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Abstract: Consider the simple connected graph G with vertex set V(G) and edge set E(G). A graph
G can be resolved by R if each vertex’s representation of distances to the other vertices in R uniquely
identifies it. The minimum cardinality of the set R is the metric dimension of G. The length of the
shortest path between any two vertices, x, y in V(G), is signified by the distance symbol d(x, y). An
ordered k-tuple r(x/R) = (d(x, z1), d(x, z2), ..., d(x, zk)) represents representation of x with respect to
R for an ordered subset R = {z1, z2, z3..., zk} of vertices and vertex x in a connected graph. Metric
dimension is used in a wide range of contexts where connection, distance, and connectedness are
essential factors. It facilitates understanding the structure and dynamics of complex networks and
problems relating to robotics network design, navigation, optimization, and facility location. Robots
can optimize their localization and navigation methods using a small number of reference sites due
to the pertinent idea of metric dimension. As a result, many robotic applications, such as collabo-
rative robotics, autonomous navigation, and environment mapping, are more accurate, efficient, and
resilient. A claw-free cubic graph (CCG) is one in which no induced subgraph is a claw. CCG proves
helpful in various fields, including optimization, network design, and algorithm development. They
offer intriguing structural and algorithmic properties. Developing algorithms and results for claw-
free graphs frequently has applications in solving of challenging real-world situations. The metric
dimension of a couple of claw-free cubic graphs (CCG), a string of diamonds (SOD), and a ring of
diamonds (ROD) will be determined in this work.

Keywords: Cardinality, Claw-free cubic graphs, Metric Dimension, Resolving set, Simple
connected graph

1. Introduction

The metric dimension of a graph is the smallest number of nodes required to identify all other
nodes uniquely based on shortest path distances. In 1975, Slater proposed the concept of metric
dimension [1]. Metric dimension in graphs has applications in a wide range of areas, including
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location detection [1], embedding DNA sequences in real space [2], detecting network motifs [3],
robotics [4], navigation [5] and more. It offers practical knowledge of the structure and properties of
graphs, which can be used to effectively solve real-world issues and achieve decisions in a variety of
circumstances.

On the other hand, several authors have proposed alternate forms of metric generators to emphasize
different perspectives on metric generators. Resolving dominating sets [6], independent resolving
sets [7–9], local metric sets [10, 11], k-metric generators [12], resolving partitions [13], and other
concepts have been presented and investigated. There are several other articles in the literature that
are pretty intriguing about the metric dimension of graphs. However, due to the large number of
results on this topic, just those publications are cited that are relevant in our opinion.

