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Abstract: A graph G with vertex set V = V(G) and edge set E = E(G) is harmonious if there
exists a harmonious labeling of G; which is an injective function f : V(G) → Zm provided that
whenever e1, e2 ∈ E are distinct with endpoints u1, v1 and u2, v2, respectively, then f (u1) + f (v1) .
f (u2)+ f (v2)(mod m). Using basic group theory, we prove in a different manner an already established
result that a disjoint union of an odd cycle and a path is harmonious provided their lengths satisfy
certain conditions. We apply the same basic idea to establish that, under the same conditions, a
disjoint union of an odd cycle with a certain starlike tree is harmonious (where a starlike tree consists
of a central vertex that is adjacent to an endpoint of a certain number of fixed length paths). Finally, we
extend the latter result to include specifying that the central vertex in the tree be adjacent to different
vertices in each of the t-many s-paths.
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1. Introduction

Our notation is fairly standard, following [1]. Let G = (V, E) be a simple graph with |V | = n and
|E| = m. An injection f : V → Zm is said to be a harmonious labeling of G provided that whenever
e1 , e2 ∈ E with respective endpoints u1, v1 and u2, v2, then f (u1) + f (v1) . f (u2) + f (v2)(mod m). If
there exists a harmonious labeling of G, then the graph G is said to be harmonious. The elements of
the range of f are the vertex labels. For an edge e with endpoints u and v, then f (u) + f (v)(mod m) is
the edge label of e.

In the case of trees, as there would not be enough labels of the vertices for there to be such an
injection, it is permitted for there to be precisely two vertices having the same label; however, the
edge labels must still be all distinct.

Much is known about harmonious labelings of particular graphs; for a comprehensive chronicling
of known results, please refer to Gallian’s work [2]. Although it is not known whether all trees are
harmonious, many classes of trees are known to be harmonious. For example, all trees with at most
31 vertices are known to be harmonious (see [3]). It is not difficult to show that all path graphs and
stars are harmonious. Caterpillars are known to be harmonious (see [4]). As for cycle graphs, odd
cycles are known to be harmonious; even cycles are known to not be harmonious (see [4]).

An injection f : V → {0, . . . , 2m} is said to be even harmonious labeling of G if the induced
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function f ∗ : E(G)→ {0, 2, . . . , 2m} defined by f ∗(uv) = f (u)+ f (v) (mod 2m) is bijective. Gallian and
Schoenhard, [5], define an injective function f : V → {0, 1, . . . , 2m − 1} as properly even harmonious
labeling of G if the induced function f ∗ : E(G) → {0, 2, . . . , 2m − 2} defined by f ∗(uv) = f (u) + f (v)
(mod 2m) is bijective. An injective function f : V → Zm is said to be a-sequential labeling if for
each edge uv, the edge label induced by f (u) + f (v) is in a, . . . , a + m − 1 and all the edge labels
are distinct. If the graph G is a tree then the domain of f is {0, 1, . . . ,m}. An injective function
f : V → {0, 1, . . . , 2m− 1} is said to be even 2a-sequential if for each edge uv, the edge label induced
by f (u) + f (v) is in 2a, 2a + 2, . . . , 2a + 2m − 2 and all the edge labels are distinct. If the graph G is a
tree then the domain of f is {0, 1, . . . , 2m}.

In this paper, we first show that if the cycle is odd and the number of vertices in the path is one
more than an even multiple of the number of vertices in the cycle is indeed harmonious; we achieve
this using a subgroup and its cosets. We are re-proving a known result using a different method
involving cosets of a subgroup. Then, we apply the coset method used in that proof to the another
family of graphs for which it is unknown whether they are harmonious. A starlike tree consists of a
central vertex called a root and several path graphs attached to it (at a leaf of the path). More formally,
a tree is starlike if it has exactly one vertex of degree greater than or equal to 2. We show that the
disjoint union of an odd cycle on s vertices with a starlike tree of t-many s-paths (where t is even)
is harmonious. We also show how a simple re-labeling of the root can lead to a harmonious labeling
of a disjoint union of an odd cycle with the root attached to t-many s-paths at selected vertices in the
paths.

