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Abstract: Let X be bipartite mixed graph and for a unit complex number α, Hα be its α-hermitian
adjacency matrix. If X has a unique perfect matching, then Hα has a hermitian inverse H−1

α . In this
paper we give a full description of the entries of H−1

α in terms of the paths between the vertices.
Furthermore, for α equals the primitive third root of unity γ and for a unicyclic bipartite graph X with
unique perfect matching, we characterize when H−1

γ is ±1 diagonally similar to γ-hermitian adjacency
matrix of a mixed graph. Through our work, we have provided a new construction for the ±1 diagonal
matrix.
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1. Introduction

A partially directed graph X is called a mixed graph, the undirected edges in X are called digons
and the directed edges are called arcs. Formally, a mixed graph X is a set of vertices V(X) together
with a set of undirected edges E0(D) and a set of directed edges E1(X). For an arc xy ∈ E1(X), x(resp.
y) is called initial (resp. terminal) vertex. The graph obtained from the mixed graph X after stripping
out the orientation of its arcs is called the underlying graph of X and is denoted by Γ(X).

A collection of digons and arcs of a mixed graph X is called a perfect matching if they are vertex
disjoint and cover V(X). In other words, perfect matching of a mixed graph is just a perfect matching
of its underlying graph. In general, a mixed graph may have more than one perfect matching. We
denote the class of bipartite mixed graphs with a unique perfect matching byH . In this class of mixed
graphs the unique perfect matching will be denoted byM. For a mixed graph X ∈ H , an arc e (resp.
digon) inM is called matching arc (resp. matching digon) in X. If D is a mixed subgraph of X, then
the mixed graph X\D is the induced mixed graph over V(X)\V(D).

Studying a graph or a digraph structure through properties of a matrix associated with it is an old
and rich area of research. For undirected graphs, the most popular and widely investigated matrix in
literature is the adjacency matrix. The adjacency matrix of a graph is symmetric, and thus diagonaliz-
able and all of its eigenvalues are real. On the other hand, the adjacency matrix of directed graphs and
mixed graphs is not symmetric and its eigenvalues are not all real. Consequently, dealing with such
matrix is very challenging. Many researchers have recently proposed other adjacency matrices for
digraphs. For instance in [1], the author investigated the spectrum of AAT , where A is the traditional
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adjacency matrix of a digraph. The author called them non negative spectrum of digraphs. In [2], au-
thors proved that the non negative spectrum is totally controlled by a vertex partition called common
out neighbor partition. Authors in [3] and in [4] (independently) proposed a new adjacency matrix of
mixed graphs as follows:

For a mixed graph X, the hermitian adjacency matrix of X is a |V | × |V |matrix H(X) = [huv], where

huv =


1 if uv ∈ E0(X),
i if uv ∈ E1(X),
−i if vu ∈ E1(X),
0 otherwise.

This matrix has many nice properties. It has real spectrum and interlacing theorem holds. Beside
investigating basic properties of this hermitian adjacency matrix, authors proved many interesting
properties of the spectrum of H. This motivated Mohar in [5] to extend the previously proposed adja-
cency matrix. The new kind of hermitian adjacency matrices, called α-hermitian adjacency matrices
of mixed graphs, are defined as follows: Let X be a mixed graph and α be the primitive nth root of
unity e

2π
n i. Then the α hermitian adjacency matrix of X is a |V | × |V | matrix Hα(X) = [huv], where

huv =


1 if uv ∈ E0(D),
α if uv ∈ E1(D),
α if vu ∈ E1(D),
0 otherwise.

Clearly the new kind of hermitian adjacency matrices of mixed graphs is a natural generalization
of the old one for mixed graphs and even for the graphs. As we mentioned before these adjacency
matrices (Hi(X) and Hα(X)) are hermitian and have interesting properties. This paved the way to more
a facinating research topic much needed nowadays.

For simplicity when dealing with one mixed graph X, then we write Hα instead of Hα(X).
The smallest positive eigenvalue of a graph plays an important role in quantum chemistry. Moti-

vated by this application, Godsil in [6] investigated the inverse of the adjacency matrix of a bipartite
graph. He proved that if T is a tree graph with perfect matching and A(T ) is its adjacency matrix then,
A(T ) is invertabile and there is {1,−1} diagonal matrix D such that DA−1D is an adjacency matrix of
another graph. Many of the problems mentioned in [6] are still open. Further research appeared after
this paper that continued on Godsil’s work see [7], [8] and [9].

