Journal of Combinatorial Mathematics and Combinatorial Computing, 117: 185–194 DOI:10.61091/jcmcc117-17 http://www.combinatorialpress.com/jcmcc Received 27 November 2023, Accepted 2 December 2023, Published 11 December 2023

Article

Gregarious *Y*₅**-Tree Decompositions of Tensor Product of Complete Graphs**

S. Gomathi¹ and A. Tamil Elakkiya²*

- ¹ PG & Research Department of Mathematics, Gobi Arts & Science College, Gobichettipalayam-638 453, Tamil Nadu, India.
- * Correspondence: elakki.1@gmail.com

Abstract: Y_k -tree is defined as $(v_1, v_2, ..., v_{k-1}; v_{k-2}v_k)$ by taking their vertices as $(v_1, v_2, ..., v_k)$ and edges as $\{(v_1v_2, v_2v_3, ..., v_{k-2}v_{k-1}) \cup (v_{k-2}v_k)\}$. It is also represented as $(P_{k-1} + e)$. One can obtain the necessary condition as $mn(m - 1)(n - 1) \equiv 0 \pmod{2(k - 1)}$, for $k \ge 5$ to establish a Y_k -tree decomposition in $K_m \times K_n$. Here the tensor product is denoted by \times . In this manuscript, it is shown that a Y_5 -tree (gregarious Y_5 -tree) decomposition exists in $K_m \times K_n$, if and only if, $mn(m-1)(n-1) \equiv 0 \pmod{8}$.

Keywords: Decomposition, Y_5 -Tree, Gregarious Y_5 -Tree, Tensor product **Mathematics Subject Classification:** 2010: 05C51.

1. Introduction

A decomposition of graph G is a collection of subgraphs $\{G_i, 1 \le i \le n\}$, in which each subgraph, is mutually - distinct by their edges along with $E(G) = \bigcup_{i=1}^n E(G_i)$. Let K_n and P_n respectively denotes complete graph and path, on *n* vertices. Y_k -tree is defined as $(v_1, v_2, \dots, v_{k-1}; v_{k-2}v_k)$ by taking their vertices as (v_1, v_2, \dots, v_k) and edges as $\{(v_1v_2, v_2v_3, \dots, v_{k-2}v_{k-1}) \cup (v_{k-2}v_k)\}$. It is also represented as $(P_{k-1} + e)$. Y_5 -tree or $(P_4 + e)$ graph, defined as $\{v_1, v_2, v_3, v_4; v_3v_5\}$, which is depicted in Figure 1. The

tensor product(×) of K_m and K_n be defined in this way: $V(K_m \times K_n) = \{(p,q) \mid p \in V(K_m), q \in V(K_n)\}$ and $E(K_m \times K_n) = \{(p,q)(r,s) \mid pr \in E(K_m) \text{ and } qs \in E(K_n)\}$. Let it be taken as $V(K_m \times K_n) = \{\bigcup_{i=1}^{m} i_i, 1 \le j \le n\}$, by considering $V(K_m) = \{1, 2, ..., m\}$ and $V(K_n) = \{1, 2, ..., n\}$. For instance, see Figure 2.

As all are aware of that tensor product has commutative and distributive properties. So we write as $K_m \times K_n \simeq K_n \times K_m$ (commutative). If we have a Y_5 -tree decomposition for K_m , we then write $K_m = Y_5 \oplus Y_5 \oplus \ldots \oplus Y_5$. By applying the distributive properties, we can write as $K_m \times K_n = [(Y_5 \oplus$

 $Y_5 \oplus \ldots \oplus Y_5) \times K_n$] $\simeq [(Y_5 \times K_n) \oplus (Y_5 \times K_n) \oplus \ldots \oplus (Y_5 \times K_n)]$. If Y_5 -tree decomposition arises in $K_m \times K_n$, in addition to, if every vertex of each Y_5 -tree's is placed in different partite sets, then it called as *gregarious* Y_5 -*tree decomposition*.

Tree decomposition and its special properties such as resolvable tree decompositions are considered by many authors. Ringel [1] has conjectured that K_{2m+1} can be decomposed as tree having m edges. C. Huang and A. Rosa [2] has proved that Y_5 -tree decomposition for K_m holds if and only if $m \equiv 0, 1 \pmod{8}$. A G-decomposition of K_m have been investigated in [3], where |V(G)| = 5. Inspired from Ringel conjecture, G. Sethuraman and V. Murugan [4] has conjectured that, for $m \ge 1$, (G, H)-decomposition exists in K_{4m+1} , when the size of tree G and H is m. Followed by these results, many authors have begun to look into, tree decomposition in various graphs. To know more about it, refer [5-11]. As a development of it, gregarious tree decomposition in the tensor product of complete graph has been started to investigate followed by the given results. A. Tamil Elakkiya and A. Muthusamy [12] have been proved a gregarious kite decomposition of $K_m \times K_n$, if and only if, $mn(m-1)(n-1) \equiv 0 \pmod{8}$. A. Tamil Elakkiya and A. Muthusamy [13] have been proved a gregarious kite factorization of $K_m \times K_n$, if and only if, $mn \equiv 0 \pmod{4}$ and $(m-1)(n-1) \equiv 0$ In this way, we focus on the Y_5 -tree (gregarious Y_5 -tree) decomposition of tensor product (mod 2). of complete graphs. In this manuscript, we establish a Y_5 -tree decomposition (gregarious Y_5 -tree) of $K_m \times K_n$, if and only if, $mn(m-1)(n-1) \equiv 0 \pmod{8}$. Y_5 -tree decomposition falls on the cases given below:

(i) $m \equiv 0 \pmod{4}$ and for all $n, n \ge 2$.

(ii) $m \equiv 1 \pmod{4}$ and for all $n, n \ge 2$.

(iii) $m \equiv 3 \pmod{4}$ and $n \equiv 0 \pmod{4}$.

(iv) $m \equiv 3 \pmod{4}$ and $n \equiv 1 \pmod{4}$.

(v) $m \equiv 2 \pmod{4}$ and $n \equiv 0 \pmod{4}$.

(vi) $m \equiv 2 \pmod{4}$ and $n \equiv 1 \pmod{4}$.

Also we prove a gregarious Y_5 -tree decomposition in $K_m \times K_n$ for the following cases:

(i) $m \equiv 0, 1 \pmod{8}$ and for all $n, n \ge 2$.

(ii) $m \equiv 5 \pmod{8}$ and for all $n, n \ge 2$.

(iii) $m \equiv 4 \pmod{8}$ and for all $n, n \ge 2$.

(iv) $m \equiv 6 \pmod{8}$ and n = 4.

(v) $m \equiv 7 \pmod{8}$ and n = 4.

(vi) $m \equiv 10 \pmod{8}$ and n = 4.

(vii) $m \equiv 11 \pmod{8}$ and n = 4.

In order to prove our main result, we require the following:

Theorem 1. [2] Y_5 -tree decompositions holds in K_m if and only if $m \equiv 0, 1 \pmod{8}$.

2. Decompositions of $K_m \times K_n$ into Y_5 Tree

Lemma 1. $K_4 \times K_n$ admits a Y_5 -tree decomposition for all $n, n \ge 2$.

Proof. Since for every K_n has a K_2 decomposition, we then write as $K_4 \times K_n = K_4 \times [K_2 \oplus K_2 \oplus \ldots \oplus K_2] = (K_4 \times K_2) \oplus (K_4 \times K_2) \oplus \ldots \oplus (K_4 \times K_2)$. By taking as $V(K_4 \times K_2) = \{\bigcup_{i=1}^{4} i_j, 1 \le j \le 2\}$, the following set $\{(1_1, 2_2, 4_1, 3_2; 4_1 1_2), (1_1, 4_2, 3_1, 1_2; 3_1 2_2), (1_1, 3_2, 2_1, 4_2; 2_1 1_2)\}$, proves a Y_5 -tree decomposition exists in $K_4 \times K_2$. Thus, we obtain a Y_5 -tree decomposition for $K_4 \times K_n$.

Lemma 2. $Y_5 \times K_n$ admits a Y_5 -tree decomposition for all $n, n \ge 2$.