2. Labeling and Proofs

It has been determined that the Cs ∪ P3 is harmonious when s is odd (see [6]). Gallian and Stewart
(see [7]) proved the following:

Theorem 1. [7] G ∪ Pn is properly even harmonious if G is an even 2a-sequential graph when n > 1
and n ≡ 1, 2 (mod 4).

There is an extension of Theorem 1 at [8] that states the following:

Theorem 2. G ∪ Pn is properly even harmonious if G is an even 2a-sequential graph with q edges,
n > 1, n ≡ 1, 2 (mod 4) or n > 1 and q + n is even.

As odd cycles are even 2a-sequential graphs, the graph Cs∪Pst+1 is harmonious when st+1 ≡ 1, 2
(mod 4).

Although already implied by Theorem 2 above, we provide the following theorem and its proof
(which is different than the one provided by Gallian and Stewart) for completeness as well as the
reuse of part of the proof in the following theorems.

Let G = Cs ∪ Pst+1, where s ≥ 3 is odd and t is even. Since |E(G)| = s(t + 1), we label the vertices
of G with the elements of the additive cyclic group Zs(t+1), with one repeated vertex label permitted
(allowing for the path). For detailed information on Group Theory, see [9]. Our main goal is to prove
the following theorem.

Theorem 3. Let s ≥ 3 be odd and let t be even. Then G = Cs ∪ Pst+1 is harmonious.

Our proof will consist of a number of cases, which compare different edge labels based on the
labeling function. We shall label the vertices of Cs with the elements of the subgroup H of Zs(t+1) of
order s, i.e., H = {0, t + 1, 2(t + 1), . . . (s − 1)(t + 1)}. We do this by starting from a vertex in the cycle
and consecutively label the vertices starting with the smallest element of the subgroup and finishing
with the greatest such element. We now show the induced edge labels are distinct.

Case 1. With the labeling of the vertices of the s-cycle described above, the resulting edge labels are
distinct.
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Proof. Observe that each edge label has the form i(t + 1) + (i + 1)(t + 1)(mod s(t + 1)) ≡ (2i + 1)(1 +
t)(mod s(t + 1)), where i ∈ {0, 1, . . . , s − 1}. So, consider the scenario, for i , j, that (2i + 1)(t + 1) ≡
(2 j + 1)(t + 1)(mod s(t + 1)). This implies that 2(i − j)(t + 1) = γs(t + 1) for some integer γ. Since
s, t + 1 are both odd, then γ is even. Thus, i − j = δs, where δ = γ/2 ∈ Z, which is contrary to
i, j ∈ {0, 1, . . . , s − 1}.

□

For the path, the idea is to eventually construct a path on st + 1 vertices from smaller paths each
of which has s vertices and each of whose vertices are labeled using elements of a coset of H. Here
is the first piece of the labeling function: A coset H + i of H will correspond to a path of s-many
vertices; working from one end of the path consecutively to the other, we label the vertices in order
using the elements of the coset. In particular, consider the cosets H + 1, H + 2, . . . ,H + t of H; these
correspond to paths each with s vertices. For future reference, we shall denote the corresponding
paths by P1

s , P
2
s , . . . , P

t
s. Based upon this correspondence, sometimes we will refer to the edges within

a particular s-path as “internal coset” edges and edges that connect different s-paths as “coset-to-
coset” edges

We shall now compare an edge label of the s-cycle to an edge label within an s-path.

Case 2. For an edge with both ends in the cycle and an edge with its ends in Pi
s (i ∈ {1, 2, . . . , t}), the

two edges have different labels.

Proof. Consider an edge whose endpoints are in the Pi
s, i ∈ {1, 2, . . . , t}. Now observe that H + i =

{i, i + (t + 1), i + 2(t + 1), . . . , i + (s − 1)(t + 1)}; these elements are the vertex labels of Pi
s. Then the

edge label would be i + α(t + 1) + i + α(t + 1) + (t + 1) ≡ 2i + (2α + 1)(t + 1)(mod s(t + 1)), for some
α ∈ {0, 1, . . . , s − 2}. Thus, since 1 ≤ i ≤ t, then 2 ≤ 2i ≤ 2t < 2(t + 1) and since t is even (hence t + 1
is odd), then 2i term in the expression above cannot equal t + 1. Consequently, the edge-label cannot
be an element of the subgroup H generated by t+ 1. And since, by closure of H, all the edge labels of
Cs are elements of H, then the edge label under consideration is distinct from the edge labels of Cs.

