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Abstract: Yk-tree is defined as (v1, v2, . . . , vk−1; vk−2vk) by taking their vertices as (v1, v2, . . . , vk) and
edges as {(v1v2, v2v3, . . . , vk−2vk−1) ∪ (vk−2vk)}. It is also represented as (Pk−1 + e). One can obtain
the necessary condition as mn(m − 1)(n − 1) ≡ 0 (mod 2(k − 1)), for k ≥ 5 to establish a Yk-tree
decomposition in Km × Kn. Here the tensor product is denoted by ×. In this manuscript, it is shown
that a Y5-tree (gregarious Y5-tree) decomposition exists in Km×Kn, if and only if, mn(m−1)(n−1) ≡ 0
(mod 8).
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1. Introduction

A decomposition of graph G is a collection of subgraphs {Gi, 1 ≤ i ≤ n}, in which each subgraph,
is mutually - distinct by their edges along with E(G) = ∪n

i=1E(Gi). Let Kn and Pn respectively denotes
complete graph and path, on n vertices. Yk-tree is defined as (v1, v2, . . . , vk−1; vk−2vk) by taking their
vertices as (v1, v2, . . . , vk) and edges as {(v1v2, v2v3, . . . , vk−2vk−1) ∪ (vk−2vk)}. It is also represented as
(Pk−1 + e). Y5-tree or (P4 + e) graph, defined as {v1, v2, v3, v4; v3v5}, which is depicted in Figure 1. The

Figure 1. Y5 − tree

tensor product(×) of Km and Kn be defined in this way: V(Km × Kn) = {(p, q) | p ∈ V(Km), q ∈ V(Kn)}
and E(Km × Kn) = {(p, q)(r, s) | pr ∈ E(Km) and qs ∈ E(Kn)}. Let it be taken as V(Km × Kn) =

{
m⋃

i=1
i j, 1 ≤ j ≤ n}, by considering V(Km) = {1, 2, . . . ,m} and V(Kn) = {1, 2, . . . , n}. For instance, see

Figure 2.
As all are aware of that tensor product has commutative and distributive properties. So we write

as Km × Kn ≃ Kn × Km (commutative). If we have a Y5-tree decomposition for Km, we then write
Km = Y5 ⊕ Y5 ⊕ . . . ⊕ Y5. By applying the distributive properties, we can write as Km × Kn = [(Y5 ⊕
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Figure 2. P3 × P4

Y5 ⊕ . . . ⊕ Y5) × Kn] ≃ [(Y5 × Kn) ⊕ (Y5 × Kn) ⊕ . . . ⊕ (Y5 × Kn)]. If Y5-tree decomposition arises in
Km×Kn, in addition to, if every vertex of each Y5-tree’s is placed in different partite sets, then it called
as gregarious Y5-tree decomposition.

Tree decomposition and its special properties such as resolvable tree decompositions are consid-
ered by many authors. Ringel [1] has conjectured that K2m+1 can be decomposed as tree having m
edges. C. Huang and A. Rosa [2] has proved that Y5-tree decomposition for Km holds if and only
if m ≡ 0, 1 (mod 8). A G-decomposition of Km have been investigated in [3], where |V(G)| = 5.
Inspired from Ringel conjecture, G. Sethuraman and V. Murugan [4] has conjectured that, for m ≥ 1,
(G,H)-decomposition exists in K4m+1, when the size of tree G and H is m. Followed by these re-
sults, many authors have begun to look into, tree decomposition in various graphs. To know more
about it, refer [5–11]. As a development of it, gregarious tree decomposition in the tensor product
of complete graph has been started to investigate followed by the given results. A. Tamil Elakkiya
and A. Muthusamy [12] have been proved a gregarious kite decomposition of Km × Kn, if and only
if, mn(m − 1)(n − 1) ≡ 0 (mod 8). A. Tamil Elakkiya and A. Muthusamy [13] have been proved a
gregarious kite factorization of Km × Kn, if and only if, mn ≡ 0 (mod 4) and (m − 1)(n − 1) ≡ 0
(mod 2). In this way, we focus on the Y5-tree (gregarious Y5-tree) decomposition of tensor product
of complete graphs. In this manuscript, we establish a Y5-tree decomposition (gregarious Y5-tree) of
Km × Kn, if and only if, mn(m − 1)(n − 1) ≡ 0 (mod 8).
Y5-tree decomposition falls on the cases given below:
(i) m ≡ 0 (mod 4) and for all n, n ≥ 2.
(ii) m ≡ 1 (mod 4) and for all n, n ≥ 2.
(iii) m ≡ 3 (mod 4) and n ≡ 0 (mod 4).
(iv) m ≡ 3 (mod 4) and n ≡ 1 (mod 4).
(v) m ≡ 2 (mod 4) and n ≡ 0 (mod 4).
(vi) m ≡ 2 (mod 4) and n ≡ 1 (mod 4).
Also we prove a gregarious Y5-tree decomposition in Km × Kn for the following cases:
(i) m ≡ 0, 1 (mod 8) and for all n, n ≥ 2.
(ii) m ≡ 5 (mod 8) and for all n, n ≥ 2.
(iii) m ≡ 4 (mod 8) and for all n, n ≥ 2.
(iv) m ≡ 6 (mod 8) and n = 4.
(v) m ≡ 7 (mod 8) and n = 4.
(vi) m ≡ 10 (mod 8) and n = 4.
(vii) m ≡ 11 (mod 8) and n = 4.
In order to prove our main result, we require the following:

Theorem 1. [2] Y5-tree decompositions holds in Km if and only if m ≡ 0, 1 (mod 8).

2. Decompositions of Km × Kn into Y5 Tree

Lemma 1. K4 × Kn admits a Y5-tree decomposition for all n, n ≥ 2.
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Proof. Since for every Kn has a K2 decomposition, we then write as
K4×Kn = K4× [K2⊕K2⊕ . . .⊕K2] = (K4×K2)⊕ (K4×K2)⊕ . . .⊕ (K4×K2). By taking as V(K4×K2) =

{
4⋃

i=1
i j, 1 ≤ j ≤ 2}, the following set {(11, 22, 41, 32; 4112), (11, 42, 31, 12; 3122), (11, 32, 21, 42; 2112)},

proves a Y5-tree decomposition exists in K4 × K2. Thus, we obtain a Y5-tree decomposition for K4 ×

Kn. □

Lemma 2. Y5 × Kn admits a Y5-tree decomposition for all n, n ≥ 2.

