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Abstract: We have constructed Block structured Hadamard matrices in which odd number of blocks
are used in a row (column). These matrices are different than those introduced by Agaian. Gen-
eralised forms of arrays developed by Goethals-Seidel, Wallis-Whiteman and Seberry-Balonin heve
been employed. Such types of matrices are applicable in the constructions of nested group divisible
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1. Introduction

Hadamard matrices discovered by Sylvester in 1867 [1] have profound structural properties. These
kind of matrices have Hadamard matrices as their sub blocks. In his matrices even number of
Hadamard blocks were arranged in a row (or column). However in 1985 Agaian [2] introduced
Hadamard matrices with odd number of Hadamard blocks in a row. These matrices are named Block
Structured Hadamard matrices. He has demonstrated their application in signal processing as well [3].
The matrices constructed by him are in correspondence to the Williamson matrices arranged in his
array.

Williamson’s array has been further generalized by Goethals and Seidel [4]. Matrices suitable for
Goethals- Seidel arrays have been constructed by several authors [5–7]. In 2015, Seberry and Balonin
[8] introduced what is known as the “propus array” and its generalizations. This was accomplished
by imposing certain restrictions on Williamson’s array and applying the arrangement principles from
the Goethals-Seidel array.

The result presented in this paper involves the construction of block-structured Hadamard matri-
ces using the generalizations of Goethals-Seidel array and Seberry-Balonin array. Similar to that of
Agaian, these matrices also have odd number of blocks arranged in a row. However these are differ-
ent from Agaian’s matrices, as these do not correspond to Williamson matrices. Furthermore, their
applications in nested group divisible design are also discussed.

The paper is organized as follows: Section 2 contains all the relevant definitions and results. Sec-
tion 3 comprises of the main result of this paper. Results are presented in three main theorems and
two corollaries. Examples of each type are also included here. Section 4 is conclusion in which
we have discussed some properties and an application of block structured Hadamard matrices in the
construction of nested group divisible designs.
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2. Preliminaries

We recall some basic definitions here [4, 9–12]. An Hadamard matrix is a square matrix
H of order n with entries ±1 such that HH⊤ = nIn. Four matrices A, B,C,D of order n with
entries ±1 are called Williamson matrices if (i) A, B,C,D are circulant, symmetric and commuting
(ii)A2 + B2 + C2 + D2 = 4nIn. If A, B,C,D of same order are circulant ±1 matrices satisfying
AA⊤ + BB⊤ + CC⊤ + DD⊤ = 4nIn then these are called Goethals-Seidel (GS) matrices. Dokovic
et al. [6] have constructed GS matrices of type (ssss), (sssk), (sskk), (skkk) where ‘s’ stand for
symmetric and ‘k’ for skew type GS matrices. In this article we shall be using (sssa) and (kkka) type
GS matrices, where ‘a’ stands for any (symmetric, skew type or other) type of matrix. An Hadamard
matrix H of order 4tn will be called Block Structured if all its 4t × 4t blocks are Hadamard matrices
for a given t. If A = [ai j] and B = [bi j] be two matrices of order m and n respectively then the
Kronecker product A ⊗ B is the matrix of order mn given by A ⊗ B = [ai jB]. Two matrices A and B
are said to be Amicable if AB⊤ = BA⊤.
Let the elements zi of an additive abelian group G be ordered in a fixed way. Let X ⊂ G. Then the
matrix M = (mi j) defined by

mi j = ψ(z j − zi), where ψ(z j − zi) =

1 i f z j − zi ∈ X,

0 otherwise,

is called type 1 incidence matrix of X in G, and the matrix N = (ni j) defined by

ni j = ψ(z j + zi), where ψ(z j + zi) =

1 i f z j + zi ∈ X,

0 otherwise,

is called type 2 incidence matrix of X in G. A Circulant matrix M = (mi j) defined by mi j = m1, j−i+1

is a special case of type 1 matrix and a backcirculant matrix N = (ni j) defined by ni j = n1,i+ j−1 is a
special case of type 2 matrix. Following proposition is useful in development of the results in this
paper.