Proof. As discussed in Lemma 1, we can take $Y_5 \times K_n = Y_5 \times [K_2 \oplus K_2 \oplus \ldots \oplus K_2] = (Y_5 \times K_2) \oplus (Y_5 \times K_2) \oplus \ldots \oplus (Y_5 \times K_2)$. By taking as $V(Y_5 \times K_2) = \{\bigcup_{i=1}^{5} i_i, 1 \le i \le 2\}$, the following set $\{(1_1, 2_2, 3_1, 4_2; 3_15_2), (1_2, 2_1, 3_2, 4_1; 3_25_1)\}$, proves a Y_5 -tree decomposition exists in $Y_5 \times K_2$. Thus, we obtain a Y_5 -tree decomposition for $Y_5 \times K_n$.

Lemma 3. $K_{4,4} \times K_n$ admits a Y_5 -tree decomposition for all $n, n \ge 2$.

Proof. Let us write as $K_{4,4} \times K_n = K_{4,4} \times [K_2 \oplus K_2 \oplus \ldots \oplus K_2]$.

By taking as $V(K_{4,4}) = \{\bigcup_{i=1}^{2} i_j, 1 \le j \le 4\}$, the following set $\{(2_1, 1_2, 2_2, 1_4; 2_2 1_1), (1_1, 2_1, 1_3, 2_4; 1_3 2_2), (2_1, 1_4, 2_3, 1_1; 2_3 1_3), (2_3, 1_2, 2_4, 1_4; 2_4 1_1)\}$, proves a Y_5 -tree decomposition exists in $K_{4,4}$. Now $K_{4,4} \times K_n = (Y_5 \oplus Y_5 \oplus \ldots \oplus Y_5) \times (K_2 \oplus K_2 \oplus \ldots \oplus K_2) = (Y_5 \times K_2) \oplus (Y_5 \times K_2) \oplus \ldots \oplus (Y_5 \times K_2)$. A Y_5 -tree decomposition for $Y_5 \times K_2$ derives from Lemma 2, which gives a Y_5 -tree decomposition for $K_{4,4} \times K_n$.

Lemma 4. $K_m \times K_n$ admits a Y_5 -tree decomposition for $m \equiv 0 \pmod{4}$ and for all $n, n \ge 2$.

Proof. Here, $m \equiv 0 \pmod{4}$ can be classified into two cases (i) $m \equiv 0 \pmod{8}$ and (ii) $m \equiv 4 \pmod{8}$.

Case (i): Let $m = 8s, s \ge 1$. Then $K_m \times K_n = K_{8s} \times K_n$. We have a Y_5 -tree decomposition for K_m , according to the theorem 1. Then $K_{8s} \times K_n = [Y_5 \oplus Y_5 \oplus \ldots \oplus Y_5] \times K_n = (Y_5 \times K_n) \oplus (Y_5 \times K_n) \oplus \ldots \oplus (Y_5 \times K_n)$. Lemma 2 which shows that a $Y_5 \times K_n$, has a Y_5 -tree decomposition. Thus, we obtain a Y_5 -tree decomposition for $K_{8s} \times K_n$.

Case (ii): Let m = 8s + 4, $s \ge 0$. Then $K_m \times K_n = K_{8s+4} \times K_n = [(2s + 1)K_4 \oplus s(2s + 1)K_{4,4}] \times K_n = (2s + 1)[K_4 \times K_n] \oplus s(2s + 1)[K_{4,4} \times K_n]$. Now, the Lemmas 1 and 3, shown that for $K_4 \times K_n$ and $K_{4,4} \times K_n$ has a Y_5 -tree decomposition. Thus, we obtain a Y_5 -tree decomposition for $K_{8s+1} \times K_n$. From the aforementioned Cases, we can get a Y_5 -tree decomposition for $K_m \times K_n$.

Lemma 5. $K_5 \times K_n$ admits a Y_5 -tree decomposition for all $n, n \ge 2$.

Proof. Now $K_5 \times K_n = K_5 \times [K_2 \oplus K_2 \oplus ... \oplus K_2] = (K_5 \times K_2) \oplus (K_5 \times K_2) \oplus ... \oplus (K_5 \times K_2)$. Let $V(K_5 \times K_2) = \{\bigcup_{i=1}^5 i_j, 1 \le j \le 2\}$. A Y_5 -tree decomposition can be derives in $K_5 \times K_2$ as follows: $\{(1_2, 2_1, 4_2, 5_1; 4_23_1), (4_1, 5_2, 3_1, 2_2; 3_11_2), (2_1, 5_2, 1_1, 2_2; 1_14_2), (2_2, 4_1, 3_2, 1_1; 3_22_1), (4_1, 1_2, 5_1, 3_2; 5_12_2)\}$. Thus, we obtain a Y_5 -tree decomposition for $K_5 \times K_n$.

Lemma 6. $K_{5,4} \times K_n$ admits a Y_5 -tree decomposition for all $n, n \ge 2$.

Proof. Let $K_{5,4} \times K_n = K_{5,4} \times [K_2 \oplus K_2 \oplus \ldots \oplus K_2]$. Let $V(K_{5,4}) = \bigcup_{i=1}^2 V_i$, where $V_1 = \{1_j \mid 1 \le j \le 5\}$ and $V_2 = \{2_j \mid 1 \le j \le 4\}$. Clearly, the set $\{(1_1, 2_2, 1_3, 2_3; 1_32_4), (2_2, 1_2, 2_3, 1_4; 2_31_5), (1_5, 2_4, 1_1, 2_1; 1_12_3), (1_2, 2_4, 1_4, 2_2; 1_42_1),$

 $(2_2, 1_5, 2_1, 1_2; 2_1 1_3)$, proves a Y_5 -tree decomposition exists in $K_{5,4}$. Now $K_{5,4} \times K_n = (Y_5 \oplus Y_5 \oplus ... \oplus Y_5) \times (K_2 \oplus K_2 \oplus ... \oplus K_2) = (Y_5 \times K_2) \oplus (Y_5 \times K_2) \oplus ... \oplus (Y_5 \times K_2)$. From the Lemma 2, we obtain a Y_5 -tree decomposition in $Y_5 \times K_2$. Thus, we get a Y_5 -tree decomposition for $K_{5,4} \times K_n$.

Lemma 7. $K_m \times K_n$ admits a Y_5 -tree decomposition for $m \equiv 1 \pmod{4}$ and for all $n, n \geq 2$.

Proof. Here $m \equiv 1 \pmod{4}$ can be classified into two Cases (i) $m \equiv 1 \pmod{8}$ and (ii) $m \equiv 5 \pmod{8}$.

Case (i): Let m = 8s + 1, $s \ge 1$. Then $K_m \times K_n = K_{8s+1} \times K_n$. We have a Y_5 -tree decomposition for K_m , according to the theorem 1. Then $K_{8s+1} \times K_n = [Y_5 \oplus Y_5 \oplus \ldots \oplus Y_5] \times K_n = (Y_5 \times K_n) \oplus (Y_5 \times K_n) \oplus \ldots \oplus (Y_5 \times K_n)$. Now, from Lemma 2, which has been shown that a Y_5 -tree decomposition holds for $Y_5 \times K_n$. Thus, we obtain a Y_5 -tree decomposition for $K_{8s+1} \times K_n$.

Case (ii): Let m = 8s+5, $s \ge 0$. Then $K_m \times K_n = K_{8s+5} \times K_n = [K_5 \oplus 2sK_4 \oplus s(2s-1)K_{4,4} \oplus 2sK_{5,4}] \times K_n = [K_5 \times K_n] \oplus 2s[K_4 \times K_n] \oplus s(2s-1)[K_{4,4} \times K_n] \oplus 2s[K_{5,4} \times K_n]$. Now, the Lemmas 5, 1, 3 and 6, show that a Y_5 -tree decomposition holds in $K_5 \times K_n$, $K_4 \times K_n$, $K_{4,4} \times K_n$ and $K_{5,4} \times K_n$ respectively. Thus, we obtain a Y_5 -tree decomposition for $K_{8s+5} \times K_n$. From the aforementioned Cases, we can get a Y_5 -tree decomposition for $K_{m} \times K_n$.

