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Abstract: Let G(V, E) be a simple graph of order n with vertex set V and edge set E. Let (u, v) denote
an unordered vertex pair of distinct vertices of G. For a vertex u ∈ G, let N(u) be the set of all vertices
of G which are adjacent to u in G. Then for 0 ≤ i ≤ n − 1, the i-equi neighbor set of G is defined as:
Ne(G, i) = {(u, v) : u, v ∈ V, u , v and |N(u)| = |N(v)| = i}. The equi-neighbor polynomial Ne[G; x] of
G is defined as Ne[G; x] =

∑(n−1)
i=0 |Ne(G, i)|xi. In this paper we discuss the equi-neighbor polynomial

of graphs obtained by some binary graph operations.
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1. Introduction

Let G(V, E) be a simple graph of order n with vertex set V and edge set E. Let (u, v) denote an
unordered vertex pair of distinct vertices of G. For a vertex u ∈ G, let N(u) be the set of all vertices
of G which are adjacent to u in G. Then for 0 ≤ i ≤ n − 1, the i-equi neighbor set of G is defined as:
Ne(G, i) = {(u, v) : u, v ∈ V, u , v and |N(u)| = |N(v)| = i}. The equi-neighbor polynomial Ne[G; x] of
G is defined as Ne[G; x] =

∑(n−1)
i=0 |Ne(G, i)|xi [1].

Binary graph operations are used to model the action between two network systems. Binary graph
operations are usually known as graph products in which two initial graphs are acted together accord-
ing to some specific rules to produce a new graph.

In this paper we discuss the equi-neighbor polynomial of graphs obtained by some binary graph
operations.

2. Main Results

In this section, we discuss the equi-neighbor polynomial of graphs obtained by some binary graph
operations.

If H and K are two graphs, then the join, H ∨ K is the graph with vertex set V(H) ∪ V(K) and the
edge set E(H) ∪ E(K) ∪ {uv : u ∈ V(H), v ∈ V(K)}.

Theorem 1. If H and K are any two graphs with h and k vertices respectively, then the equi neighbor
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polynomial of the join of H and K is given by

Ne[H ∨ K; x] = xkNe[H; x] + xhNe[K; x] +
h−1∑
i=0

(H, i)n(K, i + k − h)xi+k,

where n(H, i) denotes the number of vertices of H with i neighbors and n(K, i + k − h) denotes the
number of vertices of K with i + k − h neighbors.

Proof. Observe that from the definition of H ∨ K, each vertex of K has k more than the number of
neighbors as in H and each vertex K has h more than the number of neighbors as in K. Therefore it is
enough to consider the following three cases:

Case (i) Let u, v ∈ V(H); |N(u)| = |N(v)| = i in H.

Then u has (i + k) neighbors in H ∨ K, which are the i neighbors in H and the k vertices in K.
The same is true for v. Hence the pair (u, v) has (i + k)-equi neighbors in H ∨ K and there are
|Ne(H, i)| such pairs.

Case (ii) Let u, v ∈ V(K); |N(u)| = |N(v)| = i in K.

Then u has (i + h) neighbors in H ∨ K, which are the i neighbors in K and the h vertices in H.
The same is true for v. Hence the pair (u, v) has (i + h)-equi neighbors in H ∨ K and there are
|Ne(K, i)| such pairs.

Case (iii) Let u ∈ V(H), v ∈ V(K); |N(u)| = i in H, |N(v)| = i + k − h in H.

Then u and v have (i + h) neighbors in H ∨ K. Hence the pair (u, v) has (i + k)-equi neighbors in
H ∨ K and there are n(H, i)n(K, i + k − h) such pairs.
Thus we have,

Ne[H ∨ K; x] =
h−1∑
i=0

|Ne(H, i)|xi+k +

k−1∑
i=0

|Ne(K, i)| xi+h

+

h−1∑
i=0

n(H, i)n(K, i + k − h)xi+k

= xkNe[H; x] + xhNe[K; x] +
h−1∑
i=0

n(H, i)n(K, i + h − k)xi+k.