Peterin and Yero [14] created novel graphs by employing graph operations such as graph join,
lexicographic product, and corona product. They then calculate the edge metric dimensions for these
newly formed graphs. Liu et al. [15] calculated the metric dimension of specific classes of Toeplitz
graphs and demonstrated that the metric dimension remains constant for these classes of graphs. Zhu
et al. [16] determined the structure of graphs that yield the highest edge metric dimension, and derived
numerous necessary and sufficient requirements for a graph. Based on these findings, they devised an
algorithm with a temporal complexity of O(n3) that determines whether a graph of size n reaches an
upper limit. In addition, they discussed and resolved a fascinating category of extremal graphs, where
the graphs acquired by adding one edge are not the same as the graph that achieves the upper bound
for edge metric dimension. Akhter and Farooq [17] examined the (3, 6)-fullerene and (4, 6)-fullerene
graphs and calculated the metric dimension for these graphs. In addition, they provided speculation
regarding the metric dimension of (3, 6)-fullerene and (4, 6)-fullerene graphs. Ebrahimi et al. [18]
conducted research on the strong metric dimension of annihilator graphs linked to commutative rings.
They provided several equations for the strong metric dimension of these graphs. Alshehri et al. [19]
examined the metric dimension and its generalizations for the generalized perimantanes diamondoid
structure. They demonstrated that each parameter is contingent upon the number of copies of the orig-
inal or base perimantanes diamondoid structure, and varies with the parameter n. Zhang et al. [20]
examined the issue of determining the metric dimension of a folded n-cube. The researchers deter-
mined the upper limits of the metric dimension of the folded n-cube by creating minimal resolving
sets for the n-cube. Bashir et al. [21]calculated the 2-metric dimension of rotationally symmetric
plane graphs and determined that it is unaffected by the number of vertices. Wang et al. [22] demon-
strated that for n more than 10, the Petersen graph P(n, 3) has an edge dimension of 4. They achieved
this by providing a semi-combinatorial proof of the nonexistence of an edge resolving set of order 3,
and by explicitly creating an edge resolving set of order 4. Rezaei et al. [23] examined the metric di-
mension, local metric dimension, and edge metric dimension of certain (generalized) Cayley graphs.
Li et al. [24] created two graphs by utilizing the tensor of a path graph with a path and the tensor
product of a path with a cycle. Additionally, they established the foundation for these graphs and
the presentation of resolving vectors in a comprehensive closed form, specifically in relation to the
basis. Sharma et al. [25] examined the resolvability parameter, namely the mixed metric dimension,
for the intricate molecular structure of the Polycyclic aromatic hydrocarbons network. Additionally,
they demonstrated that the mixed metric dimension of the Polycyclic aromatic hydrocarbons network
is not limited and does not remain constant. Liu et al. [26] examined the chemical structures of
starphene and six-sided hollow coronoid and calculated their multiset dimension and mixed metric
dimension. Sharma et al. [27] calculated the metric dimension and the fault-tolerant metric dimen-
sion for three sets of convex polytope graphs. Their primary findings confirm that the three families,
previously described, possess consistent fault-tolerant resolvability structures. Javaid et al. [28] de-
veloped a computer method to calculate the local fractional metric dimension of connected networks
using precise lower and upper bounds. The study provides a comprehensive analysis of connected net-
works that achieve the minimum local fractional metric dimension. Additionally, it examines specific
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Figure 1. Resolving Set for Grid G4,3 (Blue Vertices Belong to the Resolving Set).

Figure 2. Resolving Set for K5 (Blue Vertices Belong to the Resolving Set).

types of networks (complete networks, generalized windmills, and h-level windmills) that achieve the
maximum local fractional metric dimension. The local fractional metric dimension of wheel-related
networks (including anti-web gear, m-level wheel, prism, helm, and flower) is computed based on
the major found criteria. The boundedness or unboundedness of these networks is further demon-
strated using 2D and 3D graphical representations. Nadeem et al. [29] calculated the partition and
fault-tolerant partition resolvability of oxide interconnection networks, encompassing single oxide
chain networks, rhombus oxide networks, and standard triangulene oxide networks. In addition, this
paper includes an implementation of fault resistant partitioning for region-based routing in networks.
Azhar et al. [30] examined the partition and fault-tolerant partition resolvability of specific triangular
mesh networks, including triangular ladder, triangular mesh, reflection triangular mesh, tower trian-
gular mesh, and reflection tower triangular mesh networks. This demonstrates that the fault-tolerant
partition dimension of these networks is 4, while the partition dimension is 3. Continuing the above-
mentioned investigation, we shall calculate the metric dimensions of two distinct types of claw-free
cubic graphs graphs-a string of diamonds (SOD) and a ring of diamonds (ROD) in this paper.

2. Preliminaries

Consider the simple connected graph G with vertex set V(G) and edge set E(G). The length of the
shortest path between any two vertices, x, y in V(G), is signified by the distance symbol d(x, y). An
ordered k-tuple r(x/R) = (d(x, z1), d(x, z2), ..., d(x, zk)) represents representation of x with respect to
R for an ordered subset R = {z1, z2, z3..., zk} of vertices and vertex x in a connected graph. If each
vertex of the graph can be uniquely identified by its distances from the vertices of the resolving set,
then the set R is called a resolving set and the minimal cardinality of the resolving set is called metric
dimension of the G and is abbreviated as β(G)31. For example, resolving sets for the grid graph
G4,3 and complete graph K5 are shown in Figure 1 and 2 respectively. In Figure 1 and Figure 2, the
vertices filled with the color blue represent the vertices of the resolving set, so the metric dimension
of the grid graph G4,3 and the complete graph K5 are 2 and 4, respectively.
A cubic graph has a three-regular pattern with degree three. A claw graph is an isomorphic graph to
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Figure 3. The Transformation from K4 to Diamond (L = K4 − e).