Proposition 1. [Seberry] If X and Y are type 1 matrices and Z is type 2 matrix then
XY = YX, X⊤Y = YX⊤, XY⊤ = Y⊤X, X⊤Y⊤ = Y⊤X⊤ and
XZ⊤ = ZX⊤, XZ = Z⊤X⊤, X⊤Z⊤ = ZX, X⊤Z = Z⊤X.

Notation: Throughout this paper In denotes the identity matrix of order n and Jn denotes the all-1
matrix of order n. Wherever I and J are used without subscript, they have the same meaning and
their orders can be determined from the context.

3. Main Result

Lemma 1. Let Ai, i = 0, 1, 2, 3 be circulant matrices of order n and let R = [ri j] be defined as
ri,n−i+1 = 1, ri j = 0 otherwise. Then

1. (AiR)⊤ = (AiR) & (A⊤i R)⊤ = (A⊤i R), i = 1, 2, 3
2. A0(AiR)⊤ = (AiR)A⊤0 , i=1, 2, 3
3. A0(A⊤i R)⊤ = (A⊤i R)A⊤0 , i=1, 2, 3
4. (AiR)(A⊤j R)⊤ = (AT

j R)(AiR)⊤, i, j = 1, 2, 3
5. (AiR)(Ai+ jR)⊤ = (A⊤i+ jR)(A⊤i R)⊤ & (A⊤i+ jR)(A⊤i R)⊤ = (A⊤i R)(A⊤i+ jR)⊤, i, j = 1, 2, i + j ≤ 3

Proof. Using Proposition (1). □
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Using this lemma following Theorem can be proven easily.

Theorem 1. Let there exist (0, 1,−1)-matrices Xi,Y j; 0 ≤ i ≤ 3, 1 ≤ j ≤ 3 of order 4t; (t ∈ N) such
that
(i) X0X⊤0 = XiX⊤i + YiY⊤i = tI4t; 1 ≤ i ≤ 3
(ii) X0X⊤i + XiX⊤0 = 0 = X0Y⊤i + YiX⊤0 , i = 1, 2, 3
(iii) XiY⊤i = 0 = YiX⊤i , ∀i = 1, 2, 3
(iv) XiY⊤j + X jY⊤i = 0 = Y jX⊤i + YiX⊤j , 1 ≤ i , j ≤ 3
(v) XiX⊤i+ j + Yi+ jY⊤i = 0 = Xi+ jX⊤i + YiY⊤i+ j, i, j = 1, 2, i + j ≤ 3.
Then we have
(1) If there exist Goethals-Seidel matrices Ai, i = 0, 1, 2, 3 of order n of the type (kkka) or (sssa) then
there exists a block structured Hadamard matrix of order 4nt with Hadamard blocks of order 4t.
(2) If there exist type 2 matrix A0 and three type 1 matrices Ai; 1 ≤ i ≤ 3 defined on the same Abelian
group of order n such that

∑3
i=0 AiA⊤i = 4nIn then there exists a block structured Hadamard matrix of

order 4nt with Hadamard blocks of order 4t.

Proof. (1) Define a matrix H by

H = A0 ⊗ X0 + A1R ⊗ X1 + A⊤1 R ⊗ Y1 + A2R ⊗ X2 + A⊤2 R ⊗ Y2 + A3R ⊗ X3 + A⊤3 R ⊗ Y3,

where Ais correspond to ‘s’ or ‘k’ type for i = 1, 2, 3 and A0 corresponds to ‘a’ type. Then

HH⊤ =A0A⊤0 ⊗ X0X⊤0 +
3∑

i=1

{(AiR)(AiR)⊤ ⊗ XiX⊤i + (A⊤i R)(A⊤i R)⊤ ⊗ YiY⊤i }

+ [
3∑

i=1

{(A0(AiR)⊤ ⊗ X0X⊤i + (AiR)A⊤0 ⊗ XiX⊤0 + A0(A⊤i R)⊤ ⊗ X0Y⊤i + (A⊤i R)A⊤0 ⊗ YiX⊤0 )}