□

Next, we compare edge labels of a pair of edges within a single one of these s-paths; i.e., we
compare internal coset edges.

Case 3. For every i = 1, 2, 3, . . . , t, any pair of edges whose endpoints are labeled with elements of
H + i have distinct labels.

Proof. From the previous case, a pair of internal coset edges have labels 2i+(2α+1)(t+1)(mod s(t+1))
and 2i + (2β + 1)(t + 1)(mod s(t + 1)) for some α, β ∈ {0, 1, . . . , s − 2}, and α , β. Without loss of
generality, assume α < β.

By contradiction, assume 2i+2α(t+1)+(t+1) ≡ 2i+2β(t+1)+(t+1)(mod (s(1+t))). Consequently,
we have [2i + 2β(t + 1) + (t + 1)] − [2i + 2α(t + 1) + (t + 1)] = γs(1 + t), for some γ ∈ Z+. Hence,
2(β + 1) − 2(α + 1)(t + 1) = γs(1 + t), or 2(β − α)(1 + t) = γs(1 + t). Therefore, 2(β − α) = γs. Since
s is odd, then γ is even. Thus, dividing by 2 gives (β − α) = λs, where λ = γ/2 ∈ Z+. So, β − α ≥ s.
And since α, β ∈ {0, 1, 2, . . . , s − 2}, then β − α ≤ s − 2, a contradiction.

□

We next compare edge labels from different s-paths.

Case 4. For an edge in Pi
s and an edge in P j

s, where i , j, their edge labels are not equivalent.

Proof. In this case, the edge labels would be of the form 2i + (2α + 1)(t + 1) and 2 j + (2β + 1)(t + 1),
where α, β ∈ {0, 1, . . . , s − 2} and both edge labels are taken mod s(t + 1). We may assume, without
loss of generality, that i < j. To the contrary, we assume these labels are equivalent. Thus, we have
2( j − i) + 2(β − α)(t + 1) = γs(t + 1), for some γ ∈ Z+. Since s, t + 1 are odd, then γ is even; hence,
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( j − i) + (β − α)(t + 1) = δs(t + 1), where δ = γ/2 ∈ Z+. It follows that j − i is a multiple of t + 1. But
this would imply that since i, j ∈ {1, 2, 3, . . . , t}, then j − i = 0, a contradiction.

□

Next, we start joining the paths by edges in the following manner: For i = 1, 2, . . . t − 2, create an
edge between the vertex with the label i in the path Pi

s and the vertex in the path Pi+2
s with the label

(i+ 2)+ (s− 1)(t + 1). Moreover, we create a new vertex v0 with label 0 (note that 0 was already used
once in the cycle labeling and is the only re-used label) and create an edge between vertex v0 and the
vertex in Pt−1

s with the label t − 1. Note that this induces the edge label t − 1. Next, create an edge
between v0 and the vertex in P2

s with label 2 + (s − 1)(t + 1). Note that this induces the edge label of
2 + (s − 1)(t + 1). Observe that even apart from this labeling, that joining the edges in this manner
will produce a path with st + 1 vertices, as required. We still must prove the following regarding this
labeling: (1) The labels of edges joining vertices from the cycle have labels are different from the
labels of the coset-to-coset edges, (2) the labels of a pair of distinct coset-to-coset edges are different,
(3) the label of a coset-to-coset edge is different than the label of an internal coset edge, (4) the edge
label of an edge joining the vertex v0 with label 0 to either of one of its neighbors is different from (a)
the label of an internal coset edge , and (b) the label of a coset-to-coset edge.

We begin with (1) above.

Case 5. The label of a coset-to-coset edge cannot be an element of H (and thus cannot have the label
of an edge label of the cycle).

