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Abstract: Y-tree is defined as (vi, vy, ..., Vi_1; Vi—2Vx) by taking their vertices as (vy, va,..., v;) and
edges as {(viva, VaVs, ..., VkeaVie1) U (Viavi)}. It s also represented as (Py-; + €). One can obtain
the necessary condition as mn(m — 1)(n — 1) = 0 (mod 2(k — 1)), for k > 5 to establish a Y)-tree
decomposition in K,, X K,,. Here the tensor product is denoted by X. In this manuscript, it is shown
that a Ys-tree (gregarious Ys-tree) decomposition exists in K, X K, if and only if, mn(m—1)(n—1) =0
(mod 8).

Keywords: Decomposition, Ys-Tree, Gregarious Ys-Tree, Tensor product
Mathematics Subject Classification: 2010: 05C51.

1. Introduction

A decomposition of graph G is a collection of subgraphs {G;, 1 < i < n}, in which each subgraph,
is mutually - distinct by their edges along with E(G) = U?_, E(G;). Let K,, and P, respectively denotes
complete graph and path, on n vertices. Yi-tree is defined as (v, va, ..., Vi_1; Vk—2Vi) by taking their
vertices as (vi, va,..., ) and edges as {(viva, vav3, ..., VicaVk—1) U (Vi—avi)}. Tt is also represented as
(Py_1 +e). Ys-tree or (P4 + e) graph, defined as {vy, v, v3, v4; v3vs}, which is depicted in Figure 1. The
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Figure 1. Y5 — tree

tensor product(X) of K,, and K, be defined in this way: V(K,, X K,,)) = {(p,q) | p € V(K,,),q € V(K,)}
and E(K,, X K,,) = {(p,q)(r,s) | pr € E(K,) and gs € E(K,)}. Let it be taken as V(K, X K,) =

{Uij, 1 < j < n}, by considering V(K,,) = {1,2,...,m} and V(K,) = {1,2,...,n}. For instance, see
i=1
Figure 2.

As all are aware of that tensor product has commutative and distributive properties. So we write
as K,, X K, =~ K, X K,, (commutative). If we have a Ys-tree decomposition for K,,, we then write
K,=Ys®Ys®...®Ys. By applying the distributive properties, we can write as K,, X K,, = [(Y5 &
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Figure 2. P; X P,

Ys@..0Ys) XK, 2 [(YsxXK,)®YsxXK,)®...®(Ys X K,)]. If Ys-tree decomposition arises in
K, X K,, in addition to, if every vertex of each Ys-tree’s is placed in different partite sets, then it called
as gregarious Ys-tree decomposition.

Tree decomposition and its special properties such as resolvable tree decompositions are consid-
ered by many authors. Ringel [1] has conjectured that K;,,,; can be decomposed as tree having m
edges. C. Huang and A. Rosa [2] has proved that Ys-tree decomposition for K, holds if and only
if m = 0,1 (mod 8). A G-decomposition of K,, have been investigated in [3], where |V(G)| = 5.
Inspired from Ringel conjecture, G. Sethuraman and V. Murugan [4] has conjectured that, for m > 1,
(G, H)-decomposition exists in Kj,,1, when the size of tree G and H is m. Followed by these re-
sults, many authors have begun to look into, tree decomposition in various graphs. To know more
about it, refer [5-11]. As a development of it, gregarious tree decomposition in the tensor product
of complete graph has been started to investigate followed by the given results. A. Tamil Elakkiya
and A. Muthusamy [12] have been proved a gregarious kite decomposition of K,, X K,,, if and only
if, mn(m — 1)(n — 1) = 0 (mod 8). A. Tamil Elakkiya and A. Muthusamy [13] have been proved a
gregarious kite factorization of K,, X K, if and only if, mn = 0 (mod 4) and m — 1)(n — 1) = 0
(mod 2).  In this way, we focus on the Ys-tree (gregarious Ys-tree) decomposition of tensor product
of complete graphs. In this manuscript, we establish a Ys-tree decomposition (gregarious Ys-tree) of
K, X K,, if and only if, mn(m — 1)(n — 1) = 0 (mod 8).

Ys-tree decomposition falls on the cases given below:

(i) m =0 (mod 4) and for all n, n > 2.

(i)m=1 (mod 4) and for all n, n > 2.

(iii))m =3 (mod 4) and n = 0 (mod 4).

(iv)m =3 (mod 4) and n =1 (mod 4).

(v)y m=2 (mod 4) and n =0 (mod 4).

(vijm=2 (mod 4)andn =1 (mod 4).

Also we prove a gregarious Ys-tree decomposition in K, X K,, for the following cases:
(i)m=0,1 (mod 8) and for all n, n > 2.

(i1)) m =5 (mod 8) and for all n, n > 2.

(i11)) m =4 (mod 8) and for all n, n > 2.

(iv)ym =6 (mod 8) and n = 4.

(v)ym=7 (mod 8) and n = 4.

(vi)m =10 (mod 8) and n = 4.

(viil) m = 11 (mod 8) and n = 4.

In order to prove our main result, we require the following:

Theorem 1. [2] Ys-tree decompositions holds in K, if and only if m = 0,1 (mod 8).