In this paper we study the inverse of α-hermitian adjacency matrix Hα of unicyclic bipartite mixed
graphs with unique perfect matching X. Since undirected graphs can be considered as a special case
of mixed graphs, the out comes in this paper are broader than the work done previously in this area.
We examine the inverse of α-hermitian adjacency matricies of bipartite mixed graphs and unicyclic
bipartite mixed graphs. Also, for α = γ, the primative third root of unity, we answer the traditional
question, when H−1

α is {±1} diagonally similar to an α-hermitian adjacency matrix of mixed graph. To
be more precise, for a unicyclic bipartite mixed graph X with unique perfect matching we give full
characterization when there is a {±1} diagonal matrix D such that DH−1

γ D is an γ-hermitian adjacency
matrix of a mixed graph. Furthermore, through our work we introduce a construction of such diagonal
matrix D. In order to do this, we need the following definitions and theorems:

Definition 1. [10] Let X be a mixed graph and Hα = [huv] be its α-hermitian adjacency matrix.

• X is called elementary mixed graph if for every component X′ of X, Γ(X′) is either an edge or a
cycle Ck (for some k ≥ 3).
• For an elementary mixed graph X, the rank of X is defined as r(X) = n − c, where n = |V(X)|

and c is the number of its components. The co-rank of X is defined as s(X) = m − r(X), where
m = |E0(X) ∪ E1(X)|.
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• For a mixed walk W in X, where Γ(W) = r1, r2, . . . rk, the value hα(W) is defined as

hα(W) = hr1r2hr2r3hr3r4 . . . hrk−1rk ∈ {α
n}n∈Z

Recall that a bijective function η from a set V to itself is called permutation. The set of all permu-
tations of a set V , denoted by S V , together with functions composition form a group. Finally recall
that for η ∈ S V , η can be written as composition of transpositions. In fact the number of transpositions
is not unique. But this number is either odd or even and cannot be both. Now, we define sgn(η) as
(−1)k, where k is the number of transposition when η is decomposed as a product of transpositions.
The following theorem is well known as a classical result in linear algebra.

Theorem 1. If A = [ai j] is an n × n matrix then

det(A) =
∑
η∈S n

sgn(η)a1,η(1)a2,η(2)a3,η(3) . . . an,η(n).

2. Inverse of α-Hermitian Adjacency Matrix of a Bipartite Mixed Graph

In this section, we investigate the invertibility of the α-hermitian adjacency matrix of a bipartite
mixed graph X. Then we find a formula for the entries of its inverse based on elementary mixed
subgraphs. This will lead to a formula for the entries based on the type of the paths between vertices.
Using Theorem 1, authors in [10] proved the following theorem:

Theorem 2. (Determinant expansion for Hα) [10] Let X be a mixed graph and Hα its α-hermitian
adjacency matrix, then

det(Hα) =
∑

X′
(−1)r(X′)2s(X′)Re

∏
C

hα(C⃗)

 ,
where the sum ranges over all spanning elementary mixed subgraphs X′ of X, the product ranges over
all mixed cycles C in X′, and C⃗ is any mixed closed walk traversing C.

Now, let X ∈ H andM is the unique perfect matching in X. Then since X is bipartite graph, X
contains no odd cycles. Now, let Ck be a cycle in X, then if Ck ∩M is a perfect matching of Ck then,
M∆Ck =M\Ck ∪Ck\M is another perfect matching in X which is a contradiction. Therefore there is
at least one vertex of Ck that is matched by a matching edge not in Ck. This means if X ∈ H , then X
has exactly one spanning elementary mixed subgraph that consist of only K2 components. Therefore,
Using the above discussion together with Theorem 2 we get the following theorem:

Theorem 3. If X ∈ H and Hα is its α-hermitian adjacency matrix then Hα is non singular.

Now, Let X be a mixed graph and Hα be its α-hermitian adjacency matrix. Then, for invertible Hα,
the following theorem finds a formula for the entries of H−1

α based on elementary mixed subgraphs
and paths between vertices. The proof can be found in [11].