+

3∑
j=1

3∑
i=1

{(AiR)(A⊤j R)⊤ ⊗ XiY⊤j + (A⊤j R)(AiR)⊤ ⊗ Y jX⊤i }

+

2∑
i=1

{(AiR)(Ai+1R)⊤ ⊗ XiX⊤i+1 + (Ai+1R)(AiR)⊤ ⊗ Xi+1X⊤i

+ (A⊤i R)(A⊤i+1R)⊤ ⊗ YiY⊤i+1 + (A⊤i+1R)(A⊤i R)⊤ ⊗ Yi+1Y⊤i )}

+
∑
i=1

{(AiR)(Ai+2R)⊤ ⊗ XiX⊤i+2 + (Ai+2R)(AiR)⊤ ⊗ Xi+2X⊤i

+ (A⊤i R)(A⊤i+2R)⊤ ⊗ YiY⊤i+2 + (A⊤i+2R)(A⊤i R)⊤ ⊗ Yi+2Y⊤i )}]

=A0A⊤0 ⊗ X0X⊤0 +
3∑

i=1

AiA⊤i ⊗ (XiX⊤i + YiY⊤i )

+ [
3∑

i=1

{A0(AiR)⊤ ⊗ (X0X⊤i + XiX⊤0 ) + A0(A⊤i R)⊤ ⊗ (X0Y⊤i + YiX⊤0 )}

+

3∑
j=1

3∑
i=1

(AiR)(A⊤j R)⊤ ⊗ (XiY⊤j + Y jX⊤i )

+

2∑
i=1

{(AiR)(Ai+1R)⊤ ⊗ (XiX⊤i+1 + Yi+1Y⊤i ) + (Ai+1R)(AiR)⊤ ⊗ (Xi+1X⊤i + YiY⊤i+1)}

+
∑
i=1

{(AiR)(Ai+2R)⊤ ⊗ (XiX⊤i+2 + Yi+2Y⊤i ) + (Ai+2R)(AiR)⊤ ⊗ (Xi+2X⊤i + YiY⊤i+2)}]
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=A0A⊤0 ⊗ X0X⊤0 +
3∑

i=1

AiA⊤i ⊗ (XiX⊤i + YiY⊤i )

+ [0 + {
∑
i= j

A2
i ⊗ (XiY⊤i + YiX⊤i ) +

∑
i, j

AiA j ⊗ (XiY⊤j + Y jX⊤i + X jY⊤i + YiX⊤j )} + 0 + 0]

={

4∑
i=0

AiA⊤i } ⊗ tI4t

=4ntI4nt.

Hence H is an Hadamard matrix. Now each 4t ⊗ 4t block (say Hi j) is a linear combination of X′i s
and Y ′i s of the form
Hi j =

∑3
i=0 ρiXi +

∑3
j=1 σ jY j, ρi, σ j ∈ {1,−1}.

Case 1: Ais are of the type (kkka)
Then A⊤i = −Ai, i = 1, 2, 3
⇒ A⊤i R = −AiR, i = 1, 2, 3
⇒ ρi = −σi, i = 1, 2, 3.

Case 2: Ais are of the type (sssa)
Then A⊤i = Ai, i = 1, 2, 3
⇒ A⊤i R = AiR, i = 1, 2, 3
⇒ ρi = σi, i = 1, 2, 3.

Now

Hi jH⊤i j =

3∑
i=0

XiX⊤i +
3∑

i=1

YiY⊤i ± [
3∑

i=1

(X0X⊤i + XiX⊤0 + X0Y⊤i + YiX⊤0 )

±
∑

j

∑
i

(XiY⊤j + Y jX⊤i ) ±
∑

(XiX⊤i+1 + Xi+1X⊤i + YiY⊤i+1 + Yi+1Y⊤i )]

=4tI4t.

⇒ each 4t ⊗ 4t block of H is an Hadamard matrix.
(2) Proof is similar to case (1), just define H by
H = A0 ⊗ X0 +

∑3
i=1{Ai ⊗ Xi + A⊤i ⊗ Yi} □

Example 1. The matrices

X0 =



1 0 0 0 1 0 0 0
0 1 0 0 0 −1 0 0
0 0 1 0 0 0 −1 0
0 0 0 1 0 0 0 −1
−1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1


, X1 =



0 1 0 0 0 1 0 0
−1 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 −1 0 0 0 1 0 0
−1 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


, X2 =



0 0 1 0 0 0 1 0
0 0 0 0 0 0 0 0
−1 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0
0 0 −1 0 0 0 1 0
0 0 0 0 0 0 0 0
−1 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 0