2. Decompositions of K,, X K, into Y5 Tree
Lemma 1. K, X K,, admits a Ys-tree decomposition for all n,n > 2.
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Proof. Since for every K, has a K, decomposition, we then write as
KixXK, = KiX[Kr, K ®...0K,] = (K4 XK)B(KyXK)®. . . (K4 X K>). By taking as V(K4 X Kp) =

4
{Ui;, 1 < j < 2}, the following set {(1,2,,41,32;4112), (11,42,31,12;3122), (11, 32,21,42; 21 1,)},
i=1

proves a Ys-tree decomposition exists in K4 X K,. Thus, we obtain a Ys-tree decomposition for K, X
K,. O

Lemma 2. Y5 X K,, admits a Ys-tree decomposition for all n,n > 2.

Proof. As discussed in Lemma 1, we can take Ys X K, = Vs X [, @ K, @ ... 0 K] = (Y5 X K>) @
5

(Ys X K») ® ... ® (Y5 X K;). By taking as V(Y5 X K,) = {Ui;, 1 < j < 2}, the following set
=1

{(11,25,31,42;3152), (12,21, 35,415 3,51)}, proves a Ys-tree decamposition exists in Ys X K,. Thus,
we obtain a Ys-tree decomposition for Y5 X K,,. O

Lemma 3. K, 4 X K,, admits a Ys-tree decomposition for all n,n > 2.

Proof. Letus write as K4 4 X K, = Ky 4 X [, ® K, @ ... @ K>].
2
By taking as V(Ky4) = U < Jj < 4}, the following set

{21, 12,2, 145 2511), (14, 21, 13, 245 1325), (21, 14,23, 11:2313), (23, 12,24, 14;2411)}, proves a Ys-
tree decomposition exists in Kg 4. Now K4y 4 X K, = (Y50 Ys® ... @ Ys) X (K, 8K, & ...8K,) =
(YsxK)@®(YsxKy)®...®(Ys X K;). A Ys-tree decomposition for Y5 X K, derives from Lemma 2,
which gives a Ys-tree decomposition for Ky 4 X K. O

Lemma 4. K,, X K,, admits a Ys-tree decomposition for m = 0 (mod 4) and for all n, n > 2.

Proof. Here, m

(mod 8).

Case (i): Let m = 8s,s > 1. Then K,, X K, = Kg; X K,,. We have a Ys-tree decomposition for K,

according to the theorem 1. Then Kg; X K, = [Ys @ Ys®...®d Ys] X K, = (Y5 X K,) ® (Y5 X K,,) ®
.. ® (Y5 X K,,). Lemma 2 which shows that a Y5 X K,,, has a Ys-tree decomposition. Thus, we obtain

a Ys-tree decomposition for Kg; X K,,.

Case (ii): Letm = 85+ 4,5 > 0. Then K,, X K, = Kgsu X K, = [(2s + 1)K, ® s(2s + 1)Ky 4] X K, =

(2s + D[Ks X K,;] ® s(2s + 1)[K4.4 X K,,]. Now, the Lemmas 1 and 3, shown that for K4 X K, and

K, 4 X K, has a Ys-tree decomposition. Thus, we obtain a Ys-tree decomposition for Kg;.; X K,,. From

the aforementioned Cases, we can get a Ys-tree decomposition for K,, X K,,. O

0 (mod 4) can be classified into two cases (i) m = 0 (mod 8) and (if) m = 4

Lemma 5. K5 X K, admits a Ys-tree decomposition for all n,n > 2.

PI’OOf: Now K5 XK,, =K X[K; K ®...0 K] = (KS XKz)@(K5 XKQ)@...@(KS XKQ). Let
V(K5 X K>) = U ij, 1 < j <2} A Ys-tree decomposition can be derives in K5 X K, as follows:
{(12,24,4,, 51,42 1) (41,52,31,22;3112), (21, 52, 11,225 1141), (22,44, 32, 115 352y),

(44, 15,51, 3,;512,)}. Thus, we obtain a Ys-tree decomposition for K5 X K,. O

Lemma 6. K5 4 X K, admits a Ys-tree decomposition for all n,n > 2.

PVOOf Let K5,4 x K, = K5’4 X [K & K, ... & Kj]. Let V(K54) = U V., where
Vi = {1; | 1 £ j < 5adV, = {2; | 1 < j < 4L Clearly, the set
{(11,22, 13,235 1324), (22, 12,23, 145 2315), (15, 24, 11,215 1123), (12, 24, 14, 205 1424),

(22, 15,21, 12;2113)}, proves a Ys-tree decomposition exists in Ks 4. Now K5 4 X K, = (Ys @ Ys @ ... ®
Yi)X(K @Ky ®..0K)=YsxXK)®(YsXKy)®...®(Ys X K;). From the Lemma 2, we obtain a
Ys-tree decomposition in Y5 X K,. Thus, we get a Ys-tree decomposition for Ks 4 X K,. O
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Lemma 7. K,, X K,, admits a Ys-tree decomposition for m = 1 (mod 4) and for all n, n > 2.

