1)(d+ ε)− 2nL(T ).

Theorem 3.3. Let T be a tree of order m and diameter d ≥ 2. Denote ε = ε(T ). Then

rn(T□Kn) = (mn− 1)(d+ ε)− 2nL(T ), (12)

if and only if there exists an ordering w0, w1, . . . , wmn−1 of V (T□Kn) with wt = (uit , vjt), 0 ≤
t ≤ mn− 1 such that the following all hold:

(a) L(ui0) = L(uimn−1) = 0;

(b) vjt and vjt+1 are distinct for 0 ≤ t ≤ mn− 2;

(c) uit and uit+1 are in di�erent branches when |W (T )|= 1 and in opposite branches

when |W (T )|= 2 for 0 ≤ t ≤ mn− 2;

(d) L(uit) ≤ (d + 1)/2 when |W (T )|= 1 and L(uit) ≤ (d − 1)/2 when |W (T )|= 2 for

all 0 ≤ t ≤ mn− 1;

(e) for any wa = (uia , vja), wb = (uib , vjb) (0 ≤ a < b ≤ mn − 1) such that uia and uib

are in the same branch of T , uia and uib satisfy

ϕ(uia , uib) ≤
(
b− a− 1

2

)
(d+ ε)−

b−1∑
t=a+1

L(uit)−
(
1− ε

2

)
. (13)

Proof. Necessity. Suppose (12) holds. Then there exists an ordering (w0, w1, . . ., wmn−1)

of T□Kn such that the conditions (a)-(c) of Theorem 3.2 holds. Hence the conditions

(a) and (b) are satis�ed. Taking a = t and b = t + 1 in (9), we obtain d(wt, wt+1) =

d(uit , uit+1) + d(vjt , vjt+1) = L(uit) + L(uit+1) + 1 − ε + 1. Hence we have d(uit , uit+1) =

L(uit)+L(uit+1)+1−ε for all 0 ≤ t ≤ mn−2 as 0 ≤ d(uit , uit+1) ≤ L(uit)+L(uit+1)+1−ε

and 0 ≤ d(vjt , vjt+1) ≤ 1. Therefore, by Lemma 2.3, uit and uit+1 are in di�erent branches

when |W (T )|= 1 and in opposite branches when |W (T )|= 2 for all 0 ≤ t ≤ mn − 2.

Hence the condition (c) is satis�ed. Since L(ui0) = L(uimn−1) = 0, it is clear that L(uit) <

(d + 1)/2 for t = 0,mn − 1. For 1 ≤ t ≤ mn − 2, considering uit−1 and uit+1 in (9) and

using (5), we obtain

2L(uit) ≤ (d+ ε)− (1− ε) + δ(uit−1 , uit+1)− 2ϕ(uit−1 , uit+1).
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In above equation, observe that when |W (T )|= 1 then δ(uit−1 , uit+1) = 0 by the de�ni-

tion of δ and when |W (T )|= 2 then uit−1 and uit+1 are in di�erent or in the same branch

of T and hence δ(uit−1 , uit+1) = 0. Thus we have

2L(uit) ≤ d+ 2ε− 1.

Hence, the condition (d) is satis�ed. To prove (e), let wa = (uia , vja) and wb =

(uib , vjb)(0 ≤ a < b ≤ mn − 1) be such that uia and uib are in the same branch of

T . Then δ(uia , uib) = 0. Using (5) in (9), (13) can be obtained easily from (9).

Su�ciency. Suppose there exists an ordering (w0, w1, . . . , wmn−1) of V (T□Kn) such

that conditions (a)-(e) hold. To prove (12) holds, we show that an ordering w0, w1, . . . , wmn−1

satis�es the conditions (a)-(c) of Theorem 3.2. Since the conditions (a) and (b) are iden-

tical with the conditions (a) and (b) of Theorem 3.2, we need to prove the condition (9)

only. Denote the right-hand side of (9) by Sa,b. Let wa = (uia , vja), wb = (uib , vjb) (0 ≤ a <

b ≤ mn−1) be any two vertices. If uia and uib are in opposite branches, then d(uia , uib) =

L(uia) + L(uib) + 1. Hence, Sa,b = L(uia) + L(uib) + 2
b−1∑

t=a+1

L(uit) − (b − a)d + d + 1 ≤

L(uia)+L(uib)+1+2(b−a−1)((d−1)/2)−(b−a−1)d = L(uia)+L(uib)+1−(b−a−1) ≤
L(uia)+L(uib)+1 = d(uia , uib). If uia and uib are in di�erent branches, then d(uia , uib) =

L(uia) + L(uib) and Sa,b = L(uia) + L(uib) + 2
b−1∑

t=a+1

L(uit)− (b− a− 1)(d+ ε) + (1− ε).