Figure 4. A Sting of Diamonds Ln.

a complete bipartite graph K1,3. A claw-free graph is one in which no induced subgraph is a claw32.
Oum investigated simple claw-free bridgeless cubic graphs in33. An induced subgraph of G that is
isomorphic to K4−e, is called a diamond and is symbolized by L (See Figure 3). A string of diamonds
(SOD) is the series L1, ..., Ln, with Li having a vertex adjacent to Li+1 (See Figure 4). Furthermore, G
is commonly referred to as the ring of diamonds (ROD) if it is a connected claw-free and cubic graph
with each vertex lies in the diamond (See Figure 5).

3. Results and Discussion

In this section, the metric dimension of two different classes of Claw-free cubic (CCG) graphs,
i.e., SOD and ROD, will be determined. Here, we denote the string of diamonds Ln and the ring of
diamonds Rn simply by G. The vertices for the string of diamonds Ln and the ring of diamonds Rn are
labeled according to Figures 4 and 5, respectively.

Theorem 1. Let G be a String of diamonds and n is the number of diamonds. Then the metric
dimension is given by:

1. β(G) = 2, if n = 1.

Figure 5. A Ring of Diamonds Rn.
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2. β(G) = n, provided n ≥ 2.

Proof. The proof is split into two cases:

Case I: For n=1.
The vertex and edge sets of graph G are V (G) = {a1, b1, c1, d1, x1, x2} and E (G) =
{x1a1, a1b1, b1d1, a1c1, c1d1, d1x2}, respectively. Let the resolving set of the graph G be {x1, b1}.
Now the uniqueness of distances between the vertices in resolving set R and all other vertices of
graph G for n = 1 will be proved in the following way:

r(x1|R) = {0, 2} , r(a1|R) = {1, 1} , r(b1|R) = {2, 0} , r(c1 |R) = {2, 1} ,

r(d1 |R) = {3, 1} , r(x2 |R) = {4, 2} .

Since all the above representations are unique, so R is the resolving set. Hence β(G) ≤ 2. It is
known that β (G) = 1 if and only if G is a path graph. So, β(G) = 2 if n=1.

Case II: For n ≥ 2.
The vertex and edge sets of the graph G have the following expression: V (G) ={
a j, b j, c j, d j ; 1 ≤ j ≤ n

}
∪ {x1, x2}, and E (G) =

{
a jb j, a jc j, b jd j, b jc j, c jd j; 1 ≤ j ≤ n

}
∪

{x1a1, x2dn}, respectively. Consider the resolving set of the graph G is R= {b j; 1 ≤ j ≤ n}.
Now the uniqueness of the distances between each vertex in graph G and the resolving set R will
be demonstrated. The vertices can be articulated as follows in terms of the resolving set:
For the vertices

(
x1 , x2 ; 1 ≤ j ≤ n

)
,

r(x1 |R) = {(3 j − 1), 1 ≤ j ≤ n} ,

r(x2|R) = {(3n − 1) , (3n − 4) , (3n − 7) , . . . , 8, 5, 2} .

For the vertices
(
a j, 1 ≤ j ≤ n

)
,

r(a1 |R) = {(3 j − 2) , 1 ≤ j ≤ n} ,

r(a2|R) = {(2, 3 j − 5) , 2 ≤ j ≤ n} ,

r(a3|R) = {(5, 2, 3 j − 8) , 3 ≤ j ≤ n} ,

r(a4|R) = {(8, 5, 2, 3 j − 11) , 4 ≤ j ≤ n} ,

r(a5|R) = {(11, 8, 5, 2, 3 j − 14) , 5 ≤ j ≤ n} ,

...
r(an |R) = { (3n − 4, 3n − 7, ..., 11, 8, 5, 2, 1)} .