Proof. Here m = 1 (mod 4) can be classified into two Cases (i) m = 1 (mod 8) and (ii) m = 5
(mod 8).
Case (i): Letm = 8s + 1,5 > 1. Then K,, X K,, = Kgz11 X K,,. We have a Ys-tree decomposition for
K., according to the theorem 1. Then Ky, 1 X K, = [Ys@Ys@...®Ys5] XK, = (Ys X K,)®(Ys X K,)®
.. ® (Y5 X K,;). Now, from Lemma 2, which has been shown that a Ys-tree decomposition holds for
Y5 x K,,. Thus, we obtain a Ys-tree decomposition for Kgg.1 X K,,.
Case (ii): Letm = 85+5, 5 > 0. Then K, XK, = Kg15sXK,, = [Ks®25K®5(25— 1)K, 4®25K5 4]X K, =
[Ks X K, ]®2s[Ky X K,,]® s(25 — 1)[K4.4 X K,,] ®25[Ks. 4 X K,,]. Now, the Lemmas 5, 1, 3 and 6, show
that a Ys-tree decomposition holds in K5 X K,,, Ky X K,,, K4 4 X K,, and K5 4 X K, respectively. Thus, we
obtain a Ys-tree decomposition for K, s X K,,. From the aforementioned Cases, we can get a Ys-tree
decomposition for K, X K,,. O

Lemma 8. K, 3 X K,, admits a Ys-tree decomposition for all n,n > 2.

Proof. Let K43 X K, = Ki3 X [K, @ K, @ ... & K;].  Let V(Ky3) = U Vi, where
Vi = {l; | 1 £ j < 4adV, = {2; | 1 £ j < 3} Then the followmg set
{(22, 12,23, 11;2313), (21, 11,22, 145 2,13), (23, 14,21, 1352, 1,)} gives a Ys-tree decomposition for Ky 5.
Now K4,3 xX K, = (Y5@Y5@...@Y5)X(K2@K2@...@K2) = (Y5XK2)@(Y5 XKQ)@...@(Y5 XKz).
Now, the Lemma 2, has shown that for Y5 X K, has a Ys-tree decomposition. Thus, we obtain a Ys-tree
decomposition for K4 3 X K. O

Lemma 9. Y5 X Y5 admits a Ys-tree decomposition.

Proof. Letus write as YsX Y5 = Vs X[K, K, @K, @Ky = (Vs X Ky) @ (Ys X Ky) @D (Ys X Ky) @ (Ys X K)).
We have a Ys-tree decomposition for Y5 X K5, according to the Lemma 2. Thus, we obtain a Ys-tree
decomposition for Y5 X ¥s. ]

Lemma 10. K, X K,, admits a Ys-tree decomposition for m =3 (mod 4) and n = 0 (mod 4).

Proof. Letm = 4s+3,s > 0Oand n = 4t,t > 1. We write K,, X K, = Ky3 X K4y = [sK4 @
K @ sKy3 & “50K, 4] X Ky = s[Ky X Kyl @ [K3 X Ky] © s[Ky3 X Kyl @ “52[Ky 4 X Ky] =
S[Ky X K] @ tK3 X K41 @ “S2[K; X Ky 4] @ s[Ka 3 X Kay] ® “52[Ky 4 X Ky]. Now, the Lemmas 1, 3
and 8 show that a Ys-tree decomposition holds in K4 X Ky, K3 X K4, K3 X Ky 4, K4 4 X Kyy and Ky 3 X Ky,

respectively. Thus, we obtain a Ys-tree decomposition for K, X K. O

Lemma 11. K,, X K,, admits a Ys-tree decomposition form =3 (mod 4) andn =1 (mod 4).

Proof. Letm =4s+3,s >0andn =4t + 1,t > 1. We write K,, X K, = K413 X Kysy1 = [sK4 ® K3 @
5Ky 3@ %Km] X[Ks®(t- DK, & %@—2)1{4’4 ®(t = DKs 4] = {s[Ks X Ks] @ s(t — D[Ky X K4] @
SENEDK X Ky 41@ 5(t = 1D[Ka X Ks 4]} @ {[K3 X Ks]@ (1= D[K3 x K4]1@ 2Ky x Ky 410 (1 — 1)[K;3 X
Ks )} @ (s[Ky 3 x Ks]® s(t = DKy 3 x K] @ 02K, 3 x Ky 4]0 (6= DKy 3 X Ks 41} {252 [Ky 4 X
K5]€BW[K‘Axlﬁ]@W[KM><K4,4]GBW[K4,4XK5,4]}. Now, the Lemmas 1, 3, 5,
6, 8 and 9 show that a Ys-tree decomposition holds in K4 X K,,, K4 4 X K;;, Ks X K, K5 4 X K, K4 3 X K},
and Y5 X Y5 respectively. Thus, we obtain a ¥s-tree decomposition for K,,, X K,,. O

Lemma 12. K, , X K,, admits a Ys-tree decomposition for all n,n > 2.

Proof. Let K4, X K, = K42 X [K; @ K, © ... © K> ]. Let V(Ky 5) = U Vi, where V; = {1; |1 < j <4}

and V, = {2; [ 1 < j < 2}. Clearly, the set {(21, 13,25, 11;2,1»), (22, 14,21, 15;2,1,)}, proves a Ys-
tree decomposition exists in Ky . Now Ky o X K, = (Y50 Vs @ ... @ Ys) X (K, 8K, © ... 0 K,) =
Ys X K))® (Y5 X Ky) @ ... (Ys X K,). Now, the Lemma 2, shows that for Y5 X K, has a Ys-tree
decomposition. Thus, we obtain a Ys-tree decomposition for K4 » X K,,. O
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Lemma 13. K, X K,, admits a Ys-tree decomposition for m =2 (mod 4) and n = 0 (mod 4).