If |W (T )|= 1, then note that L(uit) ≤ (d + 1)/2 for all 0 ≤ t ≤ mn − 1 and hence

Sa,b ≤ L(uia) + L(uib) + 2(b− a− 1)((d+ 1)/2)− (b− a− 1)(d+ 1) = L(uia) + L(uib) =

d(uia , uib). If |W (T )|= 2, then note that b − a − 1 ≥ 1 and L(uit) ≤ (d − 1)/2 for all

0 ≤ t ≤ mn−1 and hence Sa,b ≤ L(uia)+L(uib)+2(b−a−1)((d−1)/2)−(b−a−1)d+1 =

L(uia) + L(uib) + 1− (b− a− a) ≤ L(uia) + L(uib) = d(uia , uib). If uia and uib are in the

same branch, then (9) can be obtained easily using (13). This completes the proof.

Theorem 3.4. Let T be a tree of order m and diameter d ≥ 2. Denote ε = ε(T ). Then

rn(T□Kn) = (mn− 1)(d+ ε)− 2nL(T ), (14)

if there exists an ordering w0, w1, . . . , wmn−1 of V (T□Kn) such that

(a) L(ui0) = L(uimn−1) = 0,

(b) vjt and vjt+1 are distinct for all 0 ≤ t ≤ mn− 2,

(c) uit and uit+1 are in di�erent branches when |W (T )|= 1 and in opposite branches

when |W (T )|= 2 for all 0 ≤ t ≤ mn− 2,

and one of the following holds:

(d) min{d(uit , uit+1), d(uit+1 , uit+2)} ≤ (d+ 1− ε)/2 for all 0 ≤ t ≤ mn− 3;

(e) d(uit , uit+1) ≤ (d+ 1 + ε)/2 for all 0 ≤ t ≤ mn− 2;

(f) for all 0 ≤ t ≤ mn− 1, L(uit) ≤ (d+ 1)/2 when |W (T )|= 1 and L(uit) ≤ (d− 1)/2

when |W (T )|= 2 and, if wa = (uia , vja) and wb = (uib , vjb)(0 ≤ a < b ≤ mn− 1) such that

uia and uib are in the same branch of T then b− a ≥ d.

Proof. We show that if (a)-(c) and one of (d)-(f) holds for an ordering w0, w1, . . . , wmn−1

such that wt = (uit , vjt), 0 ≤ t ≤ mn− 1, then (a)-(e) of Theorem 3.3 are satis�ed. Since
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the conditions (a)-(c) are identical in both Theorems 3.3 and 3.4, we need to verify the

conditions (d) and (e) of Theorem 3.3 only. Denote the right-hand side of (13) by Pa,b.

We consider the following two cases.

Case 1. |W (T )|= 1. In this case, recall that ε = 1 and δ(uit , uit+1) = 0 for all

0 ≤ t ≤ mn− 2 by the de�nition of δ.

Subcase 1.1. Suppose (a)-(d) hold. It is clear that L(ui0) = L(uimn−1) = 0 ≤ (d+ 1)/2

and for 1 ≤ t ≤ mn− 2, L(uit) ≤ min{d(uit , uit+1), d(uit+1 , uit+2)} ≤ d/2 < (d+ 1)/2. Let

wa = (uia , vja) and wb = (uib , vjb), 0 ≤ a < b ≤ mn − 1 be two arbitrary vertices such

that uia and uib are in the same branch of T . If b − a ≥ 4, then Pa,b ≥ 3(d + 1)/2 −
d/2− (d+ 1)/2 = d/2 + 1 ≥ ϕ(uia , uib). Assume b− a = 3. If L(uia+1) + L(uia+2) ≤ d/2,

then Pa,b ≥ (d + 1) − d/2 = d/2 + 1 ≥ ϕ(uia , uib). If L(uia+1) + L(uia+2) > d/2, then

L(uia+2) +L(uia+3) ≤ d/2 and hence L(uia+2) ≤ d/2−L(uia+3). Therefore, Pa,b ≥ d+ 1−
L(uia+1)−L(uia+2) ≥ d+1−(d+1)/2−d/2+L(uia+3) = L(uia+3)+1/2 ≥ ϕ(uia , uib). Assume

b−a = 2. Then either L(uia)+L(uia+1) ≤ d/2 or L(uia+1)+L(uia+2) ≤ d/2. Without loss

of generality, we may assume that L(uia)+L(uia+1) ≤ d/2. Then L(uia+1) ≤ d/2−L(uia).