Theorem 4. Let X be a mixed graph, Hα be its α-hermitian adjacency matrix and for i , j, ρi→ j =

{Pi→ j : Pi→ j is a mixed path from the vertex i to the vertex j}. If det(Hα) , 0, then

[H−1
α ]i j =

1
det(Hα)

∑
Pi→ j∈ρi→ j

(−1)|E(Pi→ j)| hα(Pi→ j)
∑

X′
(−1)r(X′)2s(X′)Re

∏
C

hα(C⃗)

 ,
where the second sum ranges over all spanning elementary mixed subgraphs X′ of X\Pi→ j, the product
is being taken over all mixed cycles C in X′ and C⃗ is any mixed closed walk traversing C.

This theorem describes how to find the non diagonal entries of H−1
α . In fact, the diagonal entries

may or may not equal to zero. To observe this, lets consider the following example:
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Example 1. Consider the mixed graph X shown in Figure 1 and let α = e
π
5 i. The mixed graph X has

a unique perfect matching, say M, and this matching consists of the set of unbroken arcs and digons.
Further M is the unique spanning elementary mixed subgraph of X. Therefore, using Theorem 2

det[Hα] = (−1)8−424−4 = 1.

So, Hα is invertible. To calculate [H−1
α ]ii, we observe that

[H−1
α ]ii =

det((Hα)(i,i))
det(Hα)

= det((Hα)(i,i)),

where (Hα)(i,i) is the matrix obtained from Hα by deleting the ith row and ith column, which is exactly
the α-hermitian adjacency matrix of X\{i}. Applying this on the mixed graph, one can deduce that the
diagonal entries of H−1

α are all zeros except the entry (H−1
α )11. In fact it can be easily seen that the

mixed graph X\{1} has only one spanning elementary mixed subgraph. Therefore,

[H−1
α ]11 = det((Hα)(1,1)) = (−1)7−226−5Re(α) = −2Re(α).

Figure 1. Mixed Graph X where H−1
α has Nonzero Diagonal Entry

The following theorem shows that if X is a bipartite mixed graph with unique perfect matching,
then the diagonal entries of H−1

α should be all zeros.

Theorem 5. Let X ∈ H and Hα be its α-hermitian adjacency matrix. Then, for every vertex i ∈ V(X),
(H−1
α )ii = 0.

Proof. Observing that X is a bipartite mixed graph with a unique perfect matching, and using Theorem
3, we have Hα is invertable. Furthermore,

(H−1
α )ii =

det((Hα)(i,i))
det(Hα)

.

Note that (Hα)(i,i) is the α-hermitian adjacency matrix of the mixed graph X\{i}. However X has
a unique perfect matching, therefore X\{i} has an odd number of vertices. Hence X\{i} has neither a
perfect matching nor an elementary mixed subgraph and thus det((Hα)(i,i)) = 0. □

Now, we investigate the non diagonal entries of the inverse of the α-hermitian adjacency matrix of
a bipartite mixed graph, X ∈ H . In order to do that we need to characterize the structure of the mixed
graph X\P for every mixed path P in X. To this end, consider the following theorems:

Theorem 6. [12] Let M and M′ be two matchings in a graph G. Let H be the subgraph of G induced
by the set of edges

M∆M′ = (M\M′) ∪ (M′\M).

Then, the components of H are either cycles of even number of vertices whose edges alternate in M
and M′ or a path whose edges alternate in M and M′ and end vertices unsaturated in one of the two
matchings.
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Corollary 1. For any graph G, if G has a unique perfect matching then G does not contain alternating
cycle.

Definition 2. Let X be a mixed graph with unique perfect matching. A path P between two vertices u
and v in X is called co-augmenting path if the edges of the underlying path of P alternates between
matching edges and non-matching edges where both first and last edges of P are matching edges.

Corollary 2. Let G be a bipartite graph with unique perfect matchingM, u and v are two vertices
of G. If Puv is a co-augmenting path between u and v, then G\Puv is a bipartite graph with unique
perfect matchingM\Puv.

Proof. The part that M\Puv is being a perfect matching of G\Puv is obvious. Suppose that M′ ,
M\Puv is another perfect matching of G\Puv. Using Theorem 6, G\Puv consists of an alternating cy-
cles or an alternating paths, where its edges alternate betweenM\Puv and M′. If all G\Puv components
are paths, then G\Puv has exactly one perfect matching, which is a contradiction. Therefore, G\Puv

contains an alternating cycle say C. Since Puv is a co-augmenting path, we have M′ ∪ (Puv ∩M) is a
perfect matching of G. Therefore G has more than one perfect matching, which is a contradiction. □

Theorem 7. Let G be a bipartite graph with unique perfect matchingM, u and v are two vertices of
G. If Puv is not a co-augmenting path between u and v, then G\Puv does not have a perfect matching.