Proof. As discussed in Lemma 1, we can take Y5 × Kn = Y5 × [K2 ⊕ K2 ⊕ . . . ⊕ K2] = (Y5 × K2) ⊕

(Y5 × K2) ⊕ . . . ⊕ (Y5 × K2). By taking as V(Y5 × K2) = {
5⋃

i=1
i j, 1 ≤ j ≤ 2}, the following set

{(11, 22, 31, 42; 3152), (12, 21, 32, 41; 3251)}, proves a Y5-tree decomposition exists in Y5 × K2. Thus,
we obtain a Y5-tree decomposition for Y5 × Kn. □

Lemma 3. K4, 4 × Kn admits a Y5-tree decomposition for all n, n ≥ 2.

Proof. Let us write as K4, 4 × Kn = K4, 4 × [K2 ⊕ K2 ⊕ . . . ⊕ K2].

By taking as V(K4, 4) = {
2⋃

i=1
i j, 1 ≤ j ≤ 4}, the following set

{(21, 12, 22, 14; 2211), (11, 21, 13, 24; 1322), (21, 14, 23, 11; 2313), (23, 12, 24, 14; 2411)}, proves a Y5-
tree decomposition exists in K4, 4. Now K4, 4 × Kn = (Y5 ⊕ Y5 ⊕ . . . ⊕ Y5) × (K2 ⊕ K2 ⊕ . . . ⊕ K2) =
(Y5 × K2) ⊕ (Y5 × K2) ⊕ . . . ⊕ (Y5 × K2). A Y5-tree decomposition for Y5 × K2 derives from Lemma 2,
which gives a Y5-tree decomposition for K4, 4 × Kn. □

Lemma 4. Km × Kn admits a Y5-tree decomposition for m ≡ 0 (mod 4) and for all n, n ≥ 2.

Proof. Here, m ≡ 0 (mod 4) can be classified into two cases (i) m ≡ 0 (mod 8) and (ii) m ≡ 4
(mod 8).
Case (i): Let m = 8s, s ≥ 1. Then Km × Kn = K8s × Kn. We have a Y5-tree decomposition for Km,
according to the theorem 1. Then K8s × Kn =

[
Y5 ⊕ Y5 ⊕ . . . ⊕ Y5] × Kn = (Y5 × Kn) ⊕ (Y5 × Kn) ⊕

. . . ⊕ (Y5 × Kn). Lemma 2 which shows that a Y5 × Kn, has a Y5-tree decomposition. Thus, we obtain
a Y5-tree decomposition for K8s × Kn.
Case (ii): Let m = 8s + 4, s ≥ 0. Then Km × Kn = K8s+4 × Kn =

[
(2s + 1)K4 ⊕ s(2s + 1)K4, 4

]
× Kn =

(2s + 1)[K4 × Kn] ⊕ s(2s + 1)[K4, 4 × Kn]. Now, the Lemmas 1 and 3, shown that for K4 × Kn and
K4, 4 ×Kn has a Y5-tree decomposition. Thus, we obtain a Y5-tree decomposition for K8s+1 ×Kn. From
the aforementioned Cases, we can get a Y5-tree decomposition for Km × Kn. □

Lemma 5. K5 × Kn admits a Y5-tree decomposition for all n, n ≥ 2.

Proof. Now K5 × Kn = K5 × [K2 ⊕ K2 ⊕ . . . ⊕ K2] = (K5 × K2) ⊕ (K5 × K2) ⊕ . . . ⊕ (K5 × K2). Let

V(K5 × K2) = {
5⋃

i=1
i j, 1 ≤ j ≤ 2}. A Y5-tree decomposition can be derives in K5 × K2 as follows:

{(12, 21, 42, 51; 4231), (41, 52, 31, 22; 3112), (21, 52, 11, 22; 1142), (22, 41, 32, 11; 3221),
(41, 12, 51, 32; 5122)}. Thus, we obtain a Y5-tree decomposition for K5 × Kn. □

Lemma 6. K5, 4 × Kn admits a Y5-tree decomposition for all n, n ≥ 2.

Proof. Let K5, 4 × Kn = K5, 4 × [K2 ⊕ K2 ⊕ . . . ⊕ K2]. Let V(K5, 4) =
2⋃

i=1
Vi, where

V1 = {1 j | 1 ≤ j ≤ 5} and V2 = {2 j | 1 ≤ j ≤ 4}. Clearly, the set
{(11, 22, 13, 23; 1324), (22, 12, 23, 14; 2315), (15, 24, 11, 21; 1123), (12, 24, 14, 22; 1421),
(22, 15, 21, 12; 2113)}, proves a Y5-tree decomposition exists in K5, 4. Now K5, 4 × Kn = (Y5 ⊕ Y5 ⊕ . . . ⊕

Y5) × (K2 ⊕ K2 ⊕ . . . ⊕ K2) = (Y5 × K2) ⊕ (Y5 × K2) ⊕ . . . ⊕ (Y5 × K2). From the Lemma 2, we obtain a
Y5-tree decomposition in Y5 × K2. Thus, we get a Y5-tree decomposition for K5, 4 × Kn. □
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Lemma 7. Km × Kn admits a Y5-tree decomposition for m ≡ 1 (mod 4) and for all n, n ≥ 2.