Lemma 8. $K_{4,3} \times K_n$ admits a Y_5 -tree decomposition for all $n, n \ge 2$.

Proof. Let $K_{4,3} \times K_n = K_{4,3} \times [K_2 \oplus K_2 \oplus \ldots \oplus K_2]$. Let $V(K_{4,3}) = \bigcup_{i=1}^2 V_i$, where $V_1 = \{1_j \mid 1 \leq j \leq 4\}$ and $V_2 = \{2_j \mid 1 \leq j \leq 3\}$. Then the following set $\{(2_2, 1_2, 2_3, 1_1; 2_3 1_3), (2_1, 1_1, 2_2, 1_4; 2_2 1_3), (2_3, 1_4, 2_1, 1_3; 2_1 1_2)\}$ gives a Y_5 -tree decomposition for $K_{4,3}$. Now $K_{4,3} \times K_n = (Y_5 \oplus Y_5 \oplus \ldots \oplus Y_5) \times (K_2 \oplus K_2 \oplus \ldots \oplus K_2) = (Y_5 \times K_2) \oplus (Y_5 \times K_2) \oplus \ldots \oplus (Y_5 \times K_2)$. Now, the Lemma 2, has shown that for $Y_5 \times K_2$ has a Y_5 -tree decomposition. Thus, we obtain a Y_5 -tree decomposition for $K_{4,3} \times K_n$.

Lemma 9. $Y_5 \times Y_5$ admits a Y_5 -tree decomposition.

Proof. Let us write as $Y_5 \times Y_5 = Y_5 \times [K_2 \oplus K_2 \oplus K_2 \oplus K_2] = (Y_5 \times K_2) \oplus (Y_5 \times K_2) \oplus (Y_5 \times K_2) \oplus (Y_5 \times K_2)$. We have a Y_5 -tree decomposition for $Y_5 \times K_2$, according to the Lemma 2. Thus, we obtain a Y_5 -tree decomposition for $Y_5 \times Y_5$.

Lemma 10. $K_m \times K_n$ admits a Y_5 -tree decomposition for $m \equiv 3 \pmod{4}$ and $n \equiv 0 \pmod{4}$.

Proof. Let m = 4s + 3, $s \ge 0$ and n = 4t, $t \ge 1$. We write $K_m \times K_n = K_{4s+3} \times K_{4t} = [sK_4 \oplus K_3 \oplus sK_{4,3} \oplus \frac{s(s-1)}{2}K_{4,4}] \times K_{4t} = s[K_4 \times K_{4t}] \oplus [K_3 \times K_{4t}] \oplus s[K_{4,3} \times K_{4t}] \oplus \frac{s(s-1)}{2}[K_{4,4} \times K_{4t}] = s[K_4 \times K_{4t}] \oplus t[K_3 \times K_4] \oplus \frac{t(t-1)}{2}[K_3 \times K_{4,4}] \oplus s[K_{4,3} \times K_{4t}] \oplus \frac{s(s-1)}{2}[K_{4,4} \times K_{4t}]$. Now, the Lemmas 1, 3 and 8 show that a Y_5 -tree decomposition holds in $K_4 \times K_{4t}$, $K_3 \times K_4$, $K_3 \times K_{4,4}$, $K_{4,4} \times K_{4t}$ and $K_{4,3} \times K_{4t}$ respectively. Thus, we obtain a Y_5 -tree decomposition for $K_m \times K_n$.

Lemma 11. $K_m \times K_n$ admits a Y_5 -tree decomposition for $m \equiv 3 \pmod{4}$ and $n \equiv 1 \pmod{4}$.

Proof. Let m = 4s + 3, $s \ge 0$ and n = 4t + 1, $t \ge 1$. We write $K_m \times K_n = K_{4s+3} \times K_{4t+1} = [sK_4 \oplus K_3 \oplus sK_{4,3} \oplus \frac{s(s-1)}{2}K_{4,4}] \times [K_5 \oplus (t-1)K_4 \oplus \frac{(t-1)(t-2)}{2}K_{4,4} \oplus (t-1)K_{5,4}] = \{s[K_4 \times K_5] \oplus s(t-1)[K_4 \times K_4] \oplus \frac{s(t-1)(t-2)}{2}[K_4 \times K_{4,4}] \oplus s(t-1)[K_4 \times K_5,4]\} \oplus \{[K_3 \times K_5] \oplus (t-1)[K_3 \times K_4] \oplus \frac{(t-1)(t-2)}{2}[K_3 \times K_{4,4}] \oplus (t-1)[K_3 \times K_5]] \oplus \{s[K_{4,3} \times K_5] \oplus s(t-1)[K_{4,3} \times K_4] \oplus \frac{s(t-1)(t-2)}{2}[K_{4,3} \times K_{4,4}] \oplus s(t-1)[K_{4,3} \times K_5,4]\} \oplus \{\frac{s(s-1)}{2}[K_{4,4} \times K_{4,4}] \oplus \frac{s(s-1)(t-1)}{2}[K_{4,4} \times K_{4,4}] \oplus \frac{s(s-1)(t-1)}{2}[K_{4,4} \times K_5,4]\} \oplus \{s(t-1)(t-2) = [K_{4,4} \times K_{4,4}] \oplus \frac{s(s-1)(t-1)}{2}[K_{4,4} \times K_{5,4}]\}$. Now, the Lemmas 1, 3, 5, 6, 8 and 9 show that a *Y*₅-tree decomposition holds in *K*₄ × *K*_n, *K*_{4,4} × *K*_n, *K*_{5,4} × *K*_n, *K*_{4,3} × *K*_n = *K*₁ × *K*₁ = *k*₁ × *k*₁ × *k*₁ = *k*₁ × *k*₁ × *k*₁ × *k*₁ × *k*₁ × *k*₁ = *k*₁ × *k*₁ × *k*₁ × *k*₁ × *k*₁ × *k*₁ = *k*₁ × *k*₁ × *k*₁ × *k*₁ = *k*₁ × *k*₁ × *k*₁ × *k*₁ × *k*₁ × *k*₁ = *k*₁ × *k*₁ × *k*₁ = *k*₁ × *k*₁ × *k*₁ = *k*₁ × *k*

Lemma 12. $K_{4,2} \times K_n$ admits a Y_5 -tree decomposition for all $n, n \ge 2$.

Proof. Let $K_{4,2} \times K_n = K_{4,2} \times [K_2 \oplus K_2 \oplus ... \oplus K_2]$. Let $V(K_{4,2}) = \bigcup_{i=1}^2 V_i$, where $V_1 = \{1_j \mid 1 \le j \le 4\}$ and $V_2 = \{2_j \mid 1 \le j \le 2\}$. Clearly, the set $\{(2_1, 1_3, 2_2, 1_1; 2_2 1_2), (2_2, 1_4, 2_1, 1_2; 2_1 1_1)\}$, proves a Y_5 tree decomposition exists in $K_{4,2}$. Now $K_{4,2} \times K_n = (Y_5 \oplus Y_5 \oplus ... \oplus Y_5) \times (K_2 \oplus K_2 \oplus ... \oplus K_2) =$ $(Y_5 \times K_2) \oplus (Y_5 \times K_2) \oplus ... \oplus (Y_5 \times K_2)$. Now, the Lemma 2, shows that for $Y_5 \times K_2$ has a Y_5 -tree decomposition. Thus, we obtain a Y_5 -tree decomposition for $K_{4,2} \times K_n$. **Lemma 13.** $K_m \times K_n$ admits a Y_5 -tree decomposition for $m \equiv 2 \pmod{4}$ and $n \equiv 0 \pmod{4}$.