Hence, Pa,b = (d+1)/2−L(uia+1) ≥ (d+1)/2−d/2+L(uia) = L(uia)+(1/2) ≥ ϕ(uia , uib).

Subcase 1.2. Suppose (a)-(c) and (e) hold. Note that L(ui0) = L(uimn−1) = 0 ≤ (d +

1)/2. Since L(uit) ≥ 1 and L(uit)+L(uit+1) = d(uit , uit+1) ≤ (d+2)/2 for 0 ≤ t ≤ mn−1,

we obtain L(uit) ≤ (d+ 1)/2 for all 0 ≤ t ≤ mn− 1.

Let wa = (uia , vja) and wb = (uib , vjb), 0 ≤ a < b ≤ mn − 1 be two arbitrary vertices

such that uia and uib are in the same branch of T . If b − a ≥ 3, then Pa,b ≥ d + 1 −
L(uia+1) − L(uia+2) ≥ d + 1 − (d + 2)/2 = d/2 ≥ ϕ(uia , uib). Assume b − a = 2. Note

that L(uia) + L(uia+1) ≤ (d + 2)/2 and hence L(uia+1) ≤ (d + 2)/2 − L(uia). Therefore,

Pa,b = (d+1)/2−L(uia+1) ≥ (d+1)/2−((d+2)/2−L(uia)) = L(uia)−(1/2) ≥ ϕ(uia , uib).

Subcase 1.3. Suppose (a)-(c) and (f) hold. Assume d is even. Then L(uit) ≤ d/2

for all 0 ≤ t ≤ mn − 1 and hence Pi,j ≥ ((b − a − 1)/2)(d + 1) − (b − a − 1)(d/2) ≥
(b − a − 1)/2 ≥ (d − 1)/2 ≥ ϕ(uia , uib). Assume d is odd. Then note that only for one

vertex uiq , L(uiq) = (d + 1)/2 from consecutive b − a vertices and for all other vertices

uit , L(uit) ≤ d/2. Hence, Pa,b ≥ ((b − a − 1)/2)(d + 1) − (b − a − 2)(d/2) − (d + 1)/2 ≥
(b− a− 2)/2 ≥ (d− 2)/2 ≥ ϕ(uia , uib).

Case 2. |W (T )|= 2. In this case, recall that ε = 0 and δ(uit , uit+1) = 1 for all

0 ≤ t ≤ mn− 1 by the de�nition of the ordering w0, w1, . . . , wmn−1 of V (T□Kn).

Subcase 2.1. Suppose (a)-(d) hold. It is clear that L(ui0) = L(uimn−1) = 0 ≤ (d− 1)/2

and for 1 ≤ t ≤ mn − 2, L(uit) ≤ min{d(uit−1 , uit), d(uit , uit+1)} − 1 ≤ (d + 1)/2 − 1 =

(d − 1)/2. Let wa = (uia , vja) and wb = (uib , vjb), 0 ≤ a < b ≤ mn − 1 be two arbitrary

vertices such that uia and uib are in the same branch of T . If b−a ≥ 4, then Pa,b ≥ 3d/2−
(d−1)−1/2 = (d+1)/2 ≥ ϕ(uia , uib). Assume b−a = 3. If L(uia+1)+L(uia+2) ≤ (d−1)/2,

then Pa,b ≥ d − (d − 1)/2 − 1/2 = d/2 ≥ ϕ(uia , uib). If L(uia+1) + L(uia+2) > (d − 1)/2,

then L(uia) + L(uia+1) ≤ (d − 1)/2 and hence L(uia+1) ≤ (d − 1)/2 − L(uia). Therefore,

Pa,b ≥ d − ((d − 1)/2 − L(uia)) − (d − 1)/2 − 1/2 = L(uia) + 1/2 ≥ ϕ(uia , uib). Assume
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b− a = 2. Then either L(uia) + L(uia+1) ≤ (d− 1)/2 or L(uia+1) + L(uia+2) ≤ (d− 1)/2.