Proof. Observe, by the construction above, that a coset-to-coset edge has the label i+(i+2)+(s−1)(t+
1) ≡ 2i+2+(s−1)(t+1)(mod s(t+1)), where i ∈ {1, 2, . . . , t−2}. Thus, 2i+2 ∈ {4, . . . 2t−2 = 2(t−1)},
all of which are taken mod s(t + 1); thus, as 2i + 2 < 2(t + 1) the resulting label could only be an
element of the subgroup H provided that 2i + 2 = t + 1 . This is impossible since t + 1 is odd and
2i + 2 is even. □

Now to (2).

Case 6. A pair of distinct coset-to-coset edges have different labels.

Proof. We note the form of the coset-to-coset edge label above. In particular, consider edges with
labels 2i + 2 + (s − 1)(t + 1)(mod s(t + 1)) and as well as 2 j + 2 + (s − 1)(t + 1)(mod s(t + 1)), where
i, j ∈ {1, 2, . . . , t − 2}. Without loss of generality, assume i < j. By contradiction, assuming their
edge labels are equivalent modulo s(t + 1), it follows that 2( j − i) = γs(t + 1) for some γ ∈ Z+. This
contradicts the fact that i, j ≤ t.

□

We now compare the label of a coset-to-coset edge to the label of an internal coset edge.

Case 7. The label of a coset-to-coset edge is not equivalent to the label of an internal coset edge.

Proof. Suppose, on the contrary, that 2i+ 2+ (s− 1)(t+ 1) ≡ 2 j+ (2α+ 1)(t+ 1)(mod s(t+ 1)), where
i, j ∈ {1, 2, . . . , t} and α, β ∈ {0, 1, . . . , s− 2}. Thus, 2(i− j+ 1)+ [(s− 1)− (2α+ 1)](t+ 1) = γs(t+ 1),
for some integer γ. Therefore, 2(i − j + 1) = (t + 1)[2α + γs − s + 2]. Now, t + 1, γs, 2α > 0; since
γ ≥ 1, then 2α + γs − s − 2 > 0. Since t + 1 is odd, then 2α + γs − s − 2 is even and positive, from
which it follows that i − j + 1 is positive and a positive multiple of t + 1. As s, t + 1 are odd, then
γ is even, which implies that j − i = δs(t + 1), where δ = γ/2 ∈ Z+. This contradicts the fact that
i, j ∈ {1, 2, . . . , t}.

□

Finally, we compare the label of the edges incident to v0 to the labels of the cycle edges, the internal
coset edges, and the coset-to-coset edges. First, as mentioned earlier, the labels of the edges incident
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to v0 are t − 1 and 2 + (s − 1)(t + 1). It is clear that neither of these are edge labels in the cycle, as the
cycle only admits labels from the subgroup H. We show that neither of these are the labels of internal
coset edges.

Case 8. The labels of the edges incident to v0 are not equal to the edges incident to the labels of the
internal coset edges.

Proof. As earlier, the labels of the internal coset edges have the form 2i+ (2α+1)(t+1)(mod s(t+1)),
for some i ∈ {1, 2, . . . , t − 2} and α ∈ {0, 1, . . . , s − 1}. By contradiction, if we assume that 2i + (2α +
1)(t + 1) ≡ t − 1(mod s(t + 1)), then we have that (2i − t + 1) + (2α + 1)(t + 1) = γs(t + 1) for some
integer γ. Thus, 2i − t + 1 is a multiple of t + 1. As i ≤ t, we have 2i − t + 1 ≤ t + 1. Thus, either
2i − t + 1 = 0 - which is contrary to t being even - or we have 2i + t + 1 = t + 1 . This latter case
implies 2i = 0, a contradiction.