Proof. Letm =4s+2,s > 0andn = 4t,t > 1. We write K,,XK,, = K42 XKy, = [sIQ@Kz@@IQAEB
5Ky 21X Ky, = [SKs@ K@ Y52 Ky 45Ky 21X [1K4® SV Ky 4] = {st[Kyx Ky 1@ XL [Ky X Ky 4 1}0{ Ko X
Kil® l(lzl)[Kz X Ky 4]} @ {s(szl)t [K4,4X Ky ]@W[KMXK4,4]}€9{SI[K4,2XK4]€B@[KMXKM]}
Now, the Lemmas 1, 3, 9 and 12 show that a Ys-tree decomposition holds in K4y X K,, K4 4 X K,;, Y5 X Y5
and K4, X K, respectively. Thus, we obtain a Ys-tree decomposition for K,, X K,,. O

Lemma 14. K,, X K,, admits a Ys-tree decomposition form =2 (mod 4) andn =1 (mod 4).

Proof. Letm = 4s+2,s >0andn =4t + 1,t > 1. Then K,, X K, = K450 X K4y = [sK4 ® K> &
DKy 4@ 5Ky o] X [Ks @ (t — DKy @ “AZ2K, 4 & (t - 1)Ks 4] = {{s[Ks X K51@ s(t — D[Ky X K] @
LKy X Ky 4]@ (1= DIKy X Ks a )@ {[K2 X K5 1@ (1= 1)Ko X K41® 52 [K> X Ky 4@ (1= D[K> X
Ks 4]} EB{S(SZ_I)[K4,4 X Ks] @ W[KM X Kyl @ WU(M X Ky 4] ® W[KM X Ks 4]} &
{S[K4 2 X K51@5(t— 1)[ Ky 2 X K4]@ 22Ky 5 X Ky 4]@5(t— 1)[ Ky 2X Ks,41}}. Now, the Lemmas 1, 3,
5, 6,9 and 12 show that a Ys-tree decomposition holds in Ky X K,,, K4 4 X K, Ks X K5, K5 4 X K, Ys X ¥
and K4, X K,, respectively. Thus, we obtain a Ys-tree decomposition for K, X K,,. O

Theorem 2. A Ys-tree decomposition for K,, X K,, holds, if and only if, mn(m—1)(n—1) = 0 (mod 8).

Proof. One can obtain a necessary condition to find a Ys-tree decomposition for K, X K,, as mn(m —
I)(n—1) = 0 (mod 8). From the Lemmas 4, 7, 10, 11, 13 and 14, we can conclude the aforementioned
necessary condition is sufficient. O

3. Gregarious Ys-tree Decomposition for K, X K;,

Lemma 15. Y5 X K,, admits a gregarious Ys-tree decomposition for all n, n > 2.
Proof. Let us suppose as Y5 XK, =YsX[KdK,®.. K] =5 XK)d(Ys X K)D...d (Y5 X
K5). Let V(Y5 X K») = U ij, 1 < j < 2}. A gregarious Ys-tree decomposition can be derives in

Ys X K, as follows: {(11,22, 31,42;315,), (12,24, 3,,41;3,51)}. Thus, we obtain a gregarious Ys-tree
decomposition for Y5 X K. O

Lemma 16. K,, X K,, admits a gregarious Ys-tree decomposition for m = 0,1 (mod 8) and for all n,
n>2.

Proof. Since by theorem 1, Ys-tree decomposition for K,,, m = 8s, or, 8s + 1 exists, let us write as
K, XK, =[Ys®Ys®...0Y5]xXK, =[YsxK,|®[Vs XK,]D...®[Vs X K,]. Now, the Lemma
15, which shows that Y5 X K, has a gregarious Ys-tree decomposition. Thus, we obtain a gregarious
Ys-tree decomposition for K, X K,,. O

Lemma 17. K5 X K, admits a gregarious Ys-tree decomposition for all n,n > 2.
Proof. Letus suppose as KsX K, = KsX[K, 0K ®... 0K = (KsXK)®(Ks X K)d...®(Ks X K>).

Let V(Ks X K;) = U ij, 1 < j <2} A gregarious Ys-tree decomposition can be derives in Ks X K, as

follows: {(1y, 5,, 21, 42, 2132), (21, 12,341,525 3142), (31, 22,44, 125 4152), (41,32, 51, 22; 51 1),
(51,45, 11,3,;1,2,)}. Thus, we obtain a gregarious Ys-tree decomposition for K5 X K,,. O

Lemma 18. Ks g X K,, admits a gregarious Ys-tree decomposition for all n,n > 2.