Proof. Let m = 4s+2, $s \ge 0$ and n = 4t, $t \ge 1$. We write $K_m \times K_n = K_{4s+2} \times K_{4t} = [sK_4 \oplus K_2 \oplus \frac{s(s-1)}{2}K_{4,4} \oplus sK_{4,2}] \times [tK_4 \oplus \frac{t(t-1)}{2}K_{4,4}] = \{st[K_4 \times K_4] \oplus \frac{st(t-1)}{2}[K_4 \times K_{4,4}]\} \oplus \{t[K_2 \times K_4] \oplus \frac{s(s-1)t}{2}[K_{4,4} \times K_4] \oplus \frac{s(s-1)t(t-1)}{4}[K_{4,4} \times K_{4,4}]\} \oplus \{st[K_{4,2} \times K_4] \oplus \frac{st(t-1)}{2}[K_{4,2} \times K_{4,4}]\}$. Now, the Lemmas 1, 3, 9 and 12 show that a Y_5 -tree decomposition holds in $K_4 \times K_n$, $K_{4,4} \times K_n$, $Y_5 \times Y_5$ and $K_{4,2} \times K_n$ respectively. Thus, we obtain a Y_5 -tree decomposition for $K_m \times K_n$. □

Lemma 14. $K_m \times K_n$ admits a Y_5 -tree decomposition for $m \equiv 2 \pmod{4}$ and $n \equiv 1 \pmod{4}$.

Proof. Let $m = 4s + 2, s \ge 0$ and $n = 4t + 1, t \ge 1$. Then $K_m \times K_n = K_{4s+2} \times K_{4t+1} = [sK_4 \oplus K_2 \oplus \frac{s(s-1)}{2}K_{4,4} \oplus sK_{4,2}] \times [K_5 \oplus (t-1)K_4 \oplus \frac{(t-1)(t-2)}{2}K_{4,4} \oplus (t-1)K_{5,4}] = \{\{s[K_4 \times K_5] \oplus s(t-1)[K_4 \times K_4] \oplus \frac{s(t-1)(t-2)}{2}[K_4 \times K_{4,4}] \oplus s(t-1)[K_4 \times K_{5,4}]\} \oplus \{[K_2 \times K_5] \oplus (t-1)[K_2 \times K_4] \oplus \frac{(t-1)(t-2)}{2}[K_2 \times K_{4,4}] \oplus (t-1)[K_2 \times K_5]\} \oplus \{\frac{s(s-1)}{2}[K_{4,4} \times K_5] \oplus \frac{s(s-1)(t-1)}{2}[K_{4,4} \times K_4] \oplus \frac{s(s-1)(t-1)(t-2)}{4}[K_{4,4} \times K_{4,4}] \oplus \frac{s(s-1)(t-1)}{2}[K_{4,4} \times K_{5,4}]\} \oplus \{s[K_{4,2} \times K_5] \oplus s(t-1)[K_{4,2} \times K_4] \oplus \frac{s(t-1)(t-2)}{2}[K_{4,2} \times K_{5,4}]\} \oplus \{s(t-1)[K_{4,2} \times K_5] \oplus s(t-1)[K_{4,2} \times K_4] \oplus \frac{s(t-1)(t-2)}{2}[K_{4,2} \times K_{5,4}]\}\}$. Now, the Lemmas 1, 3, 5, 6, 9 and 12 show that a Y_5 -tree decomposition holds in $K_4 \times K_n, K_{4,4} \times K_n, K_5 \times K_2, K_{5,4} \times K_n, Y_5 \times Y_5$ and $K_{4,2} \times K_n$ respectively. Thus, we obtain a Y_5 -tree decomposition for $K_m \times K_n$. □

Theorem 2. A Y_5 -tree decomposition for $K_m \times K_n$ holds, if and only if, $mn(m-1)(n-1) \equiv 0 \pmod{8}$.

Proof. One can obtain a necessary condition to find a Y_5 -tree decomposition for $K_m \times K_n$ as $mn(m - 1)(n-1) \equiv 0 \pmod{8}$. From the Lemmas 4, 7, 10, 11, 13 and 14, we can conclude the aforementioned necessary condition is sufficient.

3. Gregarious Y₅-tree Decomposition for $K_m \times K_n$

Lemma 15. $Y_5 \times K_n$ admits a gregarious Y_5 -tree decomposition for all $n, n \ge 2$.

Proof. Let us suppose as $Y_5 \times K_n = Y_5 \times [K_2 \oplus K_2 \oplus \ldots \oplus K_2] = (Y_5 \times K_2) \oplus (Y_5 \times K_2) \oplus \ldots \oplus (Y_5 \times K_2)$. *K*₂). Let $V(Y_5 \times K_2) = \{\bigcup_{i=1}^{5} i_i, 1 \le j \le 2\}$. A gregarious Y_5 -tree decomposition can be derives in $Y_5 \times K_2$ as follows: $\{(1_1, 2_2, 3_1, 4_2; 3_15_2), (1_2, 2_1, 3_2, 4_1; 3_25_1)\}$. Thus, we obtain a gregarious Y_5 -tree decomposition for $Y_5 \times K_n$.

Lemma 16. $K_m \times K_n$ admits a gregarious Y_5 -tree decomposition for $m \equiv 0, 1 \pmod{8}$ and for all $n, n \ge 2$.

Proof. Since by theorem 1, Y_5 -tree decomposition for K_m , m = 8s, or, 8s + 1 exists, let us write as $K_m \times K_n = [Y_5 \oplus Y_5 \oplus \ldots \oplus Y_5] \times K_n = [Y_5 \times K_n] \oplus [Y_5 \times K_n] \oplus \ldots \oplus [Y_5 \times K_n]$. Now, the Lemma 15, which shows that $Y_5 \times K_n$ has a gregarious Y_5 -tree decomposition. Thus, we obtain a gregarious Y_5 -tree decomposition for $K_m \times K_n$.

Lemma 17. $K_5 \times K_n$ admits a gregarious Y_5 -tree decomposition for all $n, n \ge 2$.

Proof. Let us suppose as $K_5 \times K_n = K_5 \times [K_2 \oplus K_2 \oplus \ldots \oplus K_2] = (K_5 \times K_2) \oplus (K_5 \times K_2) \oplus \ldots \oplus (K_5 \times K_2)$. Let $V(K_5 \times K_2) = \{\bigcup_{i=1}^{5} i_j, 1 \le j \le 2\}$. A gregarious Y_5 -tree decomposition can be derives in $K_5 \times K_2$ as follows: $\{(1_1, 5_2, 2_1, 4_2; 2_1 3_2), (2_1, 1_2, 3_1, 5_2; 3_1 4_2), (3_1, 2_2, 4_1, 1_2; 4_1 5_2), (4_1, 3_2, 5_1, 2_2; 5_1 1_2), (5_1, 4_2, 1_1, 3_2; 1_1 2_2)\}$. Thus, we obtain a gregarious Y_5 -tree decomposition for $K_5 \times K_n$.

Lemma 18. $K_{8,8} \times K_n$ admits a gregarious Y_5 -tree decomposition for all $n, n \ge 2$.

Proof. Let $V(K_{8,8}) = \{\bigcup_{i=1}^{2} i_j, 1 \le j \le 8\}$. For $0 \le s \le 1$ and $1 \le i \le 8$, $\kappa_s^i = \{1_{i+8s}, 2_{i+(3s+4)}, 1_{i+(4s+3)}, 2_{i+(8s+5)}; 1_{i+(4s+3)}, 2_{i+(6s+6)}\}$, by taking the residues of Z_8 as $\{1, 2, 3, ..., 8\}$ for subscripts. Let it be clear that, the set $\{\kappa_0^1, \kappa_1^1\}$ provides a base block of Y_5 -tree decomposition for $K_{8,8}$.

Thus, the collection $\kappa = {\kappa_0^i, \kappa_1^i}, 1 \le i \le 8$, holds the Y_5 -tree decomposition for $K_{8,8}$. Now we write, $K_{8,8} \times K_n = [Y_5 \oplus Y_5 \oplus \ldots \oplus Y_5] \times K_n = (Y_5 \times K_n) \oplus (Y_5 \times K_n) \oplus \ldots \oplus (Y_5 \times K_n)$. Then, the Lemma 15, which shows that $Y_5 \times K_n$ has a gregarious Y_5 -tree decomposition. Thus, we obtain a gregarious Y_5 -tree decomposition for $K_{8,8} \times K_n$.

Lemma 19. $K_{8,5} \times K_n$ admits a gregarious Y_5 -tree decomposition for all $n, n \ge 2$.