This completes the proof. □

Consider the graph G(V, E) and let w < V. Then the graph G + w is a graph obtained from G
including the vertex w in G and joining it to all other vertices of G.

Corollary 1. Ne[G + w; x] = xNe[G; x] + n(G, n − 1)xn, where n(G, n − 1) represents the number of
vertices of G with (n − 1) neighbors.

Proof. The result follows from the fact that G + w is isomorphic to G ∨ K1, where K1 is the complete
graph on a single vertex with V(K1) = {w}. □

A Wheel graph Wn, n > 3 is obtained by taking the join of the cycle graph Cn−1 and the complete
graph K1.

Lemma 1. For a cycle graph Cn,

Ne[Cn; x] =
(
n
2

)
x2, n ≥ 3.
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Corollary 2. If Wn, n > 3 is a wheel graph with n vertices, then

Ne[Wn; x] =


(

n−1
2

)
x3, if n , 4,

6x3, if n = 4.

Proof. Observe that Wn is isomorphic to Cn − 1 ∨ K1; where Cn − 1 is the cycle graph on n vertices
and K1 is the complete graph on a single vertex. Therefore, using lemma 1 and Theorem 1, it follows
that

Case (i) Let n , 4. Then,

Ne[Cn−1 ∨ K1; x] = x
(
n − 1

2

)
x2 + x × 0 =

(
n − 1

2

)
x3.

Case (ii) Let n = 4. Then,

Ne[Cn−1 ∨ K1; x] = x × 3x2 + x3 × 0 + 3 × 1 × x3 = 6x3.

This completes the proof. □

A Shell graph S n, where n ≥ 3 is obtained from the cycle graph Cn by adding the edges corre-
sponding to the (n − 3) concurrent chords of the cycle.

Lemma 2. If Pn is a path graph of length n; n ≥ 2, we have

Ne[Pn; x] = x +
(
n − 2

2

)
x2; n ≥ 2.

Corollary 3. For a shell graph S n; n ≥ 3, we have

Ne[S n; x] =


(

n−3
2

)
x3 + x2, if n , 3, 4,

3x2, if n = 3,
x3 + x2, if n = 4.

Proof. Note that S n = Pn−1 ∨ K1. Then the result follows from Lemma 2 and Theorem 1. □

The corona of two graphs K and H is formed from one copy of K and |V(K)| copies of H where
the ith vertex of K is adjacent to every vertex in the ith copy of H [2]. It is denoted by K ◦ H.

Theorem 2. If K is a graph having k vertices and H is a graph having h vertices, then the equi
neighbor polynomial of corona of K and H is given by

Ne[K ◦ H; x] = xhNe[K; x] + kxNe[H; x] +
(
k
2

) h−1∑
i=0

[n(H, i)]2xi+1 + n(K, 0)n(H, h − 1)xh,

where n(H, i) represents the number of vertices of H with i neighbors and n(K, 0) represents the
number of isolated vertices of K.

Proof. Observe that, from the definition of K ◦ H,

(i) each vertex of K has h more than the number of neighbors as in K,
(ii) each vertex in a copy of H has one more than the number of neighbors as in H and there are k

copies of H.

Therefore it is enough to consider the following four cases;
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Case (i) Let u, v ∈ V(K); |N(u)| = |N(v)| = i in K.

Then u has (i + h) neighbors in K ◦ H, which are the i neighbors in K and the h vertices in a
copy of H corresponding to the vertex u. v also has (i + h) neighbors in K ◦ H, which are the i
neighbors in K and the h vertices in the copy of H corresponding to the vertex v. Hence the pair
(u, v) has (i + h)-equi neighbors in K ◦ H and there are |Ne(K, i)| such pairs.

Case (ii) Let u, v ∈ V(H j); where H j denotes the jth copy of H; j = 1, 2, ...k; |N(u)| = |N(v)| = i in H j.