Without loss of generality, we may assume that L(uia+1) + L(uia+2) ≤ (d − 1)/2. Then

L(uia+1) ≤ (d− 1)/2−L(uia+2). Hence, Pa,b = d/2−L(uia+1)− 1/2 ≥ d/2− ((d− 1)/2−
L(ia+2))− 1/2 = L(uia+2) ≥ ϕ(uia , uib).

Subcase 2.2. Suppose (a)-(c) and (e) hold. Note that L(ui0) = L(uimn−1) = 0 ≤
(d−1)/2. Since L(uit) ≥ 1 and L(uit)+L(uit+1) = d(uit , uit+1)−1 ≤ (d+1)/2−1 = (d−1)/2

for 0 ≤ t ≤ mn− 1, we obtain L(uit) ≤ (d− 1)/2 for all 0 ≤ t ≤ mn− 1.

Let wa = (uia , vja) and wb = (uib , vjb), 0 ≤ a < b ≤ mn − 1 be two arbitrary vertices

such that uia and uib are in the same branch of T . If b−a ≥ 3, then Pa,b ≥ d−L(uia+1)−
L(uia+2)− 1/2 ≥ d− (d − 1)/2 − 1/2 = d/2 ≥ ϕ(uia , uib). Assume that b − a = 2. Then

note that L(uia) + L(uia+1) ≤ (d− 1)/2 and hence L(uia) ≤ (d− 1)/2− L(uia+1). Hence,

Pa,b ≥ d/2−L(uit)− (1/2) ≥ d/2− [(d− 1)/2−L(uia+1)]− (1/2) = L(uia+1) ≥ ϕ(uia , uib).

Subcase 2.3. Suppose (a)-(c) and (f) hold. Assume d is even. Then L(uit) ≤ (d− 2)/2

for all 0 ≤ t ≤ mn− 1 and hence Pa,b ≥ ((b− a− 1)/2)d− (b− a− 1)((d− 2)/2)− 1/2 =

b − a − (3/2) ≥ d − (3/2) ≥ ϕ(uia , uib). Assume d is odd. Then note that only for one

vertex uiq , L(uiq) ≤ (d−1)/2 from b−a consecutive vertices and for all other vertices uit ,

L(uit) ≤ (d−3)/2. Hence, Pa,b ≥ ((b−a−1)/2)d−(b−a−2)((d−3)/2)−(d−1)/2−(1/2) =

3(b− a− 2)/2 ≥ 3(d− 2)/2 ≥ ϕ(uia , uib).

4. Radio number of the Cartesian product of a level-wise regular

tree and a complete graph

In this section, using the results in Section 3, we determine the radio number of the

Cartesian product of a level-wise regular tree and a complete graph.

It is well known that the center of tree T consists of one vertex r or two adjacent

vertices r, r′ depending on diam(T ) is even or odd. We view a tree T rooted at r or at

both r, r′ respectively. Halász and Tuza [9] de�ned a level-wise regular tree to be a tree T

in which all vertices at distance i from root r or {r, r′} have the same degree, say, di for

0 ≤ i ≤ h, where h (the largest distance from a vertex to the root) is the height of tree

T . Note that a level-wise regular tree is determined by its center(s) and (d0, d1, . . . , dh−1).

Denote the level-wise regular tree by T z = T z
d0,d1,...,dh−1

, where z denotes the number of

roots of the level-wise regular tree. A star K1,q is a tree consisting of q leaves and another

vertex joined to all leaves by edges. A double star Dq is a graph obtained by joining the

center vertices of two copies of star graph K1,q by an edge. A banana tree Bq,k is a graph

constructed by connecting a single leaf from q distinct copies of a star K1,k with a single

vertex that is distinct from all the vertices of the star graphs. Note that K1,q, Dq and

Bq,k are level-wise regular trees T
1
q , T

2
q+1 and T 1

q,2,k, respectively.
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Theorem 4.1. Let h ≥ 1 and di, n ≥ 3 for 0 ≤ i ≤ h− 1 be integers. Denote ε = ε(T z).