X3 =



0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
−1 0 0 0 1 0 0 0
0 0 0 −1 0 0 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
−1 0 0 0 −1 0 0 0


,Y1 =



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 −1
0 0 −1 0 0 0 1 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 −1
0 0 1 0 0 0 1 0


,Y2 =



0 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 1
0 0 0 0 0 0 0 0
0 1 0 0 0 −1 0 0
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 0
0 −1 0 0 0 −1 0 0


,
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Y3 =



0 0 0 0 0 0 0 0
0 0 1 0 0 0 −1 0
0 −1 0 0 0 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 −1 0 0 0 −1 0
0 1 0 0 0 1 0 0
0 0 0 0 0 0 0 0


together with (sssa) or (kkka) type Goethals-Seidel matrices of order n taken as As

i give the Block Structured Hadamard

matrix of order 8n with Hadamard blocks of order 8.

Theorem 2. Let there exist three (0, 1,−1)-matrices of order 4t (t ∈ N) such that
(i) XiX⊤i = tI4t; i = 1, 3 and X2X⊤2 = 2tI4t

(ii) XiX⊤j + X jX⊤i = 0; 1 ≤ i , j ≤ 3.
Then we have
(1) If there exist four Williamson matrices Ai, 1 ≤ i ≤ 4 such that A4 = A2 of order n then there exists
a block structured Hadamard matrix of order 4nt with Hadamard blocks of order 4t.
(2)If there exist three pairwise amicable ±1 matrices Ai; 1 ≤ i ≤ 3 of order n such that A1A⊤1 +2A2A⊤2 +
A3A⊤3 = 4nIn then there exists a block structured Hadamard matrix of order 4nt with Hadamard blocks
of order 4t.

Proof. (1) Define H by H =
∑3

i=1 Ai ⊗ Xi then

HH⊤ =
3∑

i=1

AiA⊤i ⊗ XiX⊤i + [
2∑

i=1

(AiA⊤i+1 ⊗ XiX⊤i+1 + Ai+1A⊤i ⊗ Xi+1X⊤i )

+
∑
i=1

(AiA⊤i+2 ⊗ XiX⊤i+2 + Ai+2A⊤i ⊗ Xi+2X⊤i )]

=

3∑
i=1

AiA⊤i ⊗ XiX⊤i + [
2∑

i=1

(AiA⊤i+1 ⊗ {XiX⊤i+1 + Xi+1X⊤i })

+
∑
i=1

(AiA⊤i+2 ⊗ {XiX⊤i+2 + Xi+2X⊤i })]

={A1A⊤1 + 2A2A⊤2 + A3A⊤3 } ⊗ tI4t

=4nIn ⊗ tI4t

=4ntI4nt.

Now, each m ⊗ m blocks of Hi j is a linear combination of X′i s i.e., Hi j =
∑3

i=1 ρiXi; ρi ∈ {1,−1}
therefore,

Hi jH⊤i j =

3∑
i=1

XiX⊤i ±
∑

1≤i, j≤3

(XiX⊤j + X jX⊤i )

=4tI4t.

(2) Can be proven similarly. □

Example 2. Take

X1 =


1 0 0 0
0 0 −1 0
0 −1 0 0
0 0 0 −1

 , X2 =


0 1 1 0
1 0 0 −1
1 0 0 1
0 −1 1 0

 , X3 =


0 0 0 1
0 1 0 0
0 0 −1 0
1 0 0 0

 .
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Corollary 1. If there exist matrices Xi, i = 1, 2, 3 of order 4t, t ∈ N satisfying conditions of Theorem
(2), the matrices Xi, i = 1, 2, 3 of order 8t, t ∈ N also exist.

Proof. Define new Xi as Xi ⇒

[
1 1
1 −1

]
⊗ Xi, i = 1, 2, 3. □

Corollary 2. If there exist matrices Xi, i = 1, 2, 3 of order 4t, t ∈ N satisfying conditions of Theorem
(2), and there exists three Amicable Hadamard matrices of order r then there exist Xi matrices of
order 4rt.