Proof. Here m ≡ 1 (mod 4) can be classified into two Cases (i) m ≡ 1 (mod 8) and (ii) m ≡ 5
(mod 8).
Case (i): Let m = 8s + 1, s ≥ 1. Then Km × Kn = K8s+1 × Kn. We have a Y5-tree decomposition for
Km, according to the theorem 1. Then K8s+1 ×Kn =

[
Y5 ⊕ Y5 ⊕ . . .⊕ Y5]×Kn = (Y5 ×Kn)⊕ (Y5 ×Kn)⊕

. . . ⊕ (Y5 × Kn). Now, from Lemma 2, which has been shown that a Y5-tree decomposition holds for
Y5 × Kn. Thus, we obtain a Y5-tree decomposition for K8s+1 × Kn.
Case (ii): Let m = 8s+5, s ≥ 0. Then Km×Kn = K8s+5×Kn =

[
K5⊕2sK4⊕s(2s−1)K4, 4⊕2sK5, 4

]
×Kn =

[K5 × Kn]⊕ 2s[K4 × Kn]⊕ s(2s− 1)[K4, 4 × Kn]⊕ 2s[K5, 4 × Kn]. Now, the Lemmas 5, 1, 3 and 6, show
that a Y5-tree decomposition holds in K5×Kn, K4×Kn, K4, 4×Kn and K5, 4×Kn respectively. Thus, we
obtain a Y5-tree decomposition for K8s+5 × Kn. From the aforementioned Cases, we can get a Y5-tree
decomposition for Km × Kn. □

Lemma 8. K4, 3 × Kn admits a Y5-tree decomposition for all n, n ≥ 2.

Proof. Let K4, 3 × Kn = K4, 3 × [K2 ⊕ K2 ⊕ . . . ⊕ K2]. Let V(K4, 3) =
2⋃

i=1
Vi, where

V1 = {1 j | 1 ≤ j ≤ 4} and V2 = {2 j | 1 ≤ j ≤ 3}. Then the following set
{(22, 12, 23, 11; 2313), (21, 11, 22, 14; 2213), (23, 14, 21, 13; 2112)} gives a Y5-tree decomposition for K4, 3.
Now K4, 3 × Kn = (Y5 ⊕ Y5 ⊕ . . . ⊕ Y5) × (K2 ⊕ K2 ⊕ . . . ⊕ K2) = (Y5 × K2) ⊕ (Y5 × K2) ⊕ . . . ⊕ (Y5 × K2).
Now, the Lemma 2, has shown that for Y5×K2 has a Y5-tree decomposition. Thus, we obtain a Y5-tree
decomposition for K4, 3 × Kn. □

Lemma 9. Y5 × Y5 admits a Y5-tree decomposition.

Proof. Let us write as Y5×Y5 = Y5× [K2⊕K2⊕K2⊕K2] = (Y5×K2)⊕ (Y5×K2)⊕ (Y5×K2)⊕ (Y5×K2).
We have a Y5-tree decomposition for Y5 × K2, according to the Lemma 2. Thus, we obtain a Y5-tree
decomposition for Y5 × Y5. □

Lemma 10. Km × Kn admits a Y5-tree decomposition for m ≡ 3 (mod 4) and n ≡ 0 (mod 4).

Proof. Let m = 4s + 3, s ≥ 0 and n = 4t, t ≥ 1. We write Km × Kn = K4s+3 × K4t = [sK4 ⊕

K3 ⊕ sK4, 3 ⊕
s(s−1)

2 K4, 4] × K4t = s[K4 × K4t] ⊕ [K3 × K4t] ⊕ s[K4, 3 × K4t] ⊕
s(s−1)

2 [K4, 4 × K4t] =
s[K4 × K4t] ⊕ t[K3 × K4] ⊕ t(t−1)

2 [K3 × K4, 4] ⊕ s[K4, 3 × K4t] ⊕
s(s−1)

2 [K4, 4 × K4t]. Now, the Lemmas 1, 3
and 8 show that a Y5-tree decomposition holds in K4×K4t,K3×K4,K3×K4, 4,K4, 4×K4t and K4, 3×K4t

respectively. Thus, we obtain a Y5-tree decomposition for Km × Kn. □

Lemma 11. Km × Kn admits a Y5-tree decomposition for m ≡ 3 (mod 4) and n ≡ 1 (mod 4).

Proof. Let m = 4s + 3, s ≥ 0 and n = 4t + 1, t ≥ 1. We write Km × Kn = K4s+3 × K4t+1 =
[
sK4 ⊕ K3 ⊕

sK4, 3 ⊕
s(s−1)

2 K4, 4
]
×
[
K5 ⊕ (t − 1)K4 ⊕

(t−1)(t−2)
2 K4, 4 ⊕ (t − 1)K5, 4

]
=
{
s[K4 × K5] ⊕ s(t − 1)[K4 × K4] ⊕

s(t−1)(t−2)
2 [K4×K4, 4]⊕ s(t−1)[K4×K5, 4]

}
⊕
{
[K3×K5]⊕(t−1)[K3×K4]⊕ (t−1)(t−2)

2 [K3×K4, 4]⊕(t−1)[K3×

K5, 4]
}
⊕
{
s[K4, 3×K5]⊕ s(t−1)[K4, 3×K4]⊕ s(t−1)(t−2)

2 [K4, 3×K4, 4]⊕ s(t−1)[K4, 3×K5, 4]
}
⊕
{ s(s−1)

2 [K4, 4×

K5]⊕ s(s−1)(t−1)
2 [K4, 4×K4]⊕ s(s−1)(t−1)(t−2)

4 [K4, 4×K4, 4]⊕ s(s−1)(t−1)
2 [K4, 4×K5, 4]

}
. Now, the Lemmas 1, 3, 5,

6, 8 and 9 show that a Y5-tree decomposition holds in K4 ×Kn,K4, 4 ×Kn,K5 ×Kn,K5, 4 ×Kn,K4, 3 ×Kn

and Y5 × Y5 respectively. Thus, we obtain a Y5-tree decomposition for Km × Kn. □

Lemma 12. K4, 2 × Kn admits a Y5-tree decomposition for all n, n ≥ 2.

Proof. Let K4, 2 × Kn = K4, 2 × [K2 ⊕ K2 ⊕ . . . ⊕ K2]. Let V(K4, 2) =
2⋃

i=1
Vi, where V1 = {1 j | 1 ≤ j ≤ 4}

and V2 = {2 j | 1 ≤ j ≤ 2}. Clearly, the set {(21, 13, 22, 11; 2212), (22, 14, 21, 12; 2111)}, proves a Y5-
tree decomposition exists in K4, 2. Now K4, 2 × Kn = (Y5 ⊕ Y5 ⊕ . . . ⊕ Y5) × (K2 ⊕ K2 ⊕ . . . ⊕ K2) =
(Y5 × K2) ⊕ (Y5 × K2) ⊕ . . . ⊕ (Y5 × K2). Now, the Lemma 2, shows that for Y5 × K2 has a Y5-tree
decomposition. Thus, we obtain a Y5-tree decomposition for K4, 2 × Kn. □
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Lemma 13. Km × Kn admits a Y5-tree decomposition for m ≡ 2 (mod 4) and n ≡ 0 (mod 4).