Now, we show this internal coset edge label is different from the label of the other edge incident
to v0. So suppose, on the contrary, that 2 + (s − 1)(t + 1) ≡ 2i + (2α + 1)(t + 1)(mod s(t + 1)), where
i ∈ {1, 2, . . . , t} and α ∈ {0, 1, . . . , s − 2}. Hence, 2i − 2 + (2α + 1 − s + 1)(t + 1) = γs(t + 1) for
some γ ∈ Z+; and so 2i − 2 must be a multiple of t + 1. Since i ≤ t, then 2i − 2 ≤ 2t − 2 < 2(t + 1);
hence 2i − 2 = t + 1 or 2i − 2 = 0. The former case is a contradiction, as t is even. The latter case
implies that i = 1; so we are working in the coset H + 1. In this coset, the edge labels are of the
form 2 + (2α + 1)(t + 1)(mod s(t + 1), where α ∈ {0, 1, . . . , s − 2}. This range of values for α loops
through the odd multiples of (t + 1) through its first half of values; thus the edge label will not equal
2 + (s − 1)(t + 1) (an even multiple of t + 1) in this round. In the second and final round of the loop
values of α, it will reach up to s− 2, and so, at this maximum, the multiple of t+ 1 is 2(s− 1)− 2, and
thus the edge label in this round reaches its maximum just short (and not equal to 2 + (s − 1)(t + 1)).

□

Finally, we compare the labels of edges incident to v0 to those of the coset-to-coset edge labels.

Case 9. The labels of the edges incident with v0 are different from the labels of the edges of the form
2i + 2 + (s − 1)(t + 1), where i ∈ {1, 2, . . . , t − 2}.

Proof. First, we consider the edge with label t − 1 incident to v0. By contradiction, assume that
t− 1 ≡ 2i+ 2+ (s− 1)(t+ 1)(mod s(t+ 1)). Thus, 2i+ 3− t+ (s− 1)(t+ 1) = γs(t+ 1) for some integer
γ; this implies that 2i+ 3− t is a multiple of t+ 1. Now, as i ≤ t− 2, we have 2i+ 3− t ≤ t− 1 < t+ 1.
Thus, 2i + 3 − t = 0; hence t is odd, a contradiction.

Next, we consider the edge with label 2 + (s − 1)(t + 1) incident to v0. To the contrary, we assume
that 2+ (s− 1)(t+ 1) ≡ 2i+ 2+ (s− 1)(t+ 1)(mod s(t+ 1)). Therefore, 2i = γs(t+ 1) for some integer
γ. Since i ≤ t−2, we have 2i ≤ 2t−4 < 2(t+1). It follows that either 2i = t+1 or 2i = 0. The former
contradicts the fact that t is even. Thus, 2i = 0. This is impossible as 1 ≤ i ≤ t − 2 precludes this. □

The following is an example the harmonious labeling of C5 ∪ P11 using the theorem above.

0

12

9

63

12 6

0

9

3

13 10 7 4 1 0 14 11 8 5 2

8 2 11 5 1 14 10 4 13 7

Figure 1. Example of Odd Cycle Union Path
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Now, we apply this subgroup and coset method to other disjoint unions of odd cycles and trees.
Again, let t ≥ 2 be even and s ≥ 3 be odd. Then let T = Tst+1 be a starlike tree consisting of t-many
s-paths; i.e., T consists of a central vertex (root) adjacent to a leaf of each of t paths with s vertices.
Let G = Cs ∪ T . As before, we label the vertices of G with the elements of the additive group Zs(t+1),
with one repeated vertex label permitted.

In light of the previous theorem, with a little adjustment, we have the following theorem.

Theorem 4. Let s ≥ 3 be odd and let t ≥ 2 be even. Then G = Cs ∪ Tst+1 is harmonious.

Again, we proceed by cases, comparing the labels of classes of edges. As before, we label the
vertices of Cs with all the elements of the cyclic subgroup H ≤ Zs(t+1) of order s generated by t + 1.
That is, we have H = ⟨t + 1⟩ = {0, t + 1, 2(t + 1), . . . (s − 1)(t + 1)}. In light of case 1 of the proof of
the previous theorem, we omit the proof of the following:

Case 1. The edge labels of Cs are distinct.

In a manner similar to using cosets to label smaller paths in the proof of Theorem 1, we construct a
starlike tree on st + 1 vertices (along with its labeling function) by labeling the s-paths (not including
the root). Start with t-many copies of Ps, namely, P1

s , P
2
s , . . . , P

t
s. The vertices of Pi

s are labeled using
elements of the coset H + i of H, where 1 ≤ i ≤ t. For each such path, working from one end of the
path consecutively to the other, we label the vertices in order with the elements of its corresponding
coset (in order of the elements of the coset). .