 $(1_6, 2_5, 1_2, 2_1; 1_22_2), (2_1, 1_3, 2_3, 1_7; 2_31_2), (2_5, 1_7, 2_4, 1_1; 2_41_5), (2_5, 1_5, 2_2, 1_6; 2_21_7),$

 $(1_1, 2_5, 1_4, 2_4; 1_42_1), (1_7, 2_1, 1_8, 2_2; 1_82_3)$ }. Let $K_{8,5} \times K_n = [Y_5 \oplus Y_5 \oplus \ldots \oplus Y_5] \times K_n = (Y_5 \times K_n) \oplus (Y_5 \times K_n) \oplus \ldots \oplus (Y_5 \times K_n)$. Now, the Lemma 15, which shows that $Y_5 \times K_n$ has a gregarious Y_5 -tree decomposition for $K_{8,5} \times K_n$.

Lemma 20. $K_m \times K_n$ admits a gregarious Y_5 -tree decomposition for $m \equiv 5 \pmod{8}$ and for all $n, n \ge 2$.

Proof. Let m = 8s + 5, $s \ge 0$. Then $K_m \times K_n = K_{8s+5} \times K_n = [sK_8 \oplus K_5 \oplus \frac{s(s-1)}{2}K_{8,8} \oplus sK_{8,5}] \times K_n = s[K_8 \times K_n] \oplus [K_5 \times K_n] \oplus \frac{s(s-1)}{2}[K_{8,8} \times K_n] \oplus s[K_{8,5} \times K_n]$. Now, the Lemmas 16, 17, 18 and 19, show that a gregarious Y_5 -tree decomposition holds in $K_8 \times K_n$, $K_5 \times K_n$, $K_{8,8} \times K_n$ and $K_{8,5} \times K_n$ respectively. Thus, we obtain a gregarious Y_5 -tree decomposition for $K_m \times K_n$.

Lemma 21. $K_{12} \times K_n$ admits a gregarious Y_5 -tree decomposition.

Proof. Let $K_{12} \times K_n = [K_5 \oplus (K_{12} \setminus K_5)] \times K_n = [K_5 \times K_n] \oplus [(K_{12} \setminus K_5) \times K_n]$. Let $V(K_{12} \setminus K_5) = \{1, 2, 3, ..., 12\}$. Then the following set yields a Y_5 -tree decomposition for $K_{12} \setminus K_5$: {(11, 1, 12, 5; 12, 6), (12, 2, 1, 6; 1, 7), (1, 3, 2, 7; 2, 8), (2, 4, 3, 8; 3, 9), (3, 5, 4, 9; 4, 10), (4, 8, 5, 10; 5, 11), (1, 4, 12, 7; 12, 3), (6, 5, 1, 8; 1, 9), (3, 6, 2, 9; 2, 10), (8, 7, 3, 10; 3, 11), (7, 6, 4, 11; 4, 7), (5, 7, 10, 6; 10, 1), (8, 6, 9, 7; 9, 5), (5, 2, 11, 6; 11, 7)\}. Therefore, $K_{12} \times K_n = [K_5 \times K_n] \oplus [(Y_5 \oplus Y_5 \oplus \ldots \oplus Y_5) \times K_n] = [K_5 \times K_n] \oplus [(Y_5 \times K_n) \oplus (Y_5 \times K_n) \ldots (Y_5 \times K_n)]$. Now, the Lemmas 15 and 17, show that a gregarious Y_5 -tree decomposition for $K_{12} \times K_n$. □

Lemma 22. $K_{12,8} \times K_n$ admits a gregarious Y_5 -tree decomposition for all $n, n \ge 2$.

Proof. Let $V(K_{12,8}) = \bigcup_{i=1}^{2} V_i$, where $V_1 = \{1_j \mid 1 \le j \le 12\}$ and $V_2 = \{2_j \mid 1 \le j \le 8\}$. Then the following set gives a *Y*₅-tree decomposition of *K*_{12,8}. { $(1_7, 2_2, 1_4, 2_8; 1_42_5), (1_2, 2_3, 1_5, 2_1; 1_52_6), (1_8, 2_7, 1_4, 2_6; 1_42_3), (2_8, 1_5, 2_7, 1_{12}; 2_71_7), (1_8, 2_8, 1_{11}, 2_7; 1_{11}2_6), (1_3, 2_1, 1_9, 2_7; 1_{9}2_5), (1_8, 2_2, 1_2, 2_4; 1_{2}2_6), (1_6, 2_2, 1_1, 2_1; 1_12_8), (1_6, 2_8, 1_{12}, 2_5; 1_{12}2_3), (1_2, 2_8, 1_9, 2_3; 1_{9}2_4), (2_1, 1_{11}, 2_3, 1_8; 2_31_{10}), (1_9, 2_2, 1_{12}, 2_4; 1_{12}2_1), (1_6, 2_4, 1_{11}, 2_5; 1_{11}2_2), (1_2, 2_5, 1_5, 2_2; 1_52_4), (2_4, 1_7, 2_5, 1_8; 2_51_1), (2_4, 1_4, 2_1, 1_6; 2_11_2), (1_1, 2_6, 1_8, 2_4; 1_{8}2_1), (1_{12}, 2_6, 1_3, 2_4; 1_{3}2_2), (1_1, 2_3, 1_7, 2_6; 1_72_1), (2_1, 1_{10}, 2_7, 1_2; 2_71_1), (1_1, 2_4, 1_{10}, 2_2; 1_{10}2_5), (2_8, 1_{10}, 2_6, 1_9; 2_61_6), (1_3, 2_5, 1_6, 2_3; 1_62_7), (1_7, 2_8, 1_3, 2_3; 1_{3}2_7)\}.$ Now $K_{12,8} \times K_n = [Y_5 \oplus Y_5 \oplus \ldots \oplus Y_5] \times K_n = (Y_5 \times K_n) \oplus (Y_5 \times K_n) \oplus \ldots \oplus (Y_5 \times K_n)$. Now, the Lemma 15, which shows that a gregarious Y_5 -tree decomposition holds in $Y_5 \times K_n$. Thus, $K_{12,8} \times K_n$ has a gregarious Y_5 -tree decomposition. This completes the proof. □

Lemma 23. $K_m \times K_n$ admits a gregarious Y_5 -tree decomposition for $m \equiv 4 \pmod{8}$ and for all $n, n \ge 2$.

Proof. Let m = 8s + 4, $s \ge 1$. Then $K_m \times K_n = K_{8s+4} \times K_n = [K_{12} \oplus (s-1)K_8 \oplus (s-1)K_{12,8} \oplus \frac{(s-2)(s-1)}{2}K_{8,8}] \times K_n = [K_{12} \times K_n] \oplus [(s-1)K_8 \times K_n] \oplus [(s-1)K_{12,8} \times K_n] \oplus \frac{(s-2)(s-1)}{2}[K_{8,8} \times K_n]$. Now, the Lemmas 21, 16, 22 and 18, shows that a gregarious Y_5 -tree decomposition holds in $K_{12} \times K_n$, $K_8 \times K_n$, $K_{12,8} \times K_n$ and $K_{8,8} \times K_n$ respectively. Thus, we obtain a gregarious Y_5 -tree decomposition for $K_m \times K_n$. □

Lemma 24. $K_6 \times K_4$ admits a gregarious Y_5 -tree decomposition.

Proof. Let $V(K_6) = \{1, 2, 3, \dots 6\}$ and $V(K_4) = \{1, 2, 3, 4\}$. Then $V(K_6 \times K_4) = \bigcup_{i=1}^6 V_i$, $V_i = \{i_j \mid 1 \le j \le 1\}$.