Then rn(T z□Kn) is

[(
h−1∑
i=1

(2h− 2i− 1)

( ∏
1≤j≤i

(dj − 1)

))
+ 2h− 1

]
nd0 + (2h+ 1)(n− 1), if z = 1,

[(
h−1∑
i=0

(2h− 2i− 1)

( ∏
0≤j≤i

(dj − 1)

))
+ 2h+ 1

]
2n− 2h− 1, if z = 2.

(15)

Proof. The order of T z, L(T z) and diameter d of T z are given by

|V (T z)|=


1 + d0 + d0

h−1∑
i=1

( ∏
1≤j≤i

(dj − 1)

)
, if z = 1,

2 + 2
h−1∑
i=0

( ∏
0≤j≤i

(dj − 1)

)
, if z = 2,

L(T z) =


d0 + d0

h−1∑
i=1

(i+ 1)

( ∏
1≤j≤i

(dj − 1)

)
, if z = 1,

2
h−1∑
i=0

(i+ 1)

( ∏
0≤j≤i

(dj − 1)

)
, if z = 2,

d =

{
2h, if z = 1,

2h+ 1, if z = 2.

Substituting the above into (6), we obtain the right-hand side of (15) as a lower bound

for rn(T z□Kn). We now prove that this lower bound is tight by giving an ordering

of V (T z□Kn) which satis�es the conditions in Theorem 3.2. For this purpose, de-

note V (Kn) = {v0, v1, . . . , vn−1} and V (T z) = {u0, u1, . . . , um−1} such that the ordering

u0, u1, . . . , un−1 is obtained as follows.

Case 1. z = 1.

In this case, let r be the unique center of T 1. Denote d0 children of r by r0, . . . , rd0−1.

For 0 ≤ i ≤ d0 − 1, denote d1 − 1 children of ri by ri,0, ri,1, . . . , ri,d1−1. Inductively, denote

the dl − 1 children of ri1,i2,...,il (0 ≤ i1 ≤ d0 − 1, 0 ≤ i2 ≤ d1 − 1, . . . , 0 ≤ il ≤ dl−1 − 1)

by ri1,i2,...,il,il+1
, where 0 ≤ il+1 ≤ dl − 1. Continue this process until all the vertices of

T 1 get indexed. Now obtain an ordering u0, u1, . . . , um−1 of vertices of T
1 as follows: Set

u0 := r and for 1 ≤ t ≤ m− 1, set ut := ri1,i2,...,il , where j = 1+ i1 + i2d0 + · · ·+ ild0(d1 −
1) · · · (dl − 1) +

∑
l+1≤t≤h

d0(d1 − 1) · · · (dt − 1).

Case-2. z = 2.

In this case, let r and r′ be two centers of T 2. Denote d0 − 1 children of r and r′ by

r0, r1, . . . , rd0−2 and r′0, r
′
1, . . . , r

′
d0−2, respectively. For 0 ≤ i ≤ d0−2, denote d1−1 children
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of ri and r′i by ri,0, ri,1, . . . , ri,d1−1 and r′i,0, r
′
i,1, . . . , r

′
i,d1−1, respectively. Inductively, denote

the dl−1 children of ri1,i2,...,il and r′i1,i2,...,il , where 0 ≤ i1 ≤ d0−2, 0 ≤ i2 ≤ d1−1, . . . , 0 ≤
il ≤ dl−1−1 by ri1,i2,...,il,il+1

and r′i1,i2,...,il,il+1
respectively, where 0 ≤ il+1 ≤ dl−1. Continue

this process until all the vertices of T 2 are indexed. Rename xj := ri1,i2,...,il and x′
j :=

r′i1,i2,...,il , where j = 1+i1+i2(d0−1)+· · ·+il(d0−1)(d1−1) · · · (dl−1)+
∑

l+1≤t≤h

(d0−1)(d1−

1) · · · (dt − 1). Now obtain an ordering u0, u1, . . . , um−1 as follows: Set u0 := r, um−1 := r′

and for 1 ≤ t ≤ m− 2, set

ut :=

{
xt/2, if t ≡ 0 (mod 2),

x′
(t+1)/2, if t ≡ 1 (mod 2).

We now consider the following two cases to give an ordering w0, w1, . . . , wmn−1 of

V (T□Kn) = {(ui, vj) : i = 0, 1, . . . ,m− 1, j = 0, 1, . . . , n− 1}.