For vertices
(
bi, 1 ≤ j ≤ n

)
,

r(b1|R) = {(3 j − 3) , 1 ≤ j ≤ n} ,

r(b2 |R) = {(3, 3 j − 6 ) , 2 ≤ j ≤ n} ,

r(b3|R) = {(6, 3, 3 j − 9) , 3 ≤ j ≤ n} ,

r(b4|R) = {(9, 6, 3, 3 j − 12) , 4 ≤ j ≤ n} ,

r(b5|R) = {(12, 9, 6, 3, 3 j − 15) , 5 ≤ j ≤ n} ,

...
r(bn |R) = {(3n, 3n − 3, 3n − 6, 3n − 9, ..., 6, 3, 0)} .
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For vertices
(
c j, 1 ≤ j ≤ n

)
,

r(c1|R) = {(1, 3 j − 3) , 2 ≤ j ≤ n} ,

r(c2|R) = {(3, 1, 3 j − 6) , 3 ≤ j ≤ n} ,

r(c3|R) = {(6, 3, 1, 3 j − 9) , 4 ≤ j ≤ n} ,

r(c4|R) = {(9, 6, 3, 1, 3 j − 12) , 5 ≤ j ≤ n} ,

r(c5|R) = {(12, 9, 6, 3, 1, 3 j − 15) , 6 ≤ j ≤ n} ,

...
r(cn |R) = {(3n − 3, 3n − 6, 3n − 9, .., 9, 6, 3, 1 )} .

For vertices
(
di, 1 ≤ j ≤ n

)
,

r(d1|R) = {(1, 3 j − 4) , 2 ≤ j ≤ n} ,

r(d2|R) = {(2, 1, 3 j − 7) , 3 ≤ j ≤ n} ,

r(d3|R) = {(5, 2, 1, 3 j − 10) , 4 ≤ j ≤ n} ,

r(d4|R) = {(8, 5, 2, 1, 3 j − 13) , 5 ≤ j ≤ n} ,

r(d5|R) = {(11, 8, 5, 2, 1, 3 j − 17) , 6 ≤ j ≤ n} ,

...
r(dn |R) = {(3n − 2, 3n − 5, 3n − 8, .., 7, 4, 1)}.

R is the resolving set since each distance is distinct from the others. So, β(G) ≤ n.
It is additionally required to prove that R is the minimum resolving set. In order to accomplish
this, it must be verified that, for n ≥ 2, β(G) , n − 1. It is possible to accomplish this by
indicating that G cannot have a resolving set of order n − 1. Assume for the sake of argument
that R has cardinality n − 1 and is a resolving set. After removing (b1, b2, ..., bn) respectively
from resolving set, the following representations are same.

b1 : d(b1|b j) = d
(
c1|b j

)
,

b2: d(b2|b j) = d
(
c2|b j

)
,

b3: d(b3|b j) = d
(
c3|b j

)
,

...
and bn: d(bn|b j) = d

(
cn|b j

)
,

Given that there is contradiction in any distance, they are not all unique. Hence, a resolving set
with n − 1 elements does not exist. This completes the proof.

□

Theorem 2. Let G be a ring of diamonds, and n denotes the number of diamonds. Then the metric
dimension is given by:

i) β (G) = 3, for n=2.
ii) β(G) = n, where n ≥ 3.

Proof. The two cases that comprise the proof are as follows:
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Case I: For n=2.
The vertex and edge sets of graph G have the following mathematical expression: V (G) ={
a1, b1, c1, d1, a2, b2, c2, d2

}
and E(G)={a1b1, a1c1, b1c1, b1d1, d1a2, a2b2, a2c2, b2c2, b2d2 , d2a1}.