4}. Let it be clear that the set given below yields a gregarious *Y*₅-tree decomposition for *K*₆ × *K*₄. {(5₁, 3₂, 1₄, 6₁; 1₄2₃), (6₄, 4₂, 2₄, 1₁; 2₄5₂), (1₄, 5₂, 3₄, 2₁; 3₄4₃), (2₄, 6₂, 4₄, 3₁; 4₄5₃), (3₄, 1₂, 5₄, 4₁; 5₄6₃), (4₄, 2₂, 6₄, 5₁; 6₄1₃), (3₃, 6₁, 1₂, 2₃; 1₂4₁), (4₃, 1₁, 2₂, 3₃; 2₂5₁), (5₃, 2₁, 3₂, 4₁; 3₂6₁), (6₃, 3₁, 4₂, 5₃; 4₂1₁), (1₃, 4₁, 5₂, 6₃; 5₂2₁), (2₃, 5₁, 6₂, 1₃; 6₂3₁), (5₂, 1₁, 6₃, 3₂; 6₃2₄), (6₂, 2₁, 1₃, 4₂; 1₃5₂), (1₂, 3₁, 2₃, 5₄; 2₃6₂), (2₂, 4₁, 3₃, 6₂; 3₃1₂), (3₂, 5₄, 4₃, 1₂; 4₃6₂), (4₂, 6₁, 5₃, 2₂; 5₃3₂), (1₂, 2₁, 6₄, 5₂; 6₄3₂), (2₂, 3₁, 1₄, 6₂; 1₄4₂), (5₁, 4₃, 2₄, 1₂; 2₄3₃), (4₂, 5₁, 3₄, 2₂; 3₄6₂), (3₂, 4₄, 6₁, 5₂; 6₁1₃), (6₂, 1₁, 5₄, 4₂; 5₄2₂), (1₁, 6₄, 2₃, 3₄; 2₃4₂), (2₁, 1₄, 3₃, 6₄; 3₃5₂), (3₁, 2₄, 4₁, 1₄; 4₁6₂), (4₃, 6₄, 5₃, 2₄; 5₃1₂), (5₁, 4₄, 6₃, 3₄, 6₃2₂), (6₁, 5₄, 1₃, 4₄; 1₃3₂), (1₂, 5₁, 2₄, 6₁; 2₄3₂), (2₂, 6₁, 3₄, 1₁; 3₄4₂), (3₂, 1₁, 4₄, 2₁; 4₄5₂), (4₂, 2₁, 5₄, 3₁; 5₄6₂), (5₂, 3₁, 6₄, 4₁; 6₄1₂), (5₁, 1₄, 4₃, 3₂; 4₃2₂), (6₂, 5₃, 3₁, 1₃; 3₁4₃), (1₂, 6₃, 4₁, 2₃; 4₁5₃), (2₂, 1₃, 5₁, 3₃, 5₁6₃), (4₃, 6₁, 2₃, 3₂; 2₃5₂), (4₂, 3₃, 1₁, 5₃; 1₁2₃), (5₂, 4₃, 2₁, 6₃; 2₁3₃), (4₂, 6₃, 1₄, 5₃; 1₄2₂), (2₄, 1₃, 3₄, 5₃; 3₄4₁), (5₄, 3₃, 4₄, 2₃; 4₄1₂)}.

Lemma 25. $K_{8,6} \times K_4$ admits a gregarious Y_5 -tree decomposition.

Proof. Let us write as $V(K_{8,6}) = \bigcup_{i=1}^{2} V_i$, $V_1 = \{1_j \mid 1 \le j \le 8\}$ and $V_2 = \{2_j \mid 1 \le j \le 6\}$. Then the following set gives a Y_5 -tree decomposition of $K_{8,6}$.

 $\{(2_6, 1_1, 2_3, 1_4; 2_31_5), (2_6, 1_8, 2_4, 1_3; 2_41_2), (1_4, 2_6, 1_3, 2_5; 1_32_1), (1_5, 2_1, 1_6, 2_3; 1_62_4), (1_6, 2_5, 1_2, 2_6; 1_22_2), (2_2, 1_3, 2_3, 1_7; 2_31_2), (1_5, 2_4, 1_7, 2_6; 1_72_5), (1_1, 2_5, 1_4, 2_4; 1_42_1), (1_7, 2_1, 1_8, 2_2; 1_82_3), (2_6, 1_6, 2_2, 1_7; 2_21_4), (1_8, 2_5, 1_5, 2_2; 1_52_6), (1_2, 2_1, 1_1, 2_2; 1_12_4)\}.$ Then $K_{8,6} \times K_4 = [Y_5 \oplus Y_5 \oplus \ldots \oplus Y_5] \times K_4 = (Y_5 \times K_4) \oplus (Y_5 \times K_4) \oplus \ldots \oplus (Y_5 \times K_4)$. A gregarious Y_5 -tree decomposition for $Y_5 \times K_4$ derives from Lemma 15, which provides a gregarious Y_5 -tree decomposition for $K_{8,6} \times K_4$. \Box

Lemma 26. $K_m \times K_n$ admits a gregarious Y_5 -tree decomposition for $m \equiv 6 \pmod{8}$ and n = 4.

Proof. Let m = 8s + 6, $s \ge 1$. Then $K_m \times K_n = K_{8s+6} \times K_4 = [sK_8 \oplus K_6 \oplus \frac{s(s-1)}{2}K_{8,8} \oplus sK_{8,6}] \times K_4 = s[K_8 \times K_4] \oplus [K_6 \times K_4] \oplus \frac{s(s-1)}{2}[K_{8,8} \times K_4] \oplus s[K_{8,6} \times K_4]$. Now, the Lemmas 16, 18, 24 and 25, show that a gregarious Y_5 -tree decomposition holds in $K_8 \times K_4$, $K_{8,8} \times K_4$, $K_6 \times K_4$ and $K_{8,6} \times K_4$ respectively. Thus, we obtain a gregarious Y_5 -tree decomposition for $K_m \times K_n$.

Lemma 27. $K_7 \times K_4$ admits a gregarious Y_5 -tree decomposition.

Proof. Let us write as $K_7 \times K_4 = [K_5 \oplus (K_7 \setminus K_5)] \times K_4 = [K_5 \times K_4] \oplus [(K_7 \setminus K_5) \times K_4]$. By considering $V(K_7 \setminus K_5) = \{1, 2, 3, ..., 7\}$ and $V(K_4) = \{1, 2, 3, 4\}$, we write as $V([K_7 \setminus K_5] \times K_4) = \bigcup_{i=1}^{7} V_i$, $V_i = \{i_j \mid 1 \le j \le 4\}$. Therefore, the set given below yields a gregarious Y_5 -tree decomposition for $[K_7 \setminus K_5] \times K_4$. $\{(2_2, 3_3, 1_2, 7_4; 1_26_4), (2_3, 3_4, 1_3, 7_1; 1_34_2), (2_4, 3_1, 1_4, 7_2; 1_46_1), (2_1, 3_2, 1_1, 7_3; 1_16_3), (1_2, 7_2, 2_4, 5_1; 2_46_1), (1_2, 7_4, 2_1, 5_2; 2_16_2), (7_1, 1_4, 2_2, 5_2; 2_26_2), (1_1, 7_2, 2_3, 5_4; 2_36_4)$.

Journal of Combinatorial Mathematics and Combinatorial Computing

 $(3_4, 2_2, 1_1, 6_4; 1_14_2), (3_1, 2_3, 1_2, 6_1; 1_24_3), (3_2, 1_3, 2_4, 6_2; 2_47_1), (3_3, 2_1, 1_4, 6_2; 1_44_1),$ $(2_1, 4_3, 1_1, 5_4; 1_13_3), (2_2, 4_4, 1_2, 5_1; 1_23_4), (2_3, 4_1, 1_3, 5_2; 1_36_4), (2_4, 4_2, 1_4, 5_3; 1_43_2),$ $(5_4, 2_2, 1_3, 4_4; 1_36_2), (6_3, 2_4, 1_2, 7_1; 1_24_1), (6_4, 2_1, 1_3, 7_2; 1_35_4), (2_1, 6_3, 1_4, 7_3; 1_44_3),$ $(6_2, 2_3, 1_1, 7_4; 1_14_4)$. Now, the Lemmas 17, which shows that a gregarious *Y*₅-tree decomposition holds in *K*₅ × *K*₄. Thus, we obtain a gregarious *Y*₅-tree decomposition for *K*₇ × *K*₄.

Lemma 28. $K_{8,7} \times K_4$ admits a gregarious Y_5 -tree decomposition.