Proof. Since G has a perfect matching, then G has even number of vertices. Therefore, when Puv has
an odd number of vertices, G\Puv does not have a perfect matching.

Suppose that Puv has an even number of vertices. Then, Puv has a perfect matching M. Therefore
if G\Puv has a perfect matching M′, then M ∪ M′ will form a new perfect matching of G. This
contradicts the fact that G has a unique perfect matching. □

Now, we are ready to give a formula for the entries of the inverse of α-hermitian adjacency matrix
of bipartite mixed graph X that has a unique perfect matching. This characterizing is based on the
co-augmenting paths between vertices of X.

Theorem 8. Let X be a bipartite mixed graph with unique perfect matchingM, Hα be its α-hermitian
adjacency matrix and

ℑi→ j = {Pi→ j : Pi→ j is a co-augmenting mixed path from the vertex i to the vertex j}.

Then

(H−1
α )i j =


∑

Pi→ j∈ℑi→ j

(−1)
|E(Pi→ j)|−1

2 hα(Pi→ j) if i , j,

0 if i = j.

Proof. Using Theorem 4,

[H−1
α ]i j =

1
det(Hα)

∑
Pi→ j∈ρi→ j

(−1)|E(Pi→ j)|hα(Pi→ j)
∑

X′
(−1)r(X′)2s(X′)Re(

∏
C

hα(C⃗))

,
where the second sum ranges over all spanning elementary mixed subgraphs of X\Pi→ j. The product
is being taken over all mixed cycles C of X′ and C⃗ is any mixed closed walk traversing C.

First, using Theorem 7 we observe that if Pi→ j is not a co-augmenting path then X\Pi→ j does not
have a perfect matching. Therefore, the term corresponds to Pi→ j contributes zero. Thus we only care
about the co-augmenting paths. According to Corollary 2, for any co-augmenting path Pi→ j from the
vertex i to the vertex j we get X\Pi→ j has a unique perfect matching, namelyM∩ E(X\Pi→ j). Using
Corollary 1, X\Pi→ j does not contain an alternating cycle. Thus X\Pi→ j contains only one spanning
elementary mixed subgraph which isM\Pi→ j. So,
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[H−1
α ]i j =

1
det(Hα)

∑
Pi→ j∈ℑi→ j

(−1)|E(Pi→ j)|hα(Pi→ j)(−1)V(X\Pi→ j)−k,

where k is the number of components of the spanning elementary mixed subgraph of X\Pi→ j. Observe
that |V(X\Pi→ j)| = n − (|E(Pi→ j)| + 1), k = n−(|E(Pi→ j)|+1)

2 and det(Hα) = (−1)
n
2 , we get the result. □

3. Inverse of γ-hermitian Adjacency Matrix of a Unicyclic Bipartite Mixed Graph

Let γ be the third root of unity e
2π
3 i. Using Theorem 8, hα(Pi→ j) ∈ {αi}ni=1 plays a central rule in

finding the entries of H−1
α and since the third root of unity has the property γi ∈ {1, γ, γ} we focus our

study in this section on α = γ. The property that αi ∈ {±1,±α,±α} is not true in general. To illustrate,
consider the mixed graph shown in Figure 2 and let α = e

π
5 i. Using Theorem 8 we get H−1

05 = e
3π
5 i

which is not from the set {±1,±α,±α}.
In this section, we are going to answer the classical question whether the inverse of γ-hermitian

adjacency matrix of a unicyclic bipartite graph is {1,−1} diagonally similar to a hermitian adjacency
matrix of another mixed graph or not. Consider the mixed graph shown in Figure 2. Then, obviously
entries of H−1

γ are from the set {0,±1,±γ,±γ}.