Case 1. |W (T )|= 1.

We consider the following two subcases to de�ne an ordering w0, w1, . . . , wmn−1 of

V (T 1□Kn).

Subcase 1. |V (T 1)|≤ |V (Kn)|.
In this case, for 0 ≤ t ≤ mn − 1, de�ne wt := (ui, vj), where i ∈ {0, 1, . . . ,m − 1} j ∈

{0, 1, . . . , n− 1} and

t :=



m(j − i) + i if j ≥ i and j − i ̸= n− 1,

m(n+ j − i) + i if j < i and i− j ̸= 1,

m(n+ j − i) + i− 1 if j < i and i− j = 1,

mn− 1 if j − i = n− 1.

Subcase 2. |V (T 1)|> |V (Kn)|.

In this case, for x lcm(m,n) ≤ t ≤ (x+ 1) lcm(m,n)− 1, where 0 ≤ x ≤ gcd(m,n)− 1,

set

αt :=

{
(ui, vj+x), if t ≡ i (mod m), t ≡ j (mod n) and 0 ≤ j ≤ n− (x+ 1),

(ui, vj+x−n), if t ≡ i (mod m), t ≡ j (mod n) and n− x ≤ j ≤ n− 1.

De�ne an ordering w0, w1, . . . , wmn−1 of V (T 1□Kn) as follows: For 0 ≤ t ≤ mn− 1, set

wt :=


αt, if 0 ≤ t ≤ mn−m− 1,

αt+1, if mn−m ≤ t ≤ mn− 2,

αmn−m, if t = mn− 1.

Then, for above de�ned ordering, it is clear that (a) L(ui0) = L(uimn−1) = L(u0) = 0,

(b) vjt and vjt+1 are distinct for 0 ≤ t ≤ mn− 2, (c) uit and uit+1 are in di�erent branches
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for 0 ≤ t ≤ mn − 2, and (d) L(uit) ≤ d/2 for all 0 ≤ t ≤ mn − 1. Hence the conditions

(a)-(d) in Theorem 3.3 are satis�ed. We now show that the condition (e) of Theorem 3.3

holds.

Claim 1. The above de�ned ordering w0, w1, . . . , wmn−1 of V (T 1□Kn) satis�es (13).

Let wa = (uia , vja) and wb = (uib , vjb) (0 ≤ a < b ≤ mn−1) be two vertices such that uia

and uib are in the same branch when viewed as vertices of T 1. Denote the right-hand side

of (13) by Pa,b. In this case, note that d0 ≥ 3, ε = 1 and L(ut) ≤ d/2 for all 0 ≤ t ≤ mn−1.

Observe that for wa = (uia , vja) and wb = (uib , vjb) such that uia and uib are in the same

branch of T 2, there are two possibilities: (1) ia ̸= ib (2) ia = ib. In case (1), we have

b− a ≥ αd0, where α ≥ ϕ(uia , uib). Hence, Pa,b = ((b− a− 1)/2) (d+ 1)−
b−1∑

t=a+1

L(uit) ≥

((b− a− 1)/2) (d+1)−
b−1∑

t=a+1

(d/2) = ((b− a− 1)/2) = α(d0 − 1)/2 ≥ ϕ(uia , uib). In case

(2), note that b − a ≥ m ≥ d + 1. Hence, Pa,b = ((b− a− 1)/2) (d + 1) −
b−1∑

t=a+1

L(uit) ≥

((b− a− 1)/2) (d+ 1)−
b−1∑

t=a+1

(d/2) = ((b− a− 1)/2) = d/2 ≥ ϕ(uia , uib).

Case 2. |W (T )|= 2

Again we consider the following two subcases to de�ne an ordering w0, w1, . . . , wmn−1

of V (T 2□Kn).

Subcase 1. |V (T )|≤ |V (Kn)|.

In this case, for 0 ≤ t ≤ mn− 1, de�ne wt := (ui, vj), where i ∈ {0, 1, . . . ,m− 1}, j ∈
{0, 1, . . . , n− 1} and

t :=

{
m(j − i) + i, if j ≥ i,

m(n+ j − i) + i, if j < i.

Subcase 2. |V (T )|> |V (Kn)|.