Then u has (i + 1) neighbors in K ◦ H, which are the i neighbors in H and the vertex in K
corresponding to H j. The same is true for v. Hence the pair (u, v) has (i + 1)-equi neighbors in
K ◦ H and there are |Ne(H, i)| such pairs corresponding to the copy H j of H. Note that there are
k such copies of H.

Case (iii) Let u ∈ V(H j), v ∈ V(Hk), where H j anf Hk denote the jth and kth copy of H respectively;
j, k ∈ {1, 2, ..., k}; j , k; |N(u)| = |N(v)| = i in H.

Then the pair (u, v) has (i + 1)-equi neighbors in K ◦ H and there are
(

k
2

)
[n(H, i)]2such pairs.

Case (iv) Let u ∈ V(K) and v ∈ V(H j), where H j denote the jth copy of H; j ∈ {1, 2, ..., k}; |N(u)| = 0
in K; |N(v)| = h − 1 in H.

Then u and v have h neighbors in K ◦H. Hence the pair (u, v) has h-equi neighbors in K ◦H and
there are n(K, 0)n(H, h − 1) such pairs. Thus,

Ne[K ◦ H; x] =
k−1∑
i=0

|Ne(K, i)|xi+h + k
h−1∑
i=0

|Ne(H, i)| xi+1 +

(
k
2

) h−1∑
i=0

[n(H, i)]2xi+1 + n(K, 0)n(H, h − 1)xh

= xhNe[K; x] + kxNe[H; x] +
(
k
2

) h−1∑
i=0

[n(H, i)]2xi+1 + n(K, 0)n(H, h − 1)xh.

This completes the proof. □

The graph Q(m, n) ; m ≥ 1, n > 1 is obtained by identifying each vertex of the complete graph Km

with a vertex of a unique Kn where there are m copies of Kn [3].

Corollary 4. For m ≥ 1, n > 1, we have

Ne[Q(m, n); x] = {
(
m
2

)
(n − 1)2 + m

(
n − 1

2

)
}xn−1 +

(
m
2

)
xm+n−2.

Proof. The result follows from the fact that Q(m, n) and Km ◦ Kn−1 are isomorphic. □

The Cartesian product of two graphs K and H is the graph K□H with vertex set V(K) × V(H) and
the vertices (u, v) and (x, y) are adjacent if and only if u = x and vy ∈ E(H) or ux ∈ E(G) and v = y.

Theorem 3. If K is a graph with vertex set V(K) = {u1, u2, ..., uk} and H is a graph with vertex set
V(H) = {v1, v2, ..., vh}, then the equi neighbor polynomial of cartesian product of K and H is given by,

Ne[K□H; x] = Ne[K; x]
h∑

r=1

xd1
r + Ne[H; x]

k∑
r=1

xdr + 2
∑

(i, j)∈I×I

|Ne(K, i)||Ne(H, j)|xi+ j

+

k+h−2∑
m=1

{
∑

i, j∈I;i, j

n(K, i)n(K, j)n(H,m − i)n(H,m − j)xm},

where dr = |N(ur)|, r = 1, 2, ..., k, d1
r = |N(vr)|, r = 1, 2, ..., h, I = {0, 1, 2, ..., k − 1}, n(K, i) and n(H, i)

represent the number of vertices in K and H respectively with i neighbors.
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Proof. Let the vertices of K□H be denoted by uiv j where i ∈ {1, 2, . . . , k} and j ∈ {1, 2, . . . , h}.
Observe that from the definition of K□H the number of neighbors of a vertex uiv j in K□H is equal to
the sum of the number of neighbors of ui in K and the number of neighbors of v j in H; i ∈ {1, 2, . . . , k},
j ∈ {1, 2, . . . , h}. Therefore it is enough to consider the following four cases;

Case (i) Consider the vertex pairs of K□H of the form (urvs, urvt), r ∈ {1, 2, . . . , k}, s, t ∈ {1, 2, . . . , h},
s , t; with |N(ur)| = dr in K and |N(vs)| = |N(vt)| = i in H. Then the pair (urvs, urvt) has
(i + dr)-equi neighbors in K□H and there are |Ne(H, i)| such pairs, for each r ∈ {1, 2, . . . , k}.