Figure 2. Unicycle Bipartite Mixed Graph with Unique Perfect Matching and 4 Pegs

Another thing we should bear in mind is the existence of {1,−1} diagonal matrix D such that
DHγD is γ-adjacency matrix of another mixed graph. In the mixed graph X in Figure 2, suppose that
D = diag{d0, d1, . . . , d9} is {1,−1} diagonal matrix with the property DHγD has all entries from the
set {0, γ, γ}. Then,

d0d5 = 1,
d0d9 = −1,
d9d7 = −1,
d5d7 = −1,

which is impossible. Therefore, such diagonal matrix D does not exist. To discuss the existence of
the diagonal matrix D further, let G be a bipartite graph with unique perfect matching. Define XG

to be the mixed graph obtained from G by orienting all non matching edges. Clearly for α , 1 and
α , −1 changing the orientation of the non matching edges will change the α-hermitian adjacency
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matrix. For now lets restrict our study on α = −1. Using Theorem 8 one can easily get the following
observation.

Observation 1. Let G be a bipartite mixed graph with unique perfect matchingM, H−1 be the −1-
hermitian adjacency matrix of XG and

ℑi→ j = {Pi→ j : Pi→ j is a co-augmenting mixed path from the vertex i to the vertex j in XG}.

One can use Theorem 8 to get

(H−1
−1)i j =

{
|ℑi→ j| if i , j,
0 if i = j.

So, the question we need to answer now is when A(G) and H−1(XG) are diagonally similar. To
this end, let G be a bipartite graph with a unique perfect matching and u ∈ V(G). Then for a walk
W = u = r1, r2, r3, . . . , rk in G, define a function that assign the value fW( j) for the jth vertex of W as
follows:

fW(1) = 1

and

fW( j + 1) =
{
− fW( j) if r jr j+1is unmatching edge in G,
fW( j) if r jr j+1is matching edge in G,

See Figure 3. Since any path from a vertex u to itself consist of pairs of identical paths and cycle,

Figure 3. The Values of fW where W is the Closed Walk Starting from 0

we get the following remark:

Remark 1. Let G be bipartite graph with unique perfect matching and F(u) = { fW(u) :
W is a closed walk in G starting at u}. then, |F(u)| = 1 if and only if the number of unmatching edges
in each cycle of G is even.

Finally, let G be a bipartite graph with unique perfect matching and suppose that each cycle of G
has an even number of unmatched edges. For a vertex u ∈ V(G) define the function w : V(G) →
{1,−1} by

w(v) = fW(v), where W is a path from u to v.
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Definition 3. Suppose that G is bipartite graph with unique perfect matching and every cycle of G
has even number of unmatched edges. Suppose further V(G) = {v1, v2, . . . , vn} and u ∈ V(G). Define
the matrix Du by Du = diag{w(v1),w(v2), . . . ,w(vn)}.

Theorem 9. Suppose G is a bipartite graph with unique perfect matching and every cycle of G has
an even number of unmatched edges. Then for every u ∈ V(G), we get DuA(G)Du = H−1(XG).

Proof. Note that, for x, y ∈ V(G), we have (DuA(G)Du)xy = dxaxydy. Using the definition of Du we
get,

dxdy =


−1 if xy is an unmatching edge in G,
1 if xy is a matching edge in G,
0 otherwise.

Therefore, (DuA(G)Du)xy = (H−1)xy.
□

Now we are ready to discuss the inverse of γ-hermitian adjacency matrix of unicyclic mixed graph.
Let X be a unicyclic bipartite graph with unique perfect matching. An arc or digon of X is called a
peg if it is a matching arc or digon and incident to a vertex of the cycle in X. Since X is unicyclic
bipartite graph with unique perfect matching, X has at least one peg. Otherwise the cycle in X will
be alternate cycle, and thus X has more than one perfect matching which contradicts the assumption.
Since each vertex of the cycle incident to a matching edge and |V(X)| is even, X should contain at
least two pegs. The following theorem will deal with unicyclic bipartite mixed graphs X ∈ H with
more than two pegs.

Theorem 10. Let X be a unicyclic bipartite graph with unique perfect matching. If X has more than
two pegs, then between any two vertices of X there is at most one co-augmenting path.

Proof. Let ρ1, ρ2 and ρ3 be three pegs in X, u, v ∈ V(D), C is the unique cycle in X and suppose
there are two co-augmenting paths between u and v, say P and P′. Since X is unicyclic, we have
V(C) ⊂ P ∪ P′,

Case 1: E(P) ∪ E(P′) does not contain any of the pegs. Then, if v is the X cycle vertex incident to ρ1

then, v is not matched by an edge in the cycle, which means one of P or P′ is not co-augmenting
path, which contradicts the assumption.