In this case, de�ne an ordering w0, w1, . . . , wmn−1 of V (T 2□Kn) as follows: For x lcm(m,n) ≤
t ≤ (x+ 1) lcm(m,n)− 1, where 0 ≤ x ≤ gcd(m,n)− 1, set

wt :=

 (ui, vj+x), if t ≡ i (mod m), t ≡ j (mod n) and 0 ≤ j ≤ n− (x+ 1),

(ui, vj+x−n), if t ≡ i (mod m), t ≡ j (mod n) and n− x ≤ j ≤ n− 1,

Then, for above de�ned ordering, it is clear that (a) L(ui0) = L(uimn−1) = L(u0) = 0,

(b) vjt and vjt+1 are distinct for 0 ≤ t ≤ mn− 2, (c) uit and uit+1 are in di�erent branches

for 0 ≤ t ≤ mn − 2, and (d) L(uit) ≤ (d − 1)/2 for all 0 ≤ t ≤ mn − 1. Hence the

conditions (a)-(d) of Theorem 3.3 are satis�ed. Now we prove that the condition (e) of

Theorem 3.3 holds.

Claim 2. The above de�ned ordering w0, w1, . . . , wmn−1 of V (T 2□Kn) satis�es (13).
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Let wa = (uia , vja) and wb = (uib , vjb) (0 ≤ a < b ≤ mn − 1) be two vertices such

that uia and uib are in the same branch when viewed as vertices of T 2. Denote the right-

hand side of (13) by Pa,b. In this case, note that d0 ≥ 3, ε = 0 and L(ut) ≤ (d − 1)/2

for all 0 ≤ t ≤ mn − 1. Observe that for wa = (uia , vja) and wb = (uib , vjb) such

that uia and uib are in the same branch of T 2, there are two possibilities: (1) ia ̸= ib,

(2) ia = ib. In case (1), we have b − a ≥ α(d0 − 1), where α ≥ ϕ(uia , uib). Hence,

Pa,b = ((b− a− 1)/2) d−
b−1∑

t=a+1

L(uit)−1/2 ≥ ((b− a− 1)/2) d−
b−1∑

t=a+1

((d−1)/2)−1/2 =

(b−a−2)/2 = α(d0−1)/2 ≥ ϕ(uia , uib). In case (2), note that b−a ≥ m ≥ d+1. Hence,

Pa,b = ((b− a− 1)/2) d−
b−1∑

t=a+1

L(uit)−1/2 ≥ ((b− a− 1)/2) d−
b−1∑

t=a+1

((d−1)/2)−1/2 =

(b− a− 2)/2 = α(d− 1)/2 ≥ ϕ(uia , uib).

Corollary 4.2. Let q ≥ 3 and n ≥ 4 be integers. Then

rn(K1,q□Kn) = (q + 3)n− 3.

Corollary 4.3. Let q ≥ 2 and n ≥ 4 be integers. Then

rn(Dq□Kn) = 2n(q + 3)− 3.

Corollary 4.4. Let k, n ≥ 4 and q ≥ 5 be integers. Then

rn(Bq,k□Kn) = qn(k + 6) + 7(n− 1).

Example 4.5. In Table 1, a vertex ordering O(V (K1,6□K7)) := w0, w1, . . . , w48 and an

optimal radio labelling of K1,6□K7 are shown.

Table 1. rn(K1,6□K7) = 60

(ui, vj) v0 v1 v2 v3 v4 v5 v6
u0 w0 → 0 w7 → 9 w14 → 18 w21 → 27 w28 → 36 w35 → 45 w48 → 60

u1 w42 → 53 w1 → 2 w8 → 11 w15 → 20 w22 → 29 w29 → 38 w36 → 47

u2 w37 → 48 w43 → 54 w2 → 3 w9 → 12 w16 → 21 w23 → 30 w30 → 39

u3 w31 → 40 w38 → 49 w44 → 55 w3 → 4 w10 → 13 w17 → 22 w24 → 31

u4 w25 → 32 w32 → 41 w39 → 50 w45 → 56 w4 → 5 w11 → 14 w18 → 23

u5 w19 → 24 w26 → 33 w33 → 42 w40 → 51 w46 → 57 w5 → 6 w12 → 15

u6 w13 → 16 w20 → 25 w27 → 34 w34 → 43 w41 → 12 w47 → 58 w6 → 7

Example 4.6. In Table 2, a vertex ordering O(V (D5□K7)) := w0, w1, . . . , w83 and an

optimal radio labelling of D5□K7 are shown.
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Table 2. rn(D5□K7) =109