Proof. Let $V(K_{8,7}) = \bigcup_{i=1}^{2} V_i$, where $V_1 = \{1_j \mid 1 \le j \le 8\}$ and $V_2 = \{2_j \mid 1 \le j \le 7\}$. Then the following set gives a Y_5 -tree decomposition of $K_{8,7}$. $\{(2_6, 1_1, 2_3, 1_4; 2_31_5), (2_6, 1_8, 2_7, 1_3; 2_71_2), (1_4, 2_6, 1_3, 2_5; 1_32_1), (1_5, 2_1, 1_6, 2_3; 1_62_7), (1_6, 2_5, 1_2, 2_6; 1_22_2), (2_2, 1_3, 2_3, 1_7; 2_31_2), (1_3, 2_4, 1_7, 2_6; 1_72_5), (1_2, 2_4, 1_4, 2_5; 1_42_1), (1_7, 2_1, 1_8, 2_2; 1_82_3), (2_6, 1_6, 2_2, 1_7; 2_21_4), (1_8, 2_5, 1_5, 2_2; 1_52_7), (1_2, 2_1, 1_1, 2_2; 1_12_4),$

 $(2_6, 1_5, 2_4, 1_6; 2_4 1_8), (2_5, 1_1, 2_7, 1_7; 2_7 1_4)$ }. Then $K_{8,7} \times K_4 = [Y_5 \oplus Y_5 \oplus \ldots \oplus Y_5] \times K_4 = (Y_5 \times K_4) \oplus (Y_5 \times K_4) \oplus \ldots \oplus (Y_5 \times K_4)$. A gregarious Y_5 -tree decomposition for $Y_5 \times K_4$ derives from Lemma 15, which provides a gregarious Y_5 -tree decomposition for $K_{8,7} \times K_4$.

Lemma 29. $K_m \times K_n$ admits a gregarious Y_5 -tree decomposition for $m \equiv 7 \pmod{8}$ and n = 4.

Proof. Let m = 8s + 7, $s \ge 1$. Then $K_m \times K_n = K_{8s+7} \times K_4 = [sK_8 \oplus K_7 \oplus \frac{s(s-1)}{2}K_{8,8} \oplus sK_{8,7}] \times K_4 = s[K_8 \times K_4] \oplus [K_7 \times K_4] \oplus \frac{s(s-1)}{2}[K_{8,8} \times K_4] \oplus s[K_{8,7} \times K_4]$. Now, the Lemmas 16, 18, 27 and 28, show that a gregarious Y_5 -tree decomposition holds in $K_8 \times K_4$, $K_{8,8} \times K_4$, $K_7 \times K_4$ and $K_{8,7} \times K_4$ respectively. Thus, we obtain a gregarious Y_5 -tree decomposition for $K_m \times K_n$.

Lemma 30. $K_{10} \times K_4$ admits a gregarious Y_5 -tree decomposition.

Proof. Let $K_{10} \times K_4 = [K_7 \oplus (K_{10} \setminus K_7)] \times K_4 = [K_7 \times K_4] \oplus [(K_{10} \setminus K_7) \times K_4]$. Let $V(K_{10} \setminus K_7) = \{1, 2, 3, ..., 10\}$. Clearly, the set $\{(1, 4, 3, 6; 3 \ 10), (2, 6, 1, 8; 1 \ 5), (2, 7, 3, 1; 3 \ 8), (7, 1, 2, 4; 2 \ 5), (5, 3, 2, 8; 2 \ 10), (7, 1, 2, 4; 2 \ 5), (7, 1, 2, 4; 2), (7, 1, 2, 4; 2), (7, 1, 2, 4; 2), (7, 1, 2, 4; 2), (7, 1, 2, 4; 2), (7, 1, 2, 4; 2), (7, 1, 2, 4; 2), (7, 1, 2, 4; 2), (7, 1, 2, 4; 2), (7, 1, 2), (7, 1, 2), (7, 1$

 $(10, 1, 9, 2; 9 \ 3)$ gives a Y_5 -tree decomposition for $K_{10} \setminus K_7$. Now $K_{10} \times K_4 = [K_7 \times K_4] \oplus [(Y_5 \oplus Y_5 \oplus ... \oplus Y_5) \times K_4] = [K_7 \times K_4] \oplus [(Y_5 \times K_4) \oplus (Y_5 \times K_4) \oplus ... \oplus (Y_5 \times K_4)]$. Now, the Lemmas 15 and 27, which shows that a gregarious Y_5 -tree decomposition holds in $Y_5 \times K_4$ and $K_7 \times K_4$ respectively. Thus, we obtain a gregarious Y_5 -tree decomposition for $K_{10} \times K_4$.

Lemma 31. $K_{10,8} \times K_4$ admits a gregarious Y_5 -tree decomposition.

Proof. Let $V(K_{10,8}) = \bigcup_{i=1}^{2} V_i$, where $V_1 = \{1_j \mid 1 \le j \le 10\}$ and $V_2 = \{2_j \mid 1 \le j \le 8\}$. Then the following set gives a Y_5 -tree decomposition for $K_{10,8}$. $\{(1_7, 2_2, 1_4, 2_8; 1_42_5), (1_2, 2_3, 1_5, 2_1; 1_52_6), (1_8, 2_7, 1_4, 2_6; 1_42_3), (2_8, 1_5, 2_7, 1_{10}; 2_71_7), (1_3, 2_1, 1_{10}, 2_2; 1_{10}2_5), (1_8, 2_2, 1_2, 2_1; 1_{2}2_8), (1_6, 2_2, 1_1, 2_1; 1_{1}2_8), (1_8, 2_8, 1_{10}, 2_3; 1_{10}2_4), (2_1, 1_6, 2_3, 1_8; 2_31_9), (1_2, 2_5, 1_5, 2_2; 1_52_4), (2_4, 1_7, 2_5, 1_8; 2_51_1), (2_1, 1_4, 2_4, 1_6; 2_41_2), (1_{10}, 2_6, 1_8, 2_4; 1_82_1), (1_2, 2_6, 1_3, 2_4; 1_{3}2_2), (1_1, 2_3, 1_7, 2_6; 1_72_1), (2_1, 1_9, 2_7, 1_2; 2_71_1), (1_1, 2_4, 1_9, 2_2; 1_92_5), (2_8, 1_9, 2_61_1; 2_61_6), (1_3, 2_5, 1_6, 2_8; 1_62_7), (1_7, 2_8, 1_3, 2_3; 1_{3}2_7)\}$. Then $K_{10,8} \times K_4 = [Y_5 \oplus Y_5 \oplus \ldots \oplus Y_5] \times K_4 = (Y_5 \times K_4) \oplus (Y_5 \times K_4) \oplus \ldots \oplus (Y_5 \times K_4)$. A gregarious Y_5 -tree decomposition of $Y_5 \times K_4$ derives from Lemma 15, which provides a gregarious Y_5 -tree decomposition for $K_{10,8} \times K_4$. □

Lemma 32. $K_m \times K_n$ admits a gregarious Y_5 -tree decomposition for $m \equiv 10 \pmod{8}$ and n = 4.

Proof. Let m = 8s + 10, $s \ge 1$. Then $K_m \times K_n = K_{8s+10} \times K_4 = [K_{10} \oplus sK_8 \oplus \frac{s(s-1)}{2}K_{8,8} \oplus sK_{10,8}] \times K_4 = [K_{10} \times K_4] \oplus s[K_8 \times K_4] \oplus \frac{s(s-1)}{2}[K_{8,8} \times K_4] \oplus s[K_{10,8} \times K_4]$. Now, the Lemmas 16, 18, 30 and 31, show that a gregarious Y_5 -tree decomposition holds in $K_8 \times K_4$, $K_{8,8} \times K_4$, $K_{10} \times K_4$ and $K_{10,8} \times K_4$ respectively. Thus, we obtain a gregarious Y_5 -tree decomposition for $K_m \times K_n$.

Lemma 33. $K_{11} \times K_4$ admits a gregarious Y_5 -tree decomposition.