Proof. Let m = 4s+2, s ≥ 0 and n = 4t, t ≥ 1. We write Km×Kn = K4s+2×K4t = [sK4⊕K2⊕
s(s−1)

2 K4, 4⊕

sK4, 2]×K4t = [sK4⊕K2⊕
s(s−1)

2 K4, 4⊕sK4, 2]×[tK4⊕
t(t−1)

2 K4, 4] =
{
st[K4×K4]⊕ st(t−1)

2 [K4×K4, 4]
}
⊕
{
t[K2×

K4]⊕ t(t−1)
2 [K2×K4, 4]

}
⊕
{ s(s−1)t

2 [K4, 4×K4]⊕ s(s−1)t(t−1)
4 [K4, 4×K4, 4]

}
⊕
{
st[K4,2×K4]⊕ st(t−1)

2 [K4, 2×K4, 4]
}
.

Now, the Lemmas 1, 3, 9 and 12 show that a Y5-tree decomposition holds in K4×Kn,K4, 4×Kn,Y5×Y5

and K4, 2 × Kn respectively. Thus, we obtain a Y5-tree decomposition for Km × Kn. □

Lemma 14. Km × Kn admits a Y5-tree decomposition for m ≡ 2 (mod 4) and n ≡ 1 (mod 4).

Proof. Let m = 4s + 2, s ≥ 0 and n = 4t + 1, t ≥ 1. Then Km × Kn = K4s+2 × K4t+1 =
[
sK4 ⊕ K2 ⊕

s(s−1)
2 K4, 4 ⊕ sK4, 2

]
×
[
K5 ⊕ (t − 1)K4 ⊕

(t−1)(t−2)
2 K4, 4 ⊕ (t − 1)K5, 4

]
=
{
{s[K4 × K5] ⊕ s(t − 1)[K4 × K4] ⊕

s(t−1)(t−2)
2 [K4×K4, 4]⊕ s(t−1)[K4×K5,4]}⊕{[K2×K5]⊕(t−1)[K2×K4]⊕ (t−1)(t−2)

2 [K2×K4, 4]⊕(t−1)[K2×

K5, 4]} ⊕ { s(s−1)
2 [K4, 4 × K5]⊕ s(s−1)(t−1)

2 [K4, 4 × K4]⊕ s(s−1)(t−1)(t−2)
4 [K4, 4 × K4, 4]⊕ s(s−1)(t−1)

2 [K4, 4 × K5, 4]} ⊕
{s[K4, 2×K5]⊕ s(t−1)[K4, 2×K4]⊕ s(t−1)(t−2)

2 [K4, 2×K4, 4]⊕ s(t−1)[K4, 2×K5, 4]}
}
. Now, the Lemmas 1, 3,

5, 6, 9 and 12 show that a Y5-tree decomposition holds in K4×Kn,K4, 4×Kn,K5×K2,K5, 4×Kn,Y5×Y5

and K4, 2 × Kn respectively. Thus, we obtain a Y5-tree decomposition for Km × Kn. □

Theorem 2. A Y5-tree decomposition for Km×Kn holds, if and only if, mn(m−1)(n−1) ≡ 0 (mod 8).

Proof. One can obtain a necessary condition to find a Y5-tree decomposition for Km × Kn as mn(m −
1)(n−1) ≡ 0 (mod 8). From the Lemmas 4, 7, 10, 11, 13 and 14, we can conclude the aforementioned
necessary condition is sufficient. □

3. Gregarious Y5-tree Decomposition for Km ×Kn

Lemma 15. Y5 × Kn admits a gregarious Y5-tree decomposition for all n, n ≥ 2.

Proof. Let us suppose as Y5 × Kn = Y5 × [K2 ⊕ K2 ⊕ . . . ⊕ K2] = (Y5 × K2) ⊕ (Y5 × K2) ⊕ . . . ⊕ (Y5 ×

K2). Let V(Y5 × K2) = {
5⋃

i=1
i j, 1 ≤ j ≤ 2}. A gregarious Y5-tree decomposition can be derives in

Y5 × K2 as follows: {(11, 22, 31, 42; 3152), (12, 21, 32, 41; 3251)}. Thus, we obtain a gregarious Y5-tree
decomposition for Y5 × Kn. □

Lemma 16. Km × Kn admits a gregarious Y5-tree decomposition for m ≡ 0, 1 (mod 8) and for all n,
n ≥ 2.

Proof. Since by theorem 1, Y5-tree decomposition for Km, m = 8s, or, 8s + 1 exists, let us write as
Km × Kn =

[
Y5 ⊕ Y5 ⊕ . . . ⊕ Y5

]
× Kn =

[
Y5 × Kn

]
⊕
[
Y5 × Kn

]
⊕ . . . ⊕

[
Y5 × Kn

]
. Now, the Lemma

15, which shows that Y5 × Kn has a gregarious Y5-tree decomposition. Thus, we obtain a gregarious
Y5-tree decomposition for Km × Kn. □

Lemma 17. K5 × Kn admits a gregarious Y5-tree decomposition for all n, n ≥ 2.

Proof. Let us suppose as K5×Kn = K5× [K2⊕K2⊕ . . .⊕K2] = (K5×K2)⊕ (K5×K2)⊕ . . .⊕ (K5×K2).

Let V(K5 × K2) = {
5⋃

i=1
i j, 1 ≤ j ≤ 2}. A gregarious Y5-tree decomposition can be derives in K5 × K2 as

follows: {(11, 52, 21, 42; 2132), (21, 12, 31, 52; 3142), (31, 22, 41, 12; 4152), (41, 32, 51, 22; 5112),
(51, 42, 11, 32; 1122)}. Thus, we obtain a gregarious Y5-tree decomposition for K5 × Kn. □

Lemma 18. K8, 8 × Kn admits a gregarious Y5-tree decomposition for all n, n ≥ 2.