Case (ii) Consider the vertex pairs of K□H of the form (usvr, utvr), where s, t ∈ {1, 2, . . . , k}, r ∈
{1, 2, . . . , h}, s , t, with |N(us)| = |N(ut)| = i in K and |N(vr)| = d1

r in H. Then the pair (usvr, utvr)
has (i + d1

r )-equi neighbors in K□H and there are |Ne(K, i)| such pairs, for each r ∈ {1, 2, . . . , h}.

Case (iii) Consider the vertex pairs of K□H of the form (usvr, utvl), where s, t ∈ {1, 2, . . . , k}, r, l ∈
{1, 2, . . . , h}, s , t, r , l, with |N(us)| = |N(ut)| = i in K and |N(vr)| = |N(vl)| = j in H. Then the
pair (usvr, utvl) has (i + j)-equi neighbors in K□H and there are 2|Ne(K, i)||Ne(H, j)| such pairs.

Case (iv) Consider the vertex pairs of K□H of the form (usvr, utvl), s, t ∈ {1, 2, . . . , k}, r, l ∈
{1, 2, . . . , h} with |N(us)| = i, |N(ut)| = j in K, where i , j. Then the pair (usvr, utvl) has m-
equi neighbors in K□H and there are n(K, i)n(K, j)n(H,m − i)n(H,m − j) such pairs for each
m ∈ {1, 2, . . . , h + k − 2}. Thus,

Ne[K□H; x] =
h−1∑
i=0

|Ne(H, i)|xi ×

k∑
r=1

xdr +

k−1∑
i=0

|Ne(K, i)|xi ×

h∑
r=1

xd1
r +

∑
(i, j)∈I×I

2|Ne(K, i)||Ne(H, j)|xi+ j

+

k+h−2∑
m=1

 ∑
i, j∈I;i, j

n(K, i)n(K, j)n(H,m − i)n(H,m − j)xm


= Ne[K; x]

h∑
r=1

xd1
r + Ne[H; x]

k∑
r=1

xdr + 2
∑

(i, j)∈I×I

|Ne(H, i)||Ne(H, j)|xi+ j

+

k+h−2∑
m=1

 ∑
i, j∈I;i, j

n(K, i)n(K, j)n(H,m − i)n(H,m − j)xm

 .
This completes the proof.

□

A Ladder graph Ln; n ≥ 2 is obtained as the cartesian product of two paths one of which has only
one edge.

Corollary 5. For a Ladder graph Ln, we have

Ne[Ln; x] = (n − 2)(2n − 5)x3 + 6x2; n ≥ 2.

Proof. Since Ln is isomorphic to Pn□P2, N[Ln; x] = N[Pn□P2; x]. Note that Ne[Pn; x] =
(

n−2
2

)
x2 + x.

So we obtain,

Ne[Ln; x] = x
[
2x + (n − 2)x2] + [

x +
(
n − 2

2

)
x2

]
2x + 2

[
x2 +

(
n − 2

2

)
x3

]
= (n − 2)(2n − 5)x3 + 6x2.

This completes the proof. □

Journal of Combinatorial Mathematics and Combinatorial Computing Volume 119, 35–43



Dhanya P. and Anil Kumar V. 40

A Circular ladder graph CLn; n ≥ 3 is obtained as the cartesian product of the cycle graph Cn and
the path P2.

Corollary 6. For a Circular ladder graph CLn, we have

Ne[CLn; x] = n(2n − 1)x3; n ≥ 3.