Proof. Let Hi, i = 1, 2, 3 be Amicable Hadamard matrix of order r. Define new Xi as Xi ⇒ Xi⊗Hi, i =
1, 2, 3. □

Theorem 3. Let there exist (0, 1,−1)-matrices Xi,Y j; 0 ≤ i ≤ 2, 1 ≤ j ≤ 2 of order 4t; t ∈ N such that
(i) X0X⊤0 = X2X⊤2 + Y2Y⊤2 = tI4t and X1X⊤1 + Y1Y⊤1 = 2tI4t

(ii) X0X⊤i + XiX⊤0 = 0 = X0Y⊤i + YiX⊤0 , i = 1, 2
(iii) XiY⊤i = 0 = YiX⊤i , ∀i = 1, 2
(iv) XiY⊤j + X jY⊤i = 0 = Y jX⊤i + YiX⊤j , 1 ≤ i , j ≤ 2
(v) XiX⊤i+ j + Yi+ jY⊤i = 0 = Xi+ jX⊤i + YiY⊤i+ j, i, j = 1, i + j ≤ 2.
Then we have, if there exist three pairwise commutative ±1 matrices Ai; 0 ≤ i ≤ 2 of order n such that
A0A⊤0 + 2A1A⊤1 + A2A⊤2 = 4nIn then there exists a block structured Hadamard matrix of order 4nt with
Hadamard blocks of order 4t.

Proof. Proof is simillar to Theorem (1) and Theorem (2). Just take
H = A0 ⊗ X0 + A1R ⊗ X1 + A⊤1 R ⊗ Y1 + A2R ⊗ X2 + A⊤2 R ⊗ Y2. □

Example 3. From Example (1) take X′i s and Y ′i s and set X0 = X0, X1 = X1 + X2, X2 = X3,Y1 =

Y1 + Y2,Y2 = Y3 to get the desired result.

4. Conclusion

In this paper we have constructed block structured Hadamard matrices different from those of
Sylvester and Agaian. Matrices X′i s and Y ′i s of Theorem (1) can be obtained from Goethals-Seidel
array and its generalization. In this method block structured Hadamard matrix of order 4nt is
constructed using the blocks of a set containing at the most 16 distinct Hadamard blocks of order t.
(Here two Hadamard blocks Hi and H j are considered to be distinct if Hi , ±H j.) Matrices A′i s can
be found in the works of several authors specially in [4, 11, 12].

Matrices X′i s and Y ′i s of Theorem (2) can be obtained from Propus array and Propus type
arrays. Seberry and Balonin have constructed required A′i s matrices in abundance [8]. Methods of
construction of these matrices are not proposed here. In this construction there are precisely four
distinct Hadamard blocks viz. ±(X1 + X2 + X3), ±(X1 − X2 + X3), ±(X1 − X2 − X3) and ±(X1 + X2 − X3).
If the matrices A′i s are constructed from Turyn’s method then there are only three distinct Hadamard
blocks viz. ±(X1 + X2 + X3), ±(X1 − X2 + X3), ±(X1 − X2 − X3).

Theorem (3) is a product of the Theorems (1) and (2). In this construction number of distinct
Hadamard blocks are 16. Efforts could be made to find a method to construct matrices X′i s and Y ′i s in
general, which could result in some Hadamard matrices of new orders. Block structured Hadamard
matrices may be used in nested group divisible (GD) designs as follows:

It is well known that replacing 1 by I2 and −1 by (J − I)2 in a Hadamard matrix H of order 4nt we
obtain a series of resolvable semi-regular GD designs with parameters (see Saurabh and Sinha [13]):

v = b = m∗n∗ = 8nt, r = k = 4nt, λ1 = 0, λ2 = 2nt,m∗ = 4nt, n∗ = 2. (1)
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Further since H contains Hadamard blocks each of order 4t, removing s rows of blocks of incidence
matrix of (1) we obtain a series of GD designs with parameters:

v = 8t(n − s), b = 8nt, r = 4nt, k = 4t(n − s), λ1 = 0, λ2 = 2nt,m∗ = 4t(n − s), n∗ = 2; s < n. (2)

Hence a GD design with parameters (2) is nested within a GD design with parameters (1). For
details on GD designs we refer to Raghvarao and Padgett [14], Saurabh and Sinha [13] and Saurabh
and Prasad [15].
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