2 .
Proof. Let V(Kgs) = {UJi,1 < j < 8. For0 < s < land 1 < i < 8, k5 =
i=1

{Lisgss 2i43s+4)> Livas+3)s 2ix85+5)5 livs+3) 2iv(65+6))> Dy taking the residues of Zg as {1,2,3,..., 8} for
subscripts. Let it be clear that, the set {K(l), K}} provides a base block of Ys-tree decomposition for Ky g.
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Thus, the collection k = {Ké, Kj}, 1 < i < 8, holds the Ys-tree decomposition for Kg 5. Now we write,
Kss XK, =[Ys®Ys®...0Y5] XK, =sxXK,)®YsxXK,)®...®(Ys X K,). Then, the Lemma
15, which shows that Y5 X K, has a gregarious Ys-tree decomposition. Thus, we obtain a gregarious
Ys-tree decomposition for K3 g X K. O

Lemma 19. Ks s X K,, admits a gregarious Ys-tree decomposition for all n,n > 2.

2
Proof. Let V(Kgs) = J Vi, where V; ={1;|1 < j<8}and V, = {2;| 1 < j < 5}. Then the following
i=1

set gives a Ys-tree decomposition for Ky s :

{21, 11,23, 145 2315), (25, 13,24, 135 2412), (25, 13,25, 113 2014), (15, 24, L6, 235 1624),

(16, 25, 12, 213 1222), (21, 13, 23, 175 2312), (25, 17, 24, 115 2415), (25, 15, 2, 165 2217),

(11,25, 14,243 1421), (17,21, 15,255 1323)}. Let Kgs X K, =[Ys@ Vs ®...0Y5] X K, = (Y5 X K,) ®
(YsxK,)®...® (Y5 X K,). Now, the Lemma 15, which shows that Y5 X K, has a gregarious Ys-tree
decomposition. Thus, we obtain a gregarious Ys-tree decomposition for Kg 5 X K. O

Lemma 20. K, X K,, admits a gregarious Ys-tree decomposition for m = 5 (mod 8) and for all n,
n>?2.

Proof. Letm = 8s+5,5 > 0. Then K,, X K, = Kyg5 X K, = [sKs ® K5 @ *5 Ky 3 @ 5Ky 5] X K,, =
s[Ks X K, 1®[Ks X K, 1® “52 [Ks s X K, 1@ s[Ks 5 X K,,]. Now, the Lemmas 16, 17, 18 and 19, show that
a gregarious Ys-tree decomposition holds in K3 X K, K5 X K, Kg s X K,, and K3 5 X K, respectively.

Thus, we obtain a gregarious Ys-tree decomposition for K, X K,,. O

Lemma 21. Ky, X K,, admits a gregarious Ys-tree decomposition.

Proof. Let Ki3 X K, = [Ks ® (K12 \ K5)| X K, = [Ks X K,] ® [(K12 \ K5) X K,]. Let V(K12 \ Ks) =
{1,2,3,...,12}. Then the following set yields a Ys-tree decomposition for K;, \ Ks:

{(11,1,12,5;12 6),(12,2,1,6;1 7),(1,3,2,7;2 8),(2,4,3,8;3 9),(3,5,4,9;4 10),

4,8,5,10;5 11),(1,4,12,7;12 3),(6,5,1,8;1 9),(3,6,2,9;2 10),(8,7,3,10;3 11),

(7,6,4,11;4 7),(5,7,10,6; 10 1),(8,6,9,7;9 5),(5,2,11,6; 11 7)}.

Therefore, K1, XK, = [KsXK,|®[(Ys®YsD...0Ys5)XK,| = [KsXK,|®[(YsxK,)D(YsXK,)...(YsXK,)].
Now, the Lemmas 15 and 17, show that a gregarious Ys-tree decomposition holds in ¥5x K, and Ksx K,
respectively. Thus, we obtain a gregarious Ys-tree decomposition for K, X K,,. O

Lemma 22. K, 3 X K,, admits a gregarious Ys-tree decomposition for all n,n > 2.

2
Proof. Let V(Ki23) = UV, where Vi = {1; |1 < j<12}and V, = {2; | 1 < j < 8}. Then the
i=1

following set gives a Ys-tree decomposition of K5 s.

{(17,22, 14, 25 1425), (12, 23, 15,215 1526), (18, 27, 14, 263 1423), (25, 15, 27, 112 2717),

(Is,2g, 111,275 11126), (13,21, 19, 275 1925), (13, 22, 12, 245 1526), (16, 20, 11, 215 1123),

(Ls, 23, 112, 255 11223), (12, 23, 19, 235 1924), (21, 111,23, 18: 23110), (19, 22, 112,243 1122y),

(L6, 24, 111, 255 11122), (12, 25, 15, 225 1524), (24, 17, 25, 135 2511), (24, 14,21, 16; 21 12),

(11, 26, 13,245 1821), (112, 26, 13, 245 1322), (11, 23, 17, 26; 1721), (21, 110, 27, 125 2711),

(11,24, 110, 225 11025), (28, 110, 26, 103 2616), (13, 25, 16, 235 1627), (17, 23, 13,233 1327)}. Now K53 X K,
=[YsdYsD...0Y;5]XK,=(Y5xK,)®(Y5xXK,)D...®d(YsXK,). Now, the Lemma 15, which shows
that a gregarious Ys-tree decomposition holds in Y5 X K,. Thus, K5 g X K, has a gregarious Ys-tree
decomposition. This completes the proof. O