Case 2: (E(P) ∪ E(P′) contain pegs. Then, (E(P) ∪ E(P′) should contain at most two pegs, suppose that
ρ1 and v is the vertex of X cycle that incident to ρ1. Then, v belongs to either P or P′, again since
ρ1 is a matched edge, v is not matched by the cycle edges which means one of P or P′ is not
co-augmenting path. which contradicts the assumption.

□

Corollary 3. Let X be a unicycle bipartite mixed graph with unique perfect matching. If X has more
than two pegs, then

1. (H−1
α )i j =

 (−1)
|E(Pi→ j)|−1

2 hα(Pi→ j) if Pi→ j is a co-augmenting path from i to j,
0 Otherwise.

2. If the cycle of X contains even number of unmatching edges, then for any vertex u ∈ V(X),
DuH−1

γ (X)Du is γ-hermitian adjacency matrix of a mixed graph.

Proof. Part one is obvious using Theorem 8 together with Theorem 10.
For part two, we observe that γi ∈ {1, γ, γ}. Therefore all H−1

γ (X) entries are from the set
{±1,±γ,±γ}. Also the negative signs in A(Γ(X))−1 and in H−1

γ appear at the same position. Which
means DuH−1

γ Du is γ-hermitian adjacency matrix of a mixed graph if and only if DuA(Γ(X))Du is
adjacency matrix of a graph. Finally, Theorem 9 ends the proof. □
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Now we will take care of unicycle graph with exactly two pegs. Using the same technique of the
proof of Theorem 10, one can show the following:

Theorem 11. Let D be a unicyclic bipartite graph with unique perfect matching and exactly two pegs
ρ1 and ρ2. Then for any two vertices of D, u and v, if there are two co-augmenting paths from the
vertex u to the vertex v, then ρ1 and ρ2 are edges of the two paths.

Let X be a unicyclic bipartite mixed graph with unique perfect matching and exactly two pegs, and
let uv and u′v′ be the two pegs of X where v and v′ are vertices of the cycle of X. We, denote the two
paths between v and v′ by Fv→v′ and F c

v→v′ .

Theorem 12. Let X be a unicyclic bipartite mixed graph with unique perfect matching and exactly
two pegs and let C be the cycle of X. If there are two coaugmenting paths between the vertex x and
the vertex y, then

(H−1
α )xy = (−1)

|E(Px→y)|−1
2

hα(Px→v)hα(Py→v′)
hα(Fv→v′)

[
(−1)m+1hα(C) + 1

]
,

where Fv→v′ is chosen to be the part of the path Px→y in the cycle C and C is of size 2m.

Proof. Suppose that Px→y and Qx→y are the paths between the vertices x and y, using theorem 8 we
have

(H−1
α )xy = (−1)

|E(Px→y)|−1
2 hα(Px→y) + (−1)

|E(Qx→y)|−1
2 hα(Qx→y).

Now, using Theorem 11, Px→y (Qx→y) can be divided into three parts Px→v, Fv→v′ and Pv′→y (resp.
Qx→v = Px→v, F

c
v→v′ and Qv′→y = Pv′→y).

Observe that the number of unmatched edges in Fv→v′ is k1 =
|E(Fv→v′ )|+1

2 and the number of unmatched
edges in F c

v→v′ is k2 = m − |E(Fv→v′ )|+1
2 + 1 we get

(H−1
α )xy = (−1)khα(Px→v)hα(Pv→y)

(
(−1)k1hα(Fv→v′) + (−1)k2hα(F c

v→v′)
)
,

where k = |E(Px→v)|+|E(Pv′→y)|
2 − 1.

Note here hα(Fv→v′)hα(F c
v→v′) = hα(C), therefore,

(H−1
α )xy = (−1)

|E(Px→y)|−1
2

hα(Px→v)hα(Py→v′)
hα(Fv→v′)

[
(−1)m+1hα(C) + 1

]
.

□

Theorem 13. Let X be a unicyclic bipartite mixed graph with unique perfect matching and Hγ be its
γ-hermitian adjacency matrix. If X has exactly two pegs, then H−1

γ is not ±1 diagonally similar to
γ-hermitian adjacency matrix of a mixed graph.