Proof. Using the Lemma 1, Theorem 3 and using the fact that CLn is isomorphic to Cn□P2, it follows
that,

Ne[CLn; x] = x × nx2 +

(
n
2

)
x2 × 2x + 2

(
n
2

)
× 1 × x3

= n(2n − 1)x3.

This completes the proof. □

A m−book graph is obtained as the cartesian product of the star graph K1,m and the path graph P2.

Corollary 7. If Bm is a m−book graph, then we have

Ne[Bm; x] =

xm+1 + m(2m − 1)x2, if m > 1,
6x2, if m = 1.

Proof. Since Bm is isomorphic to K1,m□P2, Ne[Bm; x] = Ne[K1,m□P2; x]. Note that

Ne[K1,m; x] =


(

m
2

)
x, m ≥ 1,

x, m = 1.
.

Thus we obtain,

Case (i) Let m > 1. Then,

Ne[K1,m□P2; x] = x
[
xm + mx

]
+

(
m
2

)
x × 2x + 2

(
m
2

)
× 1 × x2 = xm+1 + m(2m − 1)x2.

Case (ii) Let m = 1. Then,

Ne[K1,m□P2; x] = x × 2x + x × 2x + 2 × 1 × 1 × x2 = 6x2.

This completes the proof. □

A rooted graph is a graph in which one vertex is distinguished as a root. The Rooted product of a
graph G and a rooted graph H is obtained as follows;

Take |V(G)| copies of H and for each vertex vi of G, identify vi with the root vertex of the ith copy
of H [4].

Theorem 4. Let G be a graph with n vertices. Let H be a rooted graph with m vertices, having a root
vertex v1 with degree d. If G′ is the rooted product of G and H, then,

Ne[G′; x] = xdNe[G; x] + n2Ne[H; x] +
(
n
2

) m−1∑
i=0,i,d

n(H, i)xi +

n−1∑
i=0

n(G, i)n(H, i + d)xi

−
(n + 1)

2
n(H, d) + n(G, 0)n(H, d) +

(n + 1)
2
− n(G, 0)nxd,

where n(G, i) and n(H, i) represent the number of vertices of G and H respectively with i neighbors.
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Proof. Let V(G) = {u1, u2, . . . , un} and let V(H) = {v1, v2, . . . , vm} where v1 is the root vertex. Then
a vertex of G′ can be represented by urvs where r ∈ {1, 2, . . . , n} and s ∈ {1, 2, . . . ,m}. Observe that,
from the definition of the rooted product of G and H,

(i) the number of neighbors of vertices of G′ of the form urv1, r ∈ {1, 2, . . . , n} is equal to the sum
of the number of neighbors of ur in G and the number of neighbors of v1 in H.

(ii) the number of neighbors of vertices of G′ of the form urvs, r ∈ {1, 2, . . . , n}; s ∈ {2, 3, . . . ,m} is
equal to the number of neighbors of vs in H.

Therefore it is enough to consider the following seven cases;

Case (i) Consider the vertex pairs of G′ of the form (urv1, usv1), where r, s ∈ {1, 2, . . . , n}; r , s; with
|N(ur)| = |N(us)| = i in G. Then urv1 has (i+d) neighbors in G′. The same is true for usv1. Hence
the pair (urv1, usv1) has (i + d)-equi neighbors in G′ and there are |Ne(G, i)| such pairs.

Case (ii) Consider the vertex pairs of G′ of the form (urvs, urvt), where r ∈ {1, 2, . . . , n}, s, t ∈
{2, 3, . . . ,m}, s , t, with |N(vs)| = |N(vt)| = i , d in H. Then the pair (urvs, urvt) has i-equi
neighbors in G′ and there are |Ne(H, i)| such pairs, corresponding to each r ∈ {1, 2, . . . , n}.

Case (iii) Consider the vertex pairs of G′ of the form (urvs, urvt), where r ∈ {1, 2, . . . , n}, s, t ∈
{2, 3, . . . ,m}, s , t, with |N(vs)| = |N(vt)| = d in H. Then the pair (urvs, urvt) has d-equi neighbors
in G′ and there are |Ne(H, d)| − n(H, d) + 1 such pairs, corresponding to each r ∈ {1, 2, . . . , n}.