Again, since we have proved this earlier, we have that the labels on the vertices in s-cycle is
different than the label of an internal coset edge.

Case 2. For an edge with both endpoints in the s-cycle and an edge with its endpoints in Pi
s (i ∈

{1, 2, . . . , t}), the two edges have different labels.

Now, we again note that edge labels of a pair of edges within a single s-path are distinct. As with
other cases so far, we do not repeat the proof.

Case 3. For all i = 1, 2, 3, . . . , t, any pair of edges in Pi
s whose endpoints are labeled with elements of

H + i have distinct labels.

As in theorem 1, the edge labels from different s-paths are distinct.

Case 4. For an edge in Pi
s and an edge in P j

s, where i , j, their edge labels are distinct.

Now, we label the root of the tree, call it v0, with vertex label 0 (note that 0 was already used once
in the cycle labeling and is the only re-used label). For odd i (for even i), for i between 1 and t, create
an edge between v0 and the vertex labeled i (vertex labeled i+ (s− 1)(t + 1)). Obviously, the resulting
edge labels would then be i (for odd i) and i + (s − 1)(t + 1) (for even i).

It is obvious that the edges incident to v0 have distinct labels. It is also clear that the edges incident
to v0 are different than these edge labels in the cycle, as the cycle only admits labels from the subgroup
H. It remains to show that the edges incident to v0 have different labels than the internal edges of the
paths.

Case 5. The labels of the edges incident to v0 are not equal to the labels of the internal coset edges.

Proof. As earlier, the labels of the internal coset edges have the form 2i+ (2α+1)(t+1)(mod s(t+1)),
for some i ∈ {1, 2, . . . , t} and α ∈ {0, 1, . . . , s − 2}. Since we the way we“hook” the root to each path
depends on the parity of the path label, call it k, we look at the proof of this case in terms of the parity
of k:

Case 5A: Let k be odd. For sake of contradiction assume that 2i+ (2α+1)(t+1) ≡ k(mod s(t+1)),
where 1 ≤ k ≤ t − 1, 1 ≤ i ≤ t, and 0 ≤ α ≤ s − 2. Therefore, 2i − k + (2α + 1)(t + 1) = γs(t + 1) for
some positive integer γ.
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Since k, 2α + 1, t + 1, and s are odd, γ is even. Hence γ ≥ 2.
We note that 2i− k ≤ 2t − 1 < 2(t + 1). Hence, 2i− k = (t + 1)[γs− (2α+ 1)] < 2(t + 1). So, either

2i−k = 0(t+1), or 2i−k = 2(t+1). Since k and 2i have different parity, 2i−k , 0. If 2i−k = 1(t+1),
then γs − (2α + 1) = 1. Since γ ≥ 2, γs ≥ 2s. Note that 2α + 1 ≤ 2(s − 2) + 1 = 2s − 3. Hence,
γs − (2α + 1) ≥ 2s − (2s − 3) = 3 which contradicts our assumption that γs − (2α + 1) = 1.

Case 5B: Let k be even. In this case the root will be “hooked” to the vertex labeled k+(s−1)(t+1).
For sake of contradiction assume that 2i + (2α + 1)(t + 1) ≡ k + (s − 1)(t + 1)(mod s(t + 1)), where
1 ≤ i ≤ t, 2 ≤ k ≤ t, and 0 ≤ α ≤ s − 2.

Hence, 2i− k+ (t+ 1)[2α+ 1− (s− 1)] = γs(t+ 1) for some integer γ. Observe −(t+ 1) < 2t− 2 <
2i−k < 2(t+1). Hence, 2i−k = (t+1)[γs− (2α+2− s)] equals 0(t+1) or 1(t+1). Now, if 2i−k = 0,
then γs − (2α + 2 − s) = 0. Hence s(γ + 1) = 2α + 2 ≤ 2(s − 2) + 2 = 2s − 2. Since s(γ + 1) ≤ 2s − 2
and both sides are positive, we have γ = 0. Thus, the equation γs − (2α + 2 − s) = 0 implies that s is
even, a contradiction.

On the other hand, consider the case where 2i − k = (t + 1)[γs − (2α + 2 − s)] = t + 1. This is
impossible since the left side is even, and the right side is odd. □

The following is an example of a harmonious labeling of C5 ∪ T21 using the theorem above.