Lemma 23. K,, X K,, admits a gregarious Ys-tree decomposition for m = 4 (mod 8) and for all n,
n>?2.
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Proof. Let m = 8s+4,s > 1. Then K,, X K, = Kgsoa X K, = [Kn® (s — DKg & (s — )K|2.3 ®

G20-D g §] X K, = [Kio X K] @ [(s — DK X K, 1@ [(s — DK s % K, @ S22 (K ¢ x K,,]. Now,
the Lemmas 21, 16, 22 and 18, shows that a gregarious Ys-tree decomposition holds in K, X K,,,
Ks X K, ,K12.3 X K, and K g X K,, respectively. Thus, we obtain a gregarious Ys-tree decomposition

for K,, X K,,. ]

Lemma 24. K X K, admits a gregarious Ys-tree decomposition.

6
Proof. Let V(Ke) ={1,2,3,...6}and V(K4) = {1,2,3,4}. Then V(K¢ X K4) = J V;, Vi={i; |1 £ j <
i=1

4}. Let it be clear that the set given below yields a gregarious Ys-tree decomposition for K¢ X K.
{(51, 32, 14,615 1423), (64,42, 24, 1152455), (14, 52, 34, 215 3443), (24, 62, 44, 315 4453),

(34, 12, 54,413 5463), (44,22, 64,515 6413), (33,61, 12,235 1,44), (43, 11,22, 33, 2,51),
(53,21,32,41:3261), (63, 31,42, 53:4211), (13,44, 52, 635 5221), (23, 51, 62, 13, 6,31),

(52,11, 63,32;6324), (62,21, 13,42, 1355), (12, 31, 23, 545 2362), (22, 41, 33, 625 331>),

(32,54, 43, 12:4362), (42,61, 53,225 5332), (12,21, 64, 525 6432), (22, 31, 14, 62; 1445),

(51,43, 24,125 2433), (42, 51, 34,223 346), (32,44, 61, 525 6113), (62, 11, 54, 4; 5425),

(11, 64,23, 34; 2342), (21, 14, 33,645 3352), (31, 24,41, 1454162), (43, 64, 53, 24; 53 12),

(51,44, 63,34,6322), (61, 54, 13,44; 1332), (12,51, 24,615 2437), (22, 61, 34, 11; 344»),

(32, 11, 44,215 4452), (42,21, 54,315 5462), (52, 31, 64,415 6412), (51, 14,43, 32; 4327),

(62,53, 31, 13; 3143), (12, 63,41, 235 4153), (22, 13, 51, 33, 5163), (43, 61, 23, 32; 235,),

(42,33, 11,53; 1123), (52,43, 21, 635 2133), (42, 63, 14, 535 1422), (24, 13, 34, 53; 3441),

(54,33, 44,235 4412)}. d

Lemma 25. Ks ¢ X K4 admits a gregarious Ys-tree decomposition.

Proof. Let us write as V(Kg¢) = szvl-, Vi={l;|1<j<8andV, ={2;|1 < j < 6}. Then the
following set gives a Ys-tree decomlljosition of K3 ¢.

{26, 11,23, 143 2315), (26, 13, 24, 135 2415), (14, 26, 13, 253 1321), (15,21, L, 235 1624),

(Ls, 25, 12,265 1222), (22, 13, 23, 17; 2312), (15, 24, 17, 265 1925), (11, 25, 14, 245 1421),

(17,21, 13,225 1323), (26, 16, 22, 175 2214), (13,25, 15,225 1526), (12,21, 11,225 1124)}. Then Ky 6 X Ky =
[Ys@Ys®...®Y5]XKy = (YsXKy)B(YsXKy)®...®(YsxKy). A gregarious Ys-tree decomposition for
Y5 x K, derives from Lemma 15, which provides a gregarious Ys-tree decomposition for Kg ¢ X K4. O

Lemma 26. K, X K,, admits a gregarious Ys-tree decomposition for m = 6 (mod 8) and n = 4

Proof. Letm = 85+ 6,5 > 1. Then K, X K, = Kysr6 X Ky = [sKs ® Ko ® 5K 3 @ 5Ks 6] X Ky =
S[KgX K4]®[Ke X K41 @ [Ks s X K4]® s[Kg ¢ X K4]. Now, the Lemmas 16, 18, 24 and 25, show that
a gregarious Ys-tree decomposition holds in Kg X K4, Kg g X Ky, K¢ X K4 and Kg ¢ X K, respectively.
Thus, we obtain a gregarious Ys-tree decomposition for K, X K,,. O

Lemma 27. K7 X K, admits a gregarious Ys-tree decomposition.

Proof. Let us write as K7 X K4 = [Ks & (K7 \ K5)] X Ky = [Ks X K4] ® [(K7 \ K5) X K4]. By
considering V(K7 \Ks) = {1,2,3,...,7}and V(Ky) = {1,2, 3,4}, we write as V([K7\ K5] X K,) = U V.,
Vi ={ij | 1 £ j < 4}. Therefore, the set given below yields a gregarious Ys-tree decomposmon for
[K7 \ Ks5] X Kj.