Case (iv) Consider the vertex pairs of G′ of the form (urv1, urvs), where r ∈ {1, 2, . . . , n}, s ∈
{2, 3, . . . ,m}, with |N(ur)| = i in G and |N(vs)| = i + d in H.

Subcase (i) Let i = 0. Then the pair (urv1, urvs) has d-equi neighbors in G′ and there are
n(G, 0){n(H, d) − 1} such pairs.

Subcase (ii) Let i , 0. Then the pair (urv1, urvs) has (i + d)-equi neighbors in G′ and there are
n(G, i)n(H, i + d) such pairs.

Case (v) Consider the vertex pairs of G′ of the form (urv1, usvt), where r, s ∈ {1, 2, . . . , n}, t ∈
{2, 3, . . . ,m}, r , s, with |N(ur)| = i in G and |N(vt)| = i + d in H.

Subcase (i) Let i = 0. Then the pair (urv1, usvt) has d-equi neighbors in G′ and there are (n −
1)n(G, 0){n(H, d) − 1} such pairs.

Subcase (ii) Let i , 0. Then the pair (urv1, usvt) has (i + d)-equi neighbors in G′ and there are
(n − 1)n(G, i)n(H, i + d) such pairs.

Case (vi) Consider the vertex pairs of G′ of the form (urvs, utvl), where r, t ∈ {1, 2, . . . , n}, s, l ∈
{2, 3, . . . ,m}, r , t, with |N(vs)| = |N(vl)| = i , d in H. Then the pair (urvs, utvl) has i-equi
neighbors in G′ and there are

(
n
2

)[
2|Ne(H, i)| + n(H, i)

]
such pairs.

Case (vii) Consider the vertex pairs of G′ of the form (urvs, utvl), where r, t ∈ {1, 2, . . . , n}, s, l ∈
{2, 3, . . . ,m}, r , t, with |N(vs)| = |N(vl)| = d in H. Then the pair (urvs, utvl) has d-equi neighbors
in G′ and there are

(
n
2

)[
2|Ne(H, d)| − n(H, d) + 1

]
such pairs. Thus,

Ne[G′; x] = xdNe[G; x] + n
m−1∑

i=0;i,d

|Ne(H, i)|xi + n{|Ne(H, d)| − n(H, d) + 1}xd

+ n(G, 0){n(H, d) − 1}xd +

n−1∑
i=1

n(G, i)n(H, i + d)xi+d
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+ (n − 1)n(G, 0){n(H, d) − 1}xd + (n − 1)
n−1∑
i=1

n(G, i)n(H, i + d)xi+d

+

(
n
2

) m−1∑
i=0;i,d

{2|Ne(H, i)| + n(H, i)}xi +

(
n
2

)
{2|Ne(H, d)| − n(H, d) + 1}xd

= xdNe[G; x] + n2Ne[H; x] +
(
n
2

) m−1∑
i=0,i,d

n(H, i)xi +

n−1∑
i=1

n(G, i)n(H, i + d)xi

−
(n + 1)

2
n(H, d) + n(G, 0)n(H, d) +

(n + 1)
2
− n(G, 0)}nxd.

This completes the proof. □

The Tensor product of two graphs K and H is the graph K × H with vertex set V(K) × V(H) and
the vertices (u, v) and (x, y) are adjacent if and only if ux ∈ E(K) and vy ∈ E(H).