Let R = {b1, a2, b2} be the resolving set of graph G. Now, we will showcase the uniqueness of
the distances between every vertex in the given graph and the resolving set. Keeping in view the
representation of the vertices in the resolving set, we have:

r(a1|R) = {1, 3, 2} , r(a2|R) = {2, 0, 1} , r(b1 |R) = { 0, 2, 3} , r(b2 |R) = {3, 1, 0} , r(c1 |R) = {1, 2, 3} ,

r(c2 |R) = {3, 1, 1} , r(d1|R) = { 1, 1, 2} , r(d2 |R) = {2, 2, 1}

As each distance is unique, R is the resolving set. So, β (G) = 3. It is also necessary to show that R is

the minimal set of resolved problems. This can only be achieved by confirming thatβ(G) , 2.
To get this, one must demonstrate that R is not capable of having an order 2 resolving set.

Let R be a resolving set of cardinality two for the purposes of this discussion.

Upon eliminating b1, a2, and b2, we obtain b1: d(b1|R) = d (c1|R) = { 2, 3}.

a2: d (a1 | R) = d (d1 | R) = { 1, 2} .

b2: d (b2 | R) = d (b2 | R) = {3, 1} .

Due to the contradiction that two distances are exactly alike. Consequently, R does not have a
resolving set with cardinality 2. So β (G) = 3, for n=2.

Case II: For n ≥ 3.
The following is the expression for the vertex and edge sets of graph G: V (Rn) ={
a j, b j, c j, d j ; 1 ≤ j ≤ n

}
and E(Rn) =

{
a jb j, a jc j, b jd j, b jc j, c jd j, ; 1 ≤ j ≤ n

}⋃
{d ja j+1, 1 ≤ j ≤

n − 1 }
⋃
{a1dn}. Let R= {b j; 1 ≤ j ≤ n} be the resolving set of graph G. We shall show in this

section that the distances between each vertex in the given graph G and the resolving set R are
unique. The representation of the vertices with respect to the resolving set are given as:
As for the vertices

(
a j, 1 ≤ j ≤ n

)
,

r(a1|R) =


(3 j − 2) , 1 ≤ j ≤

⌈
n
2

⌉ 3
(⌈

n
2

⌉
+ 1
)
− 7, ..., 11, 8, 5, 2 ; i f n is odd

3
(
( n

2 ) + 1
)
− 4, ... 11, 8, 5, 2; i f n is even




r(a2|R) =


(2, 3 j − 5) , 2 ≤ j ≤

⌈
n
2

⌉
+ 1 3

(⌈
n
2

⌉
+ 1
)
− 7, ..., 11, 8, 5 ; i f n is odd

3
(
( n

2 ) + 1
)
− 4, ... 11, 8, 5; i f n is even


 ,

r(a3 |R) =


(5, 2, 3 j − 8) , 3 ≤ j ≤

⌈
n
2

⌉
+ 2 3

(⌈
n
2

⌉
+ 2
)
− 10, ..., 11, 8 ; i f n is odd

3
([

n
2

]
+ 2
)
− 4, ... 11, 8 ; i f n is even




...

r(an|R) =

 (3 j + 1) , 1 ≤ j ≤
(

n
2

)
− 1, i f n is even.

3
((

n
2

)
− 1
)
− 1, ..., 8, 5, 2, 1 ; i f n is even


r(an|R) =

 (3 j + 1) , 1 ≤ j ≤
⌊

n
2

⌋
, i f n is odd.

3
(⌊

n
2

⌋
− 1
)
− 1, ..., 8, 5, 2, 1 ; i f n is odd
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For vertices
(
b j, 1 ≤ j ≤ n

)
,

r(b1|R) =


(3 j − 3) , 1 ≤ j ≤

⌈
n
2

⌉ 3
(⌈

n
2

⌉
+ 1
)
− 6, ..., 15, 12, 9, 6, 3 ; i f n is odd

3
([

n
2

]
+ 1
)
− 3, ..., 15, 12, 9, 6, 3 ; i f n is even


 ,

r(b2|R) =


(3, 3 j − 3) , 2 ≤ j ≤

⌈
n
2

⌉
+ 1 3

(⌈
n
2

⌉
+ 1
)
− 6, ..., 15, 12, 9, 6 ; i f n is odd

3
([

n
2

]
+ 1
)
− 3, ... 15, 12, 9, 6 ; i f n is even


 ,

r(b3 |R) =


(6, 3, 3 j − 9) , 3 ≤ j ≤

⌈
n
2

⌉
+ 2 3

(⌈
n
2

⌉
+ 2
)
− 9, ...15, 12, 9 ; i f n is odd

3
([

n
2

]
+ 2
)
− 6, ..., 15, 12, 9 ; i f n is even


 ,

...