{(22,33, 12,743 1564), (23,34, 13,715 1342), (24, 31, 14, 723 1461), (21, 32, 11, 735 1,63),
(12,73,24,5152461), (13, 74,21, 525 2162), (71, 14, 22, 535 2263), (11, 72, 23, 543 2364),

(72,24, 11,62;1134), (73,21, 12,635 1,31), (13, 31, 2, 645 2574), (33, 14,23, 615 237),

(11,53,24,4152432), (12,54,21,42;2134), (13,51, 22,435 2571), (14, 52, 23,443 2335),
(11,52,24,4352433), (12,53, 21,443 2172), (13, 61, 22,415 2573), (14, 51, 23,425 2574),
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(34,22, 11,64; 1142), (31,23, 12,645 1243), (32, 13, 24, 625 2471), (33, 21, 14, 62; 144),
(21,43, 11,54;1133), (22,44, 12,515 1234), (23,44, 13, 525 1364), (24, 42, 14, 533 1435),
(54,22, 13,44 156,), (63,24, 12,715 1544), (64, 21, 13, 725 1354), (24, 63, 14, 73; 1443),
(65,23, 11,74;1,44)}. Now, the Lemmas 17, which shows that a gregarious Ys-tree decomposition
holds in K5 X K. Thus, we obtain a gregarious Ys-tree decomposition for K7 X Kj. O

Lemma 28. K5 7 X K4 admits a gregarious Ys-tree decomposition.

2
Proof. Let V(Kg7) = |J Vi, where V, ={1; |1 < j<8}and V, = {2;| 1 < j < 7}. Then the following
i=1

set gives a Ys-tree decomposition of Kg 7.

{26, 11,23, 145 2315), (26, 13,27, 135 2712), (14, 26, 13,255 1321), (15, 24, 16, 235 1627),

(Ls, 25, 12,265 1225), (20, 13, 23, 175 2315), (13, 24, 17, 265 1725), (12, 24, 14, 255 142¢),

(17,21, 18, 225 1823), (26, 16, 22, 175 2214), (13, 25, 15, 2; 1527), (12, 21, 11, 255 1124),

(26, 15,24, 165 2418), (25, 11,27, 17;2714)}. Then Kg 7 X K4 = [Ys @ Ys @ ... @ V5] X Ky = (Ys X Ky) @
(YsxKyp)®...® (Y5 X Ky). A gregarious Ys-tree decomposition for Y5 X K derives from Lemma 15,
which provides a gregarious Ys-tree decomposition for K 7 X Kj. O

Lemma 29. K, X K,, admits a gregarious Ys-tree decomposition for m =7 (mod 8) and n = 4.

Proof. Letm = 8s+7,5 > 1. Then K,, X K, = Kgs17 X Ky = [sKs ® K7 ® 5Ky 3 @ 5Ky 7] X Ky =
S[KgX K4]®[K7 X K41 @ @[K&g X K4]® s[Kg.7 %X K4]. Now, the Lemmas 16, 18, 27 and 28, show that
a gregarious Ys-tree decomposition holds in Kg X K4, Kg s X K4, K7 X K4 and Kg 7 X K4 respectively.
Thus, we obtain a gregarious Ys-tree decomposition for K, X K,,. O

Lemma 30. Ko X K, admits a gregarious Ys-tree decomposition.

Proof. Let Ko X Ky = [K; & (Ko \ Ky)] x Ky = [K; X K] © [(Kio \
K7) x Ky Let V(K,, \ K7) = {1,2,3,...,10}. Clearly, the set
{(1,4,3,6;3 10),(2,6,1,8;1 5),(2,7,3,1;3 8),(7,1,2,4;2 5),(5,3,2,8;2 10),

(10,1,9,2;9 3)} gives a Ys-tree decomposition for Kjp \ K7. Now K19 X Ky = [K7 X K4 | ®[(Ys® Vs @
L OYs)X Ky = [K7 X Ky] @ [(Ys X Ky) @ (Ys X Ky) & ... (Ys X Ky)]. Now, the Lemmas 15 and
27, which shows that a gregarious Ys-tree decomposition holds in Y5 X K, and K; X K, respectively.
Thus, we obtain a gregarious Ys-tree decomposition for Ky X K. O

Lemma 31. Ko s X K4 admits a gregarious Ys-tree decomposition.

2
Proof. Let V(Kp5) = |JV;, where Vi ={1; |1 < j<10}and V, = {2; | 1 < j < 8}. Then the
i=1

following set gives a Ys-tree decomposition for K s.

{(17,22, 14, 285 1425), (12, 23, 15,215 1526), (18, 27, 14, 265 1423), (23, 15, 27, 110: 2717),

(13,21, 110, 225 11025), (15, 22, 12,215 1223), (16, 22, 11, 215 11 2g), (13, 28, 110, 235 11024),

(21, L6, 23, 18; 2319), (12, 25, 15, 255 1524), (24, 17, 25, 135 2511), (21, 14,24, 16 2412),

(L10, 26, 18, 245 1821), (12, 26, 13, 245 1322), (11, 23, 17, 26; 1721), (21, 19, 27, 15: 2714),

(11,24, 19,225 1925), (28, 19, 26113 2616), (13,25, 16, 235 1627), (17, 28, 13,235 1327)}. Then K3 X K4 =
[Ys@Ys®...0Y5]xX Ky = (YsXKy)B(YsXKy)®D...®(Y5xXKy). A gregarious Ys-tree decomposition of
Ysx K, derives from Lemma 15, which provides a gregarious Ys-tree decomposition for Ko X Ky4. O

Lemma 32. K,, X K,, admits a gregarious Ys-tree decomposition for m = 10 (mod 8) and n = 4.