0

20

15

105

5

15

0

1020

21 16 11 6 1 22 17 12 7 2

0 221

3 24 4914192438131823

12 2 17 7 14 4 19 9

16 6 21 11 18 8 23 13

Figure 2. Example of Odd Cycle Union Star-like tree

Finally, we consider another disjoint union of an odd cycle and a tree and its harmonious labeling
that results from a simple re-labeling of only the root in the labeling of the odd cycle with the starlike
tree described in the proof of the previous theorem.

Again, consider the labeling of the graph Cs ∪ Tst+1 with odd s ≥ 3 and even t ≥ 2 described in
the proof of Theorem 2. Now, we change the label of the root v0 to α(t + 1), for some 1 ≤ α ≤ s − 1.
Since α(t+ 1) ∈ H, we can “unhook” v0 from the ends of the paths described above, and “re-hook” v0

to a new vertex of Pi
s for each 1 ≤ i ≤ t, again depending on the parity of i. If i is odd, then we add an

edge between v0 and the vertex in Pi
s with label i+ (s−α)(t+ 1), creating the edge label of i+ s(t+ 1).

If i is even, then we add an edge between v0 and the vertex in Pi
s with label i+ (s− 1− α)(t + 1); thus,

we have i + (s − 1)(t + 1) as the corresponding new edge label. From the discussion before case 5 of
the proof of Theorem 4, it is clear that this will yield the same edge labels between v0 and the new
vertices to which they are adjacent as before. We note that no labels of the other edges have changed.
These graphs are obviously different than the (admittedly, more symmetric) union of starlike graphs
with paths. In particular, let Rst+1 be the resulting tree. In particular, Rst+1 will have vertex v0 that is
adjacent to t/2-many s-paths at the vertex in each path that is s − α from one end of the path; and v0

is adjacent to t/2-many s-paths at the vertex in each of these paths that is s − 1 − α from one end of
the path, where 1 ≤ α ≤ s − 1.

To illustrate the argument and the labeling, we consider the case of s = 5, t = 2, and α = 2. The
cycle is labeled of course with the elements of the subgroup H =< 3 >≤ Z15. The root v0 has label
α(t + 1) = 6. The path on the lower-left and lower-right would be, using the notation of the theorems,
P1

5 and P2
5, respectively.

Thus, we have established the following result:
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C5 ∪R5×2+1 with the root adjacent to varying vertices in the path

0

3 6

9

12

f(v0) = 6

1 4 7 10 13 2 5 8 11 14

12

3

9

0

6

5 11 2 8 7
13

4 10

1 14

Figure 3. Example of Odd Cycle Union Tree

Theorem 5. Let s ≥ 3 be odd, t ≥ 2 be even, and Rst+1 be the tree described above. Then Cs ∪ Rst+1

is harmonious.

Regarding the proofs, it should be noted that clearly the vertex labels (with the exception of the
recycled label of 0 occurring once in the cycle and once again as the label of v0) are distinct. Thus, the
families of graphs Cs ∪ Pst+1, Cs ∪ Tst+1, and Cs ∪ Rst+1, where s ≥ 3 is odd and t is even, are indeed
harmonious. The proofs work nicely to a large extent because of the existence of the subgroup whose
order divides the order of the group; this occurred by design, as we chose the order of the cycle (and
so the cyclic subgroup) to divide the order of the graph (and so the cyclic group). In particular, since
s | |Zs(t+1)|, we could use the elements of the subgroup H =< t + 1 >≤ Zst+s for the labels of the cycle
vertices. We seek answers to further questions that arise such as the following: Could the proofs here
be modified so to include paths and starlike trees with an odd number of paths emanating from the
root? Or, what about starlike trees with an even number of paths, but with the paths having a different
specified length other than s. These questions would surely require further investigation. Curiously,
we can still apply the same subgroup labeling to the vertices of the odd cycle when t is odd, but the
labeling function presented here yields repeated edge labels on the trees. We leave it to the reader to
verify this. Thus, for the future, we are left to ponder the question as to whether this disjoint union
would be harmonious when t is odd.
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