r(bn|R) =


3 j, 1 ≤ j ≤

⌊
n
2

⌋ 3
(⌊

n
2

⌋
+ 2
)
− 9, ..., 6, 3, 0 ; i f n is odd

3
(⌊

n
2

⌋
+ 2
)
− 6, ..., 6, 3, 0 ; i f n is even




For vertices
(
c j, 1 ≤ j ≤ n

)
,

r(c1|R) =


(1, 3 j − 3) , 2 ≤ j ≤

⌈
n
2

⌉ 3
(⌈

n
2

⌉
+ 1
)
− 6, ..., 15, 12, 9, 6, 3 ; i f n is odd

3
([

n
2

]
+ 1
)
− 3, ..., 15, 12, 9, 6, 3 ; i f n is even


 ,

r(c2|R) =


(3, 1, 3 j − 6) , 3 ≤ j ≤

⌈
n
2

⌉
+ 1 3

(⌈
n
2

⌉
+ 1
)
− 6, ..., 15, 12, 9, 6 ; i f n is odd

3
([

n
2

]
+ 1
)
− 3, ... 15, 12, 9, 6 ; i f n is even


 ,

r(c3|R) =


(6, 3, 1, 3 j − 9) , 3 ≤ j ≤

⌈
n
2

⌉
+ 2 3

(⌈
n
2

⌉
+ 2
)
− 9, ..., 15, 12, 9 ; i f n is odd

3
([

n
2

]
+ 2
)
− 6, ..., 15, 12, 9 ; i f n is even


 ,

...

r(cn|R) =


(3 j) , 1 ≤ j ≤

⌊
n
2

⌋ 3
(⌊

n
2

⌋)
, ..., 6, 3, 1 ; i f n is odd

3
([

n
2

])
− 3, ..., 6, 3, 1 ; i f n is even




For vertices
(
d j, 1 ≤ i ≤ n

)
,

r(d1|R) =


(1, 3 j − 4) , 2 ≤ j ≤

⌊
n
2

⌋
+ 1 3

(⌊
n
2

⌋
+ 1
)
− 2, ..., 13, 10, 7, 4 ; i f n is odd

3
([

n
2

]
+ 1
)
− 5, ..., 13, 10, 7, 4 ; i f n is even


 ,

r(d2|R) =


(4, 1, 3 j − 7) , 3 ≤ j ≤

⌊
n
2

⌋
+ 2 3

(⌊
n
2

⌋
+ 2
)
− 5, ..., 13, 10, 7 ; i f n is odd

3
([

n
2

]
+ 2
)
− 8, ... 13, 10, 7 ; i f n is even


 ,

r(d3|R) =


(7, 4, 1, 3 j − 7) , 4 ≤ j ≤

⌊
n
2

⌋
+ 3 3

(⌊
n
2

⌋
+ 3
)
− 8, ..., 16, 13, 10 ; i f n is odd

3
([

n
2

]
+ 3
)
− 11, ... 16, 13, 10 ; i f n is even


 ,
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...

r(dn|R) =


(3 j − 1) , 1 ≤ j ≤

⌊
n
2

⌋ 3
(⌊

n
2

⌋)
+ 1, ..., 6, 3, 1 ; i f n is odd

3
([

n
2

])
− 2, ..., 7, 4, 1 ; i f n is even




R is the resolving set because each distance is distinct. Hence, β(G) ≥ n.
It is also needed to prove that R is the minimum resolving set. To do this, it must be demonstrated
that, for n ≥ 3, β(G) , n− 1. By showing that Rn is unable to have a resolving set of order n− 1,
this can be obtained. Assume for the moment that R has cardinality n − 1 and is a resolving set.
Following their removal from the resolving set, b1, b2, ..., bn, respectively, we obtain

b1 : d(b1|b j) = d
(
c1|b j

)
,

b2: d(b2|b j) = d
(
c2|b j

)
,

b3: d(b3|b j) = d
(
c3|b j

)
,

...
bn, d(n|b j) = d

(
cn|b j

)
,

Considering that the distances are not all unique there is contradiction. Hence, a resolving set
with cardinality n − 1 does not exist for R. The proof is now complete.