(ui, vj) v0 v1 v2 v3 v4 v5 v6
u0 w0 → 0 w36 → 48 w72 → 96 w24 → 32 w60 → 80 w12 → 16 w48 → 64

u1 w49 → 66 w1 → 2 w37 → 50 w73 → 98 w25 → 34 w61 → 82 w13 → 18

u2 w14 → 19 w50 → 67 w2 → 3 w38 → 51 w74 → 99 w26 → 35 w62 → 83

u3 w63 → 84 w15 → 20 w51 → 68 w3 → 4 w39 → 52 w75 → 100 w27 → 36

u4 w28 → 37 w64 → 85 w16 → 21 w52 → 69 w4 → 5 w40 → 53 w76 → 101

u5 w77 → 102 w29 → 38 w65 → 86 w17 → 22 w53 → 70 w5 → 6 w41 → 54

u6 w42 → 55 w78 → 103 w30 → 39 w66 → 87 w18 → 23 w54 → 71 w6 → 7

u7 w7 → 8 w43 → 56 w79 → 104 w31 → 40 w67 → 88 w19 → 24 w55 → 72

u8 w56 → 73 w8 → 9 w44 → 57 w80 → 105 w32 → 41 w68 → 89 w20 → 25

u9 w21 → 26 w57 → 74 w9 → 10 w45 → 58 w81 → 106 w33 → 42 w69 → 90

u10 w70 → 91 w22 → 27 w58 → 75 w10 → 11 w46 → 59 w82 → 107 w34 → 43

u11 w35 → 45 w71 → 93 w23 → 29 w59 → 77 w11 → 13 w47 → 61 w83 → 109

5. Concluding remarks

In [11], Kim et al. determined the radio number of a path Pm(m ≥ 4) and the complete

graph Kn(n ≥ 3) as follows:

rn(Pm□Kn) =

{
m2n−2m+2

2
, if m is even,

m2n−2m+n+2
2

, if m is odd.
(16)

This result can be proved using our results. The outline of the proof is as follows: Since

a path Pm is a tree, we use Theorems 3.1 and 3.2 to prove the result. Note that the

diameter d of Pm is m− 1. We consider the following two cases.

Case 1. m is even. In this case, the total level of a path Pm is given by L(Pm) =

m(m− 2)/2. Substituting this into (6), we obtain rn(Pm□Kn) ≥ (m2n− 2m+2)/2. Now

observe that the ordering of V (Pm□Kn) given in [11] satis�es the conditions (a)-(c) in

Theorem 3.2 and hence we obtain that the �rst line in (16) holds.

Case 2. m is odd. In this case, the total level of a path Pm is given by L(Pm) =

(m2 − 1)/2. Substituting this into (6), we obtain rn(Pm□Kn) ≥ (m2n− 2m+ n)/2. Now

assume that rn(Pm□Kn) = (m2n − 2m + n)/2. Then by Theorem 3.2, there exists an

ordering w0, w1, . . . , wmn−1 of V (Pm□Kn) such that the conditions (a)-(c) in Theorem 3.2

hold. Since L(ui0) = L(uimn−1) by (a), observe that there exists a vertex wk = (uik , vjk)

such that L(uik) = (m− 1)/2 and L(uik−1
) ̸= 0, L(uik+1

) ̸= 0. Note that d(uik−1
, uik+1

) =

L(uik−1
) + L(uik+1

)− 2ϕ(uik−1
, uik+1

) with ϕ(uik−1
, uik+1

) ≥ 1. Denote the right-hand side

of (9) by Sa,b and consider uik−1
and uik+1

in (9). Then we obtain Sk−1,k+1 = L(uik−1
) +

2L(uik)+L(uik+1
)−(d+1) = L(uik)+2((d+1)/2)+L(uik+1

)−(d+1) = L(uik−1
)+L(uik+1

) >

L(uik−1
) + L(uik+1

) − 2ϕ(uik−1
, uik+1

) = d(uik−1
, uik+1

), which is a contradiction. Hence,

rn(Pm□Kn) ≥ (m2n−2m+n+2)/2. Now observe that the ordering of V (Pm□Kn) given

in [11] satis�es the conditions (a)-(c) in Theorem 3.2. Hence we obtain that the second

line in (16) holds, and this completes the proof.
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