Proof. Let $\{1, 2, 3, \ldots, 11\}.$ Clearly $V(K_{11})$ \ K_6) = the set $\{(1, 2, 8, 4; 8, 5), (2, 5, 1, 6; 1, 7), (3, 4, 9, 5; 9, 2), (2, 3, 1, 8; 1, 11), (2, 6, 4, 10; 4, 7), \}$ (5, 6, 3, 8; 3 11), (7, 2, 10, 5; 10 1), (7, 5, 11, 4; 11 2), (3, 5, 4, 2; 4 1), (1, 9, 3, 7; 3 10) gives a Y₅-tree decomposition for $K_{11} \setminus K_6$. Now $K_{11} \times K_4 = [(K_{11} \setminus K_6) \oplus K_6] \times K_4 = [(K_{11} \setminus K_6) \times K_4] \oplus [K_6 \times K_4]$ $= [(Y_5 \oplus Y_5 \oplus \ldots \oplus Y_5) \times K_4] \oplus [K_6 \times K_4] = [(Y_5 \times K_4) \oplus (Y_5 \times K_4) \ldots (Y_5 \times K_4)] \oplus [K_6 \times K_4].$ Now, the Lemmas 15 and 24, show that a gregarious Y_5 -tree decomposition holds in $Y_5 \times K_4$ and $K_6 \times K_4$ respectively. Thus, we obtain a gregarious Y_5 -tree decomposition for $K_{11} \times K_4$. П

Lemma 34. $K_{11,8} \times K_4$ admits a gregarious Y_5 -tree decomposition.

Proof. Let $V(K_{11,8}) = \bigcup_{i=1}^{2} V_i$, where $V_1 = \{1_j \mid 1 \le j \le 11\}$ and $V_2 = \{2_j \mid 1 \le j \le 8\}$. Then the following set gives a Y_5 -tree decomposition for $K_{11,8}$. $\{(1_7, 2_2, 1_4, 2_8; 1_42_5), (1_2, 2_3, 1_5, 2_1; 1_52_6), (1_8, 2_7, 1_4, 2_6; 1_42_3), (2_8, 1_5, 2_7, 1_{10}; 2_71_7), (1_8, 2_8, 1_{11}, 2_7; 1_{11}2_6), (1_3, 2_1, 1_{10}, 2_2; 1_{10}2_5), (1_8, 2_2, 1_2, 2_4; 1_22_8), (1_6, 2_2, 1_1, 2_1; 1_{12}8), (1_6, 2_8, 1_{10}, 2_3; 1_{10}2_4), (2_1, 1_{11}, 2_3, 1_8; 2_31_9), (1_6, 2_4, 1_{11}, 2_5; 1_{11}2_2), (1_2, 2_5, 1_5, 2_2; 1_52_4), (2_4, 1_7, 2_5, 1_8; 2_51_1), (2_4, 1_4, 2_1, 1_6; 2_{11}2_2), (1_{10}, 2_6, 1_8, 2_4; 1_{8}2_1), (1_2, 2_6, 1_3, 2_4; 1_{3}2_2), (1_1, 2_3, 1_7, 2_6; 1_72_1), (2_1, 1_9, 2_7, 1_2; 2_71_1), (1_1, 2_4, 1_9, 2_2; 1_92_5), (2_8, 1_9, 2_61_1; 2_61_6), (1_3, 2_5, 1_6, 2_3; 1_62_7), (1_7, 2_8, 1_3, 2_3; 1_{3}2_7)\}$. Then $K_{11,8} \times K_4 = [Y_5 \oplus Y_5 \oplus ... \oplus Y_5] \times K_4 = (Y_5 \times K_4) \oplus (Y_5 \times K_4) \oplus ... \oplus (Y_5 \times K_4)$. Now, the Lemma 15, which shows that $Y_5 \times K_4$ has a gregarious Y_5 -tree decomposition. Thus, we obtain a gregarious Y_5 -tree decomposition for $K_{11,8} \times K_4$. □

Lemma 35. $K_m \times K_n$ admits a gregarious Y_5 -tree decomposition for $m \equiv 11 \pmod{8}$ and n = 4.

Proof. Let m = 8s + 11, $s \ge 1$. Then $K_m \times K_n = K_{8s+11} \times K_4 = [K_{11} \oplus sK_8 \oplus \frac{s(s-1)}{2}K_{8,8} \oplus sK_{11,8}] \times K_4 = [K_{11} \times K_4] \oplus s[K_8 \times K_4] \oplus \frac{s(s-1)}{2}[K_{8,8} \times K_4] \oplus s[K_{11,8} \times K_4]$. Now, the Lemmas 16, 18, 33 and 34, show that a gregarious Y_5 -tree decomposition holds in $K_8 \times K_4$, $K_{8,8} \times K_4$, $K_{11} \times K_4$ and $K_{11,8} \times K_4$ respectively. Thus, we obtain a gregarious Y_5 -tree decomposition for $K_m \times K_n$.

4. Main Result

Theorem 3. There exists a gregarious Y_5 -tree decomposition for $K_m \times K_n$, if and only if, $mn(m-1)(n-1) \equiv 0 \pmod{8}$.

Proof. Necessity: Since $|E(K_m \times K_n)| = \frac{mn(m-1)(n-1)}{2}$ and $|E(Y_5)| = 4$, the required edge divisibility condition to find a gregarious Y_5 -tree decomposition in $K_m \times K_n$ is $\frac{|E(K_m \times K_n)|}{|E(Y_5)|} = \frac{mn(m-1)(n-1)}{2*4}$. That is, 8|mn(m-1)(n-1). It can be written as $mn(m-1)(n-1) \equiv 0 \pmod{8}$. Sufficiency: Follows from Lemmas 16, 20, 23, 26, 29, 32 and 35.

5. Conclusion

In this manuscript, we give a complete solution to the problem of finding the existence of a Y_5 -tree (gregarious Y_5 -tree) decomposition in $K_m \times K_n$. In general, the problem of decomposing $K_m \times K_n$ into Y_k -tree (gregarious Y_k -tree) is yet to solve for $k \ge 6$.

Funding Information

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Conflict of Interest

The authors have no relavant financial or non-financial interests to disclose.

Author Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by S. Gomathi and A. Tamil Elakkiya. The first draft of the manuscript was written by S. Gomathi and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

References

- 1. Ringel, Problem 25, *In Theory of Graphs and its applications*, In: Proceeding of the Symposium Smolenice, (1963) p.162.
- 2. Huang, C. and Rosa, A., 1978. Decomposition of complete graphs into trees. *Ars combinatoria*, *5*, pp.23-63.
- 3. Bermond, J.C., Huang, C., Rosa, A. and Sotteau, D., 1980. Decomposition of complete graphs into isomorphic subgraphs with five vertices. *Ars combinatoria*, *10*, pp.211-254.
- 4. Sethuraman, G. and Murugan, V., 2021. Decomposition of Complete Graphs into Arbitrary Trees. *Graphs and Combinatorics*, *37*(4), pp.1191-1203.
- 5. Drmota, M. and Llado, A., 2014. Almost every tree with m edges decomposes K2m, 2m. *Combinatorics, Probability and Computing, 23*(1), pp.50-65.
- 6. Haggard, G. and McWha, P., 1975. Decomposition of complete graphs into trees. *Czechoslovak Mathematical Journal*, 25(1), pp.31-36.
- 7. Barat, J. and Gerbner, D., 2012. Edge-decomposition of graphs into copies of a tree with four edges. *arXiv preprint arXiv:1203.1671*.
- 8. Jao, K.F., Kostochka, A.V. and West, D.B., 2013. Decomposition of Cartesian products of regular graphs into isomorphic trees. *Journal of Combinatorics*, *4*(4), pp.469-490.
- 9. Truszczynski, M., 1991. Decompositions of regular bipartite graphs. *Discrete Mathematics*, 89, pp.57-27.
- 10. Llado, A., Lopez, S.C. and Moragas, J., 2010. Every tree is a large subtree of a tree that decomposes Kn or Kn, n. *Discrete mathematics*, *310*(4), pp.838-842.
- 11. Montgomery, R., Pokrovskiy, A. and Sudakov, B., 2021. A proof of Ringel's conjecture. *Geometric and Functional Analysis*, 31(3), pp.663-720.
- 12. Elakkiya, A.T. and Muthusamy, A., 2016. Gregarious kite decomposition of tensor product of complete graphs. *Electronic Notes in Discrete Mathematics*, 53, pp.83-96.
- 13. Elakkiya, A.T. and Muthusamy, A., 2020. Gregarious kite factorization of tensor product of complete graphs. *Discussiones Mathematicae Graph Theory*, 40(1), pp.7-24.