Proof. Let V(K8, 8) = {
2⋃

i=1
i j, 1 ≤ j ≤ 8}. For 0 ≤ s ≤ 1 and 1 ≤ i ≤ 8, κis =

{1i+8s, 2i+(3s+4), 1i+(4s+3), 2i+(8s+5); 1i+(4s+3) 2i+(6s+6)}, by taking the residues of Z8 as {1, 2, 3, . . . , 8} for
subscripts. Let it be clear that, the set {κ10, κ

1
1} provides a base block of Y5-tree decomposition for K8, 8.
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Thus, the collection κ = {κi0, κ
i
1}, 1 ≤ i ≤ 8, holds the Y5-tree decomposition for K8, 8. Now we write,

K8, 8 × Kn = [Y5 ⊕ Y5 ⊕ . . . ⊕ Y5] × Kn = (Y5 × Kn) ⊕ (Y5 × Kn) ⊕ . . . ⊕ (Y5 × Kn). Then, the Lemma
15, which shows that Y5 × Kn has a gregarious Y5-tree decomposition. Thus, we obtain a gregarious
Y5-tree decomposition for K8, 8 × Kn. □

Lemma 19. K8, 5 × Kn admits a gregarious Y5-tree decomposition for all n, n ≥ 2.

Proof. Let V(K8, 5) =
2⋃

i=1
Vi, where V1 = {1 j | 1 ≤ j ≤ 8} and V2 = {2 j | 1 ≤ j ≤ 5}. Then the following

set gives a Y5-tree decomposition for K8, 5 :
{(21, 11, 23, 14; 2315), (25, 18, 24, 13; 2412), (25, 13, 22, 11; 2214), (15, 21, 16, 23; 1624),
(16, 25, 12, 21; 1222), (21, 13, 23, 17; 2312), (25, 17, 24, 11; 2415), (25, 15, 22, 16; 2217),
(11, 25, 14, 24; 1421), (17, 21, 18, 22; 1823)}. Let K8, 5 × Kn = [Y5 ⊕ Y5 ⊕ . . . ⊕ Y5] × Kn = (Y5 × Kn) ⊕
(Y5 × Kn) ⊕ . . . ⊕ (Y5 × Kn). Now, the Lemma 15, which shows that Y5 × Kn has a gregarious Y5-tree
decomposition. Thus, we obtain a gregarious Y5-tree decomposition for K8, 5 × Kn. □

Lemma 20. Km × Kn admits a gregarious Y5-tree decomposition for m ≡ 5 (mod 8) and for all n,
n ≥ 2.

Proof. Let m = 8s + 5, s ≥ 0. Then Km × Kn = K8s+5 × Kn =
[
sK8 ⊕ K5 ⊕

s(s−1)
2 K8, 8 ⊕ sK8, 5

]
× Kn =

s[K8×Kn]⊕ [K5×Kn]⊕ s(s−1)
2 [K8, 8×Kn]⊕ s[K8, 5×Kn]. Now, the Lemmas 16, 17, 18 and 19, show that

a gregarious Y5-tree decomposition holds in K8 × Kn, K5 × Kn, K8, 8 × Kn and K8, 5 × Kn respectively.
Thus, we obtain a gregarious Y5-tree decomposition for Km × Kn. □

Lemma 21. K12 × Kn admits a gregarious Y5-tree decomposition.

Proof. Let K12 × Kn =
[
K5 ⊕ (K12 \ K5)

]
× Kn =

[
K5 × Kn

]
⊕
[
(K12 \ K5) × Kn

]
. Let V(K12 \ K5) =

{1, 2, 3, . . . , 12}. Then the following set yields a Y5-tree decomposition for K12 \ K5:{
(11, 1, 12, 5; 12 6), (12, 2, 1, 6; 1 7), (1, 3, 2, 7; 2 8), (2, 4, 3, 8; 3 9), (3, 5, 4, 9; 4 10),

(4, 8, 5, 10; 5 11), (1, 4, 12, 7; 12 3), (6, 5, 1, 8; 1 9), (3, 6, 2, 9; 2 10), (8, 7, 3, 10; 3 11),
(7, 6, 4, 11; 4 7), (5, 7, 10, 6; 10 1), (8, 6, 9, 7; 9 5), (5, 2, 11, 6; 11 7)

}
.

Therefore, K12×Kn =
[
K5×Kn

]
⊕
[
(Y5⊕Y5⊕. . .⊕Y5)×Kn

]
=
[
K5×Kn

]
⊕
[
(Y5×Kn)⊕(Y5×Kn) . . . (Y5×Kn)

]
.

Now, the Lemmas 15 and 17, show that a gregarious Y5-tree decomposition holds in Y5×Kn and K5×Kn

respectively. Thus, we obtain a gregarious Y5-tree decomposition for K12 × Kn. □

Lemma 22. K12, 8 × Kn admits a gregarious Y5-tree decomposition for all n, n ≥ 2.

Proof. Let V(K12, 8) =
2⋃

i=1
Vi, where V1 = {1 j | 1 ≤ j ≤ 12} and V2 = {2 j | 1 ≤ j ≤ 8}. Then the

following set gives a Y5-tree decomposition of K12, 8.{
(17, 22, 14, 28; 1425), (12, 23, 15, 21; 1526), (18, 27, 14, 26; 1423), (28, 15, 27, 112; 2717),

(18, 28, 111, 27; 11126), (13, 21, 19, 27; 1925), (18, 22, 12, 24; 1226), (16, 22, 11, 21; 1128),
(16, 28, 112, 25; 11223), (12, 28, 19, 23; 1924), (21, 111, 23, 18; 23110), (19, 22, 112, 24; 11221),
(16, 24, 111, 25; 11122), (12, 25, 15, 22; 1524), (24, 17, 25, 18; 2511), (24, 14, 21, 16; 2112),
(11, 26, 18, 24; 1821), (112, 26, 13, 24; 1322), (11, 23, 17, 26; 1721), (21, 110, 27, 12; 2711),
(11, 24, 110, 22; 11025), (28, 110, 26, 19; 2616), (13, 25, 16, 23; 1627), (17, 28, 13, 23; 1327)

}
. Now K12, 8 × Kn

= [Y5⊕Y5⊕ . . .⊕Y5]×Kn = (Y5×Kn)⊕ (Y5×Kn)⊕ . . .⊕ (Y5×Kn). Now, the Lemma 15, which shows
that a gregarious Y5-tree decomposition holds in Y5 × Kn. Thus, K12, 8 × Kn has a gregarious Y5-tree
decomposition. This completes the proof. □

Lemma 23. Km × Kn admits a gregarious Y5-tree decomposition for m ≡ 4 (mod 8) and for all n,
n ≥ 2.