Proof. Let xx′ and yy′ be the two pegs of X, where x′ and y′ are vertices of the cycle C of X . Then,
using Theorem 12 we have

(H−1
γ )xy = (−1)

|E(Px→y)|−1
2

hγ(Px→x′)hγ(Py→y′)
hγ(Fx′→y′)

[
(−1)m+1hγ(C) + 1

]
,

where Fx′→y′ is chosen to be the part of the path Px→y in the cycle C and C is of size 2m. Suppose
that D = diag{dv : v ∈ V(X)} is a {±1} diagonal matrix with the property that DH−1

γ D is γ-hermitian
adjacency matrix of a mixed graph.
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Case 1: Suppose m is even say m = 2r.
Observe that (−1)m+1hγ(C) + 1 = 1 − hγ(C). If hγ(C) ∈ {1, γ, γ2}, then 1 − hγ(C) < {±1,±γ,±γ2}

and so H−1
γ is not ±1 diagonally similar to γ-hermitian adjacency matrix of a mixed graph. Thus

we only need to discuss the case when hγ(C) = 1. To this end, suppose that hγ(C) = 1. Then
(H−1
γ )xy = 0. Since the length of C is 4r, we have the number of unmatching edges (number of

matching edges) in C is 4r+2
2 (resp. 4r−2

2 ). Since the number of unmatching edges in C is odd,
there is a coaugmenting path Fx→y from x to y that contains odd number of unmatching edges
and another coaugmenting path F c

x→y with even number of unmatching edges. Now, let o′o(e′e
) be any matching edges in the path Fx→y (resp. F c

x→y). Then, without loss of generality we
may assume that there is a coaugmenting path between x and e, x and o (and hence there is a
co-augmenting path between y and o′, y and e′ ). Now, if dxdy = 1 then

– (DH−1
γ D)xo = (−1)kdxhγ(Px→o)do

– (DH−1
γ D)yo′ = (−1)k′dyhγ(Py→o′)do′

Observe that k + k′ is odd number, we have dodo′ = −1. This contradict the fact that for every
matching edge gg′, dgdg′ = 1. The case when dxdy = −1 is similar to the above case but with
considering the path F c

x→y instead of Fx→y and the vertex e instead of o.
Case 2: Suppose m is odd say 2r + 1. Then

(H−1
γ )xy = (−1)

|E(Px→y)|−1
2

hα(Px→v)hα(Py→v′)
hα(Fv→v′)

[hα(C) + 1] .

Therefore,

(H−1
γ )xy = (−1)

|E(Px→y)|−1
2

hα(Px→v)hα(Py→v′)
hα(Fv→v′)


−γ if hα(C) = γ2,

−γ2 if hα(C) = γ,
2 if hα(C) = 1.

Obviously, when hα(C) = 1, H−1
γ is not ±1 diagonally similar to γ-hermitian adjacency matrix

of a mixed graph. Thus, the cases we need to discuss here are when hα(C) = γ and hα(C) = γ2.
Since m is odd, then C contains an even number of unmatched edges. Therefore, either both
paths between x and y, Fx→y and F c

x→y, contain odd number of unmatching edges or both of
them contains even number of unmatching edges.
To this end, suppose that both of the paths Fx→y and F c

x→y contain odd number of unmatched
edges. Then, (H−1

γ )xy ∈ {γ
i}2i=0, which means dxdy = 1. Finally, let v′v be any matching edge in

Fx→y where Px→v and Pv′→y are coaugmenting paths, then obviously dvdv′ = 1. But one of the
coaugmenting paths Px→v and Pv′→y should contain odd number of unmatching edges and the
other one should contain even number of unmatched edges. Which means dxdvdv′dy = −1. This
contradicts the fact that dvdv′ = 1.
In the other case, when both Fx→y and F c

x→y contain even number of unmatching edges, one can
easily deduce that dxdy = −1 and using same technique we can get another contradiction.

□

Note that Corollary 3 and Theorem 13 give a full characterization of a unicyclic bipartite mixed
graph with unique perfect matching where the inverse of its γ-hermitian adjacency matrix is {±1} diag-
onally similar to γ-hermitian adjacency matrix of a mixed graph. We summarize this characterization
in the following corollary.

Theorem 14. Let X be a unicyclic bipartite mixed graph with unique perfect matching and Hγ its
γ-hermitian adjacency matrix. Then, H−1

γ is ±1 diagonally similar to γ-hermitian adjacency matrix if
and only if X has more than two pegs and the cycle of X contains even number of unmatching edges.
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