Theorem 5. If K is a graph with vertex set V(K) = {u1, u2, ..., uk} and H is a graph with vertex set
V(H) = {v1, v2, ..., vh}, then the equi neighbor polynomial of Tensor product of K and H is given by

Ne[K × H; x] =
k∑

r=1

Ne[K; xd1
r ] +

h∑
r=1

Ne[H; xdr ] + 2
∑

(i, j)∈I1×I2

|Ne(H, i)||Ne(H, j)|xi j

+
∑

i, j∈I1;i, j

 ∑
(m,n)∈I2×I2;im= jn

n(K, i)n(K, j)n(H,m)n(H, n)xim


+ n(K, 0)

∑
m,n∈I2;m,n

n(H,m)n(H, n),

where I1 = {0, 1, 2, ..., k − 1}, I2 = {0, 1, 2, ..., h − 1}, dr = |N(ur)|, r ∈ {1, 2, ..., k}, d1
r = |N(vr)|,

r ∈ {1, 2, ..., h}, n(K, i) and n(H, i) represent the number of vertices in K and H with i− neighbors
respectively.

Proof. Let the vertices of K × H be denoted by uiv j, where i ∈ {1, 2, . . . , k} and j ∈ {1, 2, . . . , h}.
Observe that from the definition of K × H the number of neighbors of a vertex uiv j in K × H is
equal to the product of the number of neighbors of ui in K and the number of neighbors of v j in H;
i ∈ {1, 2, . . . , k}, j ∈ {1, 2, . . . , h}. Therefore it is enough to consider the following five cases;

Case (i) Consider the vertex pairs of K × H of the form (urvs, urvt), where r ∈ {1, 2, . . . , k}, s, t ∈
{1, 2, . . . , h}, s , t, with |N(ur)| = dr in K and |N(vs)| = |N(vt)| = i in H. Then the pair (urvs, urvt)
has (i × dr)- equi neighbors in K × H and there are |Ne(H, i)| such pairs, corresponding to each
r ∈ {1, 2, . . . , k}.

Case (ii) Consider the vertex pairs of K × H of the form (usvr, utvr) where s, t ∈ {1, 2, . . . , k}, r ∈
{1, 2, . . . , h}, s , t, with |N(us)| = |N(ut)| = i in K and |N(vr)| = d1

r in H. Then the pair (usvr, utvr)
has (i × d1

r )- equi neighbors in K × H and there are |Ne(K, i)| such pairs, corresponding to each
r ∈ {1, 2, . . . , h}.

Case (iii) Consider the vertex pairs of K × H of the form (usvr, utvl), where s, t ∈ {1, 2, . . . , k}, r, l ∈
{1, 2, . . . , h}, s , t, r , l, with |N(us)| = |N(ut)| = i in K and |N(vr)| = |N(vl)| = j in H. Then the
pair (usvr, utvl) has (i × j)- equi neighbors in K × H and there are 2|Ne(K, i)||Ne(H, j)| such pairs.

Case (iv) Consider the vertex pairs of K × H of the form (usvr, utvl), where s, t ∈ {1, 2, . . . , h},
r, l ∈ {1, 2, . . . , k} with |N(us)| = i, |N(ut)| = j in K, where i , j, and |N(vr)| = m,
|N(vl)| = n satisfying im = jn. Then for any set of values for i and j satisfying i , j, we
get

∑
(m,n)∈I2×I2;im= jn n(K, i)n(K, j)n(H,m)n(H, n) pairs of vertices with im-equi neighbors.
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Case (v) Consider the vertex pairs of K × H of the form (urvs, urvt), where r ∈ {1, 2, . . . , k}, s, t ∈
{1, 2, . . . , h}, with |N(ur)| = 0, |N(vs)| = m, |N(vt)| = n, m , n. Then the pair (urvs, urvt) has
zero-equi neighbors and there are n(K, 0)

∑
m,n∈I2;m,n n(H,m)n(H, n) such pairs.

This completes the proof. □

3. Conclusion

In this paper, we discussed the equi neighbor polynomial of graphs obtained by some graph binary
operations. The paper has provided explicit formulae to find the equi neighbor polynomial of some
well-known graph products such as join, corona, cartesian product, rooted product, and tensor product
of two graphs in terms of the equi neighbor polynomial of the parent graphs.
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