Journal of Combinatorial Mathematics and Combinatorial Computing Volume 117, 185–194



Gregarious Y5-Tree Decompositions of Tensor Product of Complete Graphs 191

Proof. Let m = 8s + 4, s ≥ 1. Then Km × Kn = K8s+4 × Kn =
[
K12 ⊕ (s − 1)K8 ⊕ (s − 1)K12, 8 ⊕

(s−2)(s−1)
2 K8, 8

]
× Kn = [K12 × Kn] ⊕ [(s − 1)K8 × Kn] ⊕ [(s − 1)K12, 8 × Kn] ⊕ (s−2)(s−1)

2 [K8, 8 × Kn]. Now,
the Lemmas 21, 16, 22 and 18, shows that a gregarious Y5-tree decomposition holds in K12 × Kn,
K8 × Kn ,K12, 8 × Kn and K8, 8 × Kn respectively. Thus, we obtain a gregarious Y5-tree decomposition
for Km × Kn. □

Lemma 24. K6 × K4 admits a gregarious Y5-tree decomposition.

Proof. Let V(K6) = {1, 2, 3, . . . 6} and V(K4) = {1, 2, 3, 4}. Then V(K6 ×K4) =
6⋃

i=1
Vi, Vi = {i j | 1 ≤ j ≤

4}. Let it be clear that the set given below yields a gregarious Y5-tree decomposition for K6 × K4.{
(51, 32, 14, 61; 1423), (64, 42, 24, 11; 2452), (14, 52, 34, 21; 3443), (24, 62, 44, 31; 4453),

(34, 12, 54, 41; 5463), (44, 22, 64, 51; 6413), (33, 61, 12, 23; 1241), (43, 11, 22, 33; 2251),
(53, 21, 32, 41; 3261), (63, 31, 42, 53; 4211), (13, 41, 52, 63; 5221), (23, 51, 62, 13; 6231),
(52, 11, 63, 32; 6324), (62, 21, 13, 42; 1352), (12, 31, 23, 54; 2362), (22, 41, 33, 62; 3312),
(32, 54, 43, 12; 4362), (42, 61, 53, 22; 5332), (12, 21, 64, 52; 6432), (22, 31, 14, 62; 1442),
(51, 43, 24, 12; 2433), (42, 51, 34, 22; 3462), (32, 44, 61, 52; 6113), (62, 11, 54, 42; 5422),
(11, 64, 23, 34; 2342), (21, 14, 33, 64; 3352), (31, 24, 41, 14; 4162), (43, 64, 53, 24; 5312),
(51, 44, 63, 34, 6322), (61, 54, 13, 44; 1332), (12, 51, 24, 61; 2432), (22, 61, 34, 11; 3442),
(32, 11, 44, 21; 4452), (42, 21, 54, 31; 5462), (52, 31, 64, 41; 6412), (51, 14, 43, 32; 4322),
(62, 53, 31, 13; 3143), (12, 63, 41, 23; 4153), (22, 13, 51, 33, 5163), (43, 61, 23, 32; 2352),
(42, 33, 11, 53; 1123), (52, 43, 21, 63; 2133), (42, 63, 14, 53; 1422), (24, 13, 34, 53; 3441),
(54, 33, 44, 23; 4412)

}
. □

Lemma 25. K8, 6 × K4 admits a gregarious Y5-tree decomposition.

Proof. Let us write as V(K8, 6) =
2⋃

i=1
Vi, V1 = {1 j | 1 ≤ j ≤ 8} and V2 = {2 j | 1 ≤ j ≤ 6}. Then the

following set gives a Y5-tree decomposition of K8, 6.{
(26, 11, 23, 14; 2315), (26, 18, 24, 13; 2412), (14, 26, 13, 25; 1321), (15, 21, 16, 23; 1624),

(16, 25, 12, 26; 1222), (22, 13, 23, 17; 2312), (15, 24, 17, 26; 1725), (11, 25, 14, 24; 1421),
(17, 21, 18, 22; 1823), (26, 16, 22, 17; 2214), (18, 25, 15, 22; 1526), (12, 21, 11, 22; 1124)

}
. Then K8, 6 × K4 =

[Y5⊕Y5⊕ . . .⊕Y5]×K4 = (Y5×K4)⊕(Y5×K4)⊕ . . .⊕(Y5×K4). A gregarious Y5-tree decomposition for
Y5×K4 derives from Lemma 15, which provides a gregarious Y5-tree decomposition for K8, 6×K4. □

Lemma 26. Km × Kn admits a gregarious Y5-tree decomposition for m ≡ 6 (mod 8) and n = 4.

Proof. Let m = 8s + 6, s ≥ 1. Then Km × Kn = K8s+6 × K4 =
[
sK8 ⊕ K6 ⊕

s(s−1)
2 K8, 8 ⊕ sK8, 6

]
× K4 =

s[K8×K4]⊕ [K6×K4]⊕ s(s−1)
2 [K8, 8×K4]⊕ s[K8, 6×K4]. Now, the Lemmas 16, 18, 24 and 25, show that

a gregarious Y5-tree decomposition holds in K8 × K4, K8, 8 × K4, K6 × K4 and K8, 6 × K4 respectively.
Thus, we obtain a gregarious Y5-tree decomposition for Km × Kn. □

Lemma 27. K7 × K4 admits a gregarious Y5-tree decomposition.