□

4. Applications

The concept of metric dimension, which is basic to graph theory, can be put to use in a variety
of applications, including but not limited to network architecture, facility location, navigational sys-
tems, and sensor positioning. An application of metric dimension linked to the sensor’s location is
considered here. The metric dimension is used to identify the minimal number of sensors required
to ensure comprehensive coverage and connectivity in a network. MD helps eliminate redundancy,
improve the efficiency of data transmission and network connectivity, strengthen the fault tolerance of
the network, and lower power consumption by limiting the number of active sensors. Additionally, the
metric dimension enables the customization of sensor placement to maintain efficient coverage and
connectivity. Let’s suppose a sensor network that monitors a hazardous material pipeline network,
where the metric dimension is important to sensor placement.

A company operates an extensive pipeline network that delivers dangerous chemicals through
remote and inaccessible terrain. In order to ensure the prevention of leaks, it is imperative to detect
potential hazards and promptly address any accidents that may occur, hence maintaining the security
and integrity of these pipelines. The organization holds the belief that implementing a sensor network
is the optimal approach for monitoring pipelines and their immediate environment.

This paragraph examines the limitations or prerequisites. The coverage obligation entails con-
tinuous monitoring of the whole pipeline network and its surrounding area to identify any leaks or
potential dangers promptly. However, the implementation of sensors is constrained by the limited
availability of resources, leading to a constrained budget and a limited number of sensors that may be
used. In order to achieve real-time monitoring, the sensors must establish immediate communication
with each other and a central control system to promptly convey information regarding abnormalities
or emergencies. Moreover, the sensor network must have the capacity to endure sensor failures or
damage caused by environmental factors.

We shall employ the metric dimension approach to optimize the efficiency of sensor placement in
the pipeline network. The objective is to select the minimum number of sensor locations throughout
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the entire network that, when activated, can precisely determine the precise location of a security
breach or potential threat.

The metric dimension is helpful in this problem in the following way: in strategic sensor place-
ment; determining the resolving set of the network enables the organization to locate sensors at par-
ticular points; these resolving set nodes serve as landmarks, guaranteeing that a minimal number of
sensors are required to uniquely identify any point along the pipeline; and identifying critical loca-
tions (nodes) in the network corresponds to the resolving set of nodes, in efficient data collection;
sensors positioned at the nodes of the resolving set enable the efficient collection and transfer of data.
They serve as relay stations, reducing the number of required hops for information to reach the cen-
tralized control system, in fault tolerance; If a sensor becomes inoperative due to damage or failure,
the network can still function and sufficient coverage can be ensured by other sensors strategically
placed at resolving set nodes, in cost optimization, The company optimizes resource use by deploy-
ing a reduced number of sensors through strategic sensor placement based on resolving predetermined
criteria. This guarantees comprehensive coverage of the whole pipeline network.

The organization can develop an effective and dependable sensor network by using resolving set or
metric dimension in sensor placement. This network will monitor pipeline infrastructure and optimize
costs and resources.

5. Conclusion

The concept of metric dimension is readily comprehensible. Due to its strong correlation with
GPS and trilateration, the applications involving the identification of graph nodes are easily notice-
able. Conversely, determining the exact metric dimension of generic graphs is a highly challenging
problem. In this paper, the metric dimension of two kinds of CCG graphs-the ring of diamonds (ROD)
and the string of diamonds (SOD) is calculated. These results can be utilized to address challenges of
robotics network design, optimization and facility location, as well as for understanding the structure
and dynamics of complicated networks.
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