Proof. Letm = 85+ 10,5 > 1. Then K,, X K,, = Kgs110 X Ky = [K10® Kz ® @K&g ®sKyps| X Ky =
[Kip X K4] @ s[Kg X K4] @ %[Kg,g X K4] ® s[Ki0.3 X K4]. Now, the Lemmas 16, 18, 30 and 31,
show that a gregarious Ys-tree decomposition holds in Kg X K4, K3 g X K4, K10 X K4 and Kjg 3 X K4
respectively. Thus, we obtain a gregarious Ys-tree decomposition for K, X K,,. O
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Lemma 33. K, X K, admits a gregarious Ys-tree decomposition.

Proof. Let V(Kiim, \ Kg) = {1,2,3,...,11}. Clearly the set
{1,2,8,4;8 5),(2,5,1,6;1 7),(3,4,9,5,9 2),(2,3,1,8;1 11),(2,6,4,10;4 7),

(5,6,3,8;3 11),(7,2,10,5;10 1),(7,5,11,4;11 2),(3,5,4,2;4 1),(1,9,3,7;3 10)} gives a Ys-tree
decomposition for K \ K. Now Ky X K4 = [(Kj; \ K¢) ® K] X K4 = [(Ky; \ K¢) X K4] ® [Kg X K4]
=[Ys0Ysd...0Y;5) X K4] D [Kg X K4] = [(Y5 XKy)®(Ys X Ky)... (Y5 X K4)] 7 [K6 XK4]. Now,
the Lemmas 15 and 24, show that a gregarious Ys-tree decomposition holds in Y5 X K4 and K¢ X K4
respectively. Thus, we obtain a gregarious Ys-tree decomposition for K;; X Kj. O

Lemma 34. K, s X K, admits a gregarious Ys-tree decomposition.

2

Proof. Let V(Ki13) = UV, where Vi = {1; |1 < j< 11}and V, = {2; | 1 < j < 8}. Then the
i=1

following set gives a Ys-tree decomposition for K s.

{(17,20, 14, 285 1425), (12, 23, 15,215 1526), (18, 27, 14, 263 1423), (25, 15, 27, 1103 2717),

(Is, 28, 111,275 11126), (13,21, 110, 225 11025), (15, 22, 12,245 1523), (16, 22, 11, 215 1123),

(Ls, 28, 110, 235 11024), (21, 111, 23, 185 2319), (16, 24, 111, 255 11122), (12, 25, 15, 225 1524),

(24, 17,25, 18;2511), (24, 14, 21, 165 21 12), (110, 26, 18, 243 1821), (12, 26, 13, 24; 1325),

(11,23, 17,26, 1721), 21, 19, 27, 12: 2711), (11, 24, 19, 255 1925), (23, Lo, 2611; 2616),

(13,25, 16,233 1627), (17,25, 13,235 1327)}. Then Kj1 g X Ky = [Ys D Y5 D ... Ys] X Ky = (Y5 X Ky) &
(Ys X Ky)®...® (Y5 X Ky). Now, the Lemma 15, which shows that Y5 X K, has a gregarious Ys-tree
decomposition. Thus, we obtain a gregarious Ys-tree decomposition for Kj; g X Kj. O

Lemma 35. K,, X K,, admits a gregarious Ys-tree decomposition for m = 11 (mod 8) and n = 4.

Proof. Letm = 8s+ 11,5 > 1. Then K,, X K, = Kgso11 X Ky = [K11 ® 5K ® 252K s ® 5Ky 5] X Ky =
(K1 X Ku] © s[Ks X K4l ® *52[Kg s X K4] @ s[Ki1.5 X Ky4]. Now, the Lemmas 16, 18, 33 and 34,
show that a gregarious Ys-tree decomposition holds in Kg X Ky, Kg g X K4, K11 X K4 and Kj; g X Ky
respectively. Thus, we obtain a gregarious Ys-tree decomposition for K, X K,,. m|

4. Main Result

Theorem 3. There exists a gregarious Ys-tree decomposition for K,, X K,,, if and only if, mn(m—1)(n—
1) = 0 (mod 8).

Proof. Necessity: Since | E(K,, X K,) | = “=00=D and | E(Ys) |= 4, the required edge divisibility
condition to find a gregarious Ys-tree decomposition in K, X K, is lEﬁ§?2§")| = "’"(m;i(”_l). That is,
8lmn(m — 1)(n — 1). It can be written as mn(m — 1)(n — 1) =0 (mod 8).

Sufficiency: Follows from Lemmas 16, 20, 23, 26, 29, 32 and 35. O

5. Conclusion

In this manuscript, we give a complete solution to the problem of finding the existence of a Ys-tree
(gregarious Ys-tree) decomposition in K, X K,,. In general, the problem of decomposing K,, X K, into
Yi-tree (gregarious Yj-tree) is yet to solve for k > 6.
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