Proof. Let us write as K7 × K4 = [K5 ⊕ (K7 \ K5)] × K4 = [K5 × K4] ⊕ [(K7 \ K5) × K4]. By

considering V(K7\K5) = {1, 2, 3, . . . , 7} and V(K4) = {1, 2, 3, 4}, we write as V([K7\K5]×K4) =
7⋃

i=1
Vi,

Vi = {i j | 1 ≤ j ≤ 4}. Therefore, the set given below yields a gregarious Y5-tree decomposition for
[K7 \ K5] × K4.{
(22, 33, 12, 74; 1264), (23, 34, 13, 71; 1342), (24, 31, 14, 72; 1461), (21, 32, 11, 73; 1163),

(12, 73, 24, 51; 2461), (13, 74, 21, 52; 2162), (71, 14, 22, 53; 2263), (11, 72, 23, 54; 2364),
(72, 24, 11, 62; 1134), (73, 21, 12, 63; 1231), (13, 31, 22, 64; 2274), (33, 14, 23, 61; 2371),
(11, 53, 24, 41; 2432), (12, 54, 21, 42; 2134), (13, 51, 22, 43; 2271), (14, 52, 23, 44; 2332),
(11, 52, 24, 43; 2433), (12, 53, 21, 44; 2172), (13, 61, 22, 41; 2273), (14, 51, 23, 42; 2374),
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(34, 22, 11, 64; 1142), (31, 23, 12, 61; 1243), (32, 13, 24, 62; 2471), (33, 21, 14, 62; 1441),
(21, 43, 11, 54; 1133), (22, 44, 12, 51; 1234), (23, 41, 13, 52; 1364), (24, 42, 14, 53; 1432),
(54, 22, 13, 44; 1362), (63, 24, 12, 71; 1241), (64, 21, 13, 72; 1354), (21, 63, 14, 73; 1443),
(62, 23, 11, 74; 1144)

}
. Now, the Lemmas 17, which shows that a gregarious Y5-tree decomposition

holds in K5 × K4. Thus, we obtain a gregarious Y5-tree decomposition for K7 × K4. □

Lemma 28. K8, 7 × K4 admits a gregarious Y5-tree decomposition.

Proof. Let V(K8, 7) =
2⋃

i=1
Vi, where V1 = {1 j | 1 ≤ j ≤ 8} and V2 = {2 j | 1 ≤ j ≤ 7}. Then the following

set gives a Y5-tree decomposition of K8, 7.{
(26, 11, 23, 14; 2315), (26, 18, 27, 13; 2712), (14, 26, 13, 25; 1321), (15, 21, 16, 23; 1627),

(16, 25, 12, 26; 1222), (22, 13, 23, 17; 2312), (13, 24, 17, 26; 1725), (12, 24, 14, 25; 1421),
(17, 21, 18, 22; 1823), (26, 16, 22, 17; 2214), (18, 25, 15, 22; 1527), (12, 21, 11, 22; 1124),
(26, 15, 24, 16; 2418), (25, 11, 27, 17; 2714)

}
. Then K8, 7 × K4 = [Y5 ⊕ Y5 ⊕ . . . ⊕ Y5] × K4 = (Y5 × K4) ⊕

(Y5 × K4) ⊕ . . . ⊕ (Y5 × K4). A gregarious Y5-tree decomposition for Y5 × K4 derives from Lemma 15,
which provides a gregarious Y5-tree decomposition for K8, 7 × K4. □

Lemma 29. Km × Kn admits a gregarious Y5-tree decomposition for m ≡ 7 (mod 8) and n = 4.

Proof. Let m = 8s + 7, s ≥ 1. Then Km × Kn = K8s+7 × K4 =
[
sK8 ⊕ K7 ⊕

s(s−1)
2 K8, 8 ⊕ sK8, 7

]
× K4 =

s[K8×K4]⊕ [K7×K4]⊕ s(s−1)
2 [K8, 8×K4]⊕ s[K8, 7×K4]. Now, the Lemmas 16, 18, 27 and 28, show that

a gregarious Y5-tree decomposition holds in K8 × K4, K8, 8 × K4, K7 × K4 and K8, 7 × K4 respectively.
Thus, we obtain a gregarious Y5-tree decomposition for Km × Kn. □

Lemma 30. K10 × K4 admits a gregarious Y5-tree decomposition.

Proof. Let K10 × K4 =
[
K7 ⊕ (K10 \ K7)

]
× K4 =

[
K7 × K4

]
⊕
[
(K10 \

K7) × K4
]
. Let V(K10 \ K7) = {1, 2, 3, . . . , 10}. Clearly, the set{

(1, 4, 3, 6; 3 10), (2, 6, 1, 8; 1 5), (2, 7, 3, 1; 3 8), (7, 1, 2, 4; 2 5), (5, 3, 2, 8; 2 10),
(10, 1, 9, 2; 9 3)

}
gives a Y5-tree decomposition for K10 \ K7. Now K10 × K4 =

[
K7 × K4

]
⊕
[
(Y5 ⊕ Y5 ⊕

. . . ⊕ Y5) × K4
]
=
[
K7 × K4

]
⊕
[
(Y5 × K4) ⊕ (Y5 × K4) ⊕ . . . ⊕ (Y5 × K4)

]
. Now, the Lemmas 15 and

27, which shows that a gregarious Y5-tree decomposition holds in Y5 × K4 and K7 × K4 respectively.
Thus, we obtain a gregarious Y5-tree decomposition for K10 × K4. □

Lemma 31. K10, 8 × K4 admits a gregarious Y5-tree decomposition.

Proof. Let V(K10, 8) =
2⋃

i=1
Vi, where V1 = {1 j | 1 ≤ j ≤ 10} and V2 = {2 j | 1 ≤ j ≤ 8}. Then the

following set gives a Y5-tree decomposition for K10, 8.{
(17, 22, 14, 28; 1425), (12, 23, 15, 21; 1526), (18, 27, 14, 26; 1423), (28, 15, 27, 110; 2717),

(13, 21, 110, 22; 11025), (18, 22, 12, 21; 1228), (16, 22, 11, 21; 1128), (18, 28, 110, 23; 11024),
(21, 16, 23, 18; 2319), (12, 25, 15, 22; 1524), (24, 17, 25, 18; 2511), (21, 14, 24, 16; 2412),
(110, 26, 18, 24; 1821), (12, 26, 13, 24; 1322), (11, 23, 17, 26; 1721), (21, 19, 27, 12; 2711),
(11, 24, 19, 22; 1925), (28, 19, 2611; 2616), (13, 25, 16, 28; 1627), (17, 28, 13, 23; 1327)

}
. Then K10, 8 × K4 =

[Y5⊕Y5⊕ . . .⊕Y5]×K4 = (Y5×K4)⊕ (Y5×K4)⊕ . . .⊕ (Y5×K4). A gregarious Y5-tree decomposition of
Y5×K4 derives from Lemma 15, which provides a gregarious Y5-tree decomposition for K10, 8×K4. □

Lemma 32. Km × Kn admits a gregarious Y5-tree decomposition for m ≡ 10 (mod 8) and n = 4.

Proof. Let m = 8s+ 10, s ≥ 1. Then Km ×Kn = K8s+10 ×K4 =
[
K10 ⊕ sK8 ⊕

s(s−1)
2 K8, 8 ⊕ sK10, 8

]
×K4 =

[K10 × K4] ⊕ s[K8 × K4] ⊕ s(s−1)
2 [K8, 8 × K4] ⊕ s[K10, 8 × K4]. Now, the Lemmas 16, 18, 30 and 31,

show that a gregarious Y5-tree decomposition holds in K8 × K4, K8, 8 × K4, K10 × K4 and K10, 8 × K4

respectively. Thus, we obtain a gregarious Y5-tree decomposition for Km × Kn. □

Journal of Combinatorial Mathematics and Combinatorial Computing Volume 117, 185–194



Gregarious Y5-Tree Decompositions of Tensor Product of Complete Graphs 193

Lemma 33. K11 × K4 admits a gregarious Y5-tree decomposition.

Proof. Let V(K11 \ K6) = {1, 2, 3, . . . , 11}. Clearly the set{
(1, 2, 8, 4; 8 5), (2, 5, 1, 6; 1 7), (3, 4, 9, 5; 9 2), (2, 3, 1, 8; 1 11), (2, 6, 4, 10; 4 7),

(5, 6, 3, 8; 3 11), (7, 2, 10, 5; 10 1), (7, 5, 11, 4; 11 2), (3, 5, 4, 2; 4 1), (1, 9, 3, 7; 3 10)
}

gives a Y5-tree
decomposition for K11 \ K6. Now K11 × K4 = [(K11 \ K6) ⊕ K6] × K4 = [(K11 \ K6) × K4] ⊕ [K6 × K4]
= [(Y5 ⊕ Y5 ⊕ . . . ⊕ Y5) × K4] ⊕ [K6 × K4] =

[
(Y5 × K4) ⊕ (Y5 × K4) . . . (Y5 × K4)

]
⊕
[
K6 × K4

]
. Now,

the Lemmas 15 and 24, show that a gregarious Y5-tree decomposition holds in Y5 × K4 and K6 × K4

respectively. Thus, we obtain a gregarious Y5-tree decomposition for K11 × K4. □

Lemma 34. K11, 8 × K4 admits a gregarious Y5-tree decomposition.

Proof. Let V(K11, 8) =
2⋃

i=1
Vi, where V1 = {1 j | 1 ≤ j ≤ 11} and V2 = {2 j | 1 ≤ j ≤ 8}. Then the

following set gives a Y5-tree decomposition for K11, 8.{
(17, 22, 14, 28; 1425), (12, 23, 15, 21; 1526), (18, 27, 14, 26; 1423), (28, 15, 27, 110; 2717),

(18, 28, 111, 27; 11126), (13, 21, 110, 22; 11025), (18, 22, 12, 24; 1228), (16, 22, 11, 21; 1128),
(16, 28, 110, 23; 11024), (21, 111, 23, 18; 2319), (16, 24, 111, 25; 11122), (12, 25, 15, 22; 1524),
(24, 17, 25, 18; 2511), (24, 14, 21, 16; 2112), (110, 26, 18, 24; 1821), (12, 26, 13, 24; 1322),
(11, 23, 17, 26; 1721), (21, 19, 27, 12; 2711), (11, 24, 19, 22; 1925), (28, 19, 2611; 2616),
(13, 25, 16, 23; 1627), (17, 28, 13, 23; 1327)

}
. Then K11, 8 × K4 = [Y5 ⊕ Y5 ⊕ . . . ⊕ Y5] × K4 = (Y5 × K4) ⊕

(Y5 × K4) ⊕ . . . ⊕ (Y5 × K4). Now, the Lemma 15, which shows that Y5 × K4 has a gregarious Y5-tree
decomposition. Thus, we obtain a gregarious Y5-tree decomposition for K11, 8 × K4. □

Lemma 35. Km × Kn admits a gregarious Y5-tree decomposition for m ≡ 11 (mod 8) and n = 4.

Proof. Let m = 8s+ 11, s ≥ 1. Then Km ×Kn = K8s+11 ×K4 =
[
K11 ⊕ sK8 ⊕

s(s−1)
2 K8, 8 ⊕ sK11, 8

]
×K4 =

[K11 × K4] ⊕ s[K8 × K4] ⊕ s(s−1)
2 [K8, 8 × K4] ⊕ s[K11, 8 × K4]. Now, the Lemmas 16, 18, 33 and 34,

show that a gregarious Y5-tree decomposition holds in K8 × K4, K8, 8 × K4, K11 × K4 and K11, 8 × K4

respectively. Thus, we obtain a gregarious Y5-tree decomposition for Km × Kn. □

4. Main Result

Theorem 3. There exists a gregarious Y5-tree decomposition for Km×Kn, if and only if, mn(m−1)(n−
1) ≡ 0 (mod 8).

Proof. Necessity: Since | E(Km × Kn) | = mn(m−1)(n−1)
2 and | E(Y5) |= 4, the required edge divisibility

condition to find a gregarious Y5-tree decomposition in Km × Kn is |E(Km×Kn)|
|E(Y5)| =

mn(m−1)(n−1)
2∗4 . That is,

8|mn(m − 1)(n − 1). It can be written as mn(m − 1)(n − 1) ≡ 0 (mod 8).
Sufficiency: Follows from Lemmas 16, 20, 23, 26, 29, 32 and 35. □

5. Conclusion

In this manuscript, we give a complete solution to the problem of finding the existence of a Y5-tree
(gregarious Y5-tree) decomposition in Km × Kn. In general, the problem of decomposing Km × Kn into
Yk-tree (gregarious Yk-tree) is yet to solve for k ≥ 6.
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