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Abstract: Let c be a proper k-coloring of a connected graph G and π = {S 1, S 2, . . . , S k} be an ordered
partition of the vertex set V(G) into the resulting color classes, where S i is the set of all vertices that
receive the color i. For a vertex v of G, the color code cπ(v) of v with respect to π is the ordered k-tuple
cπ(v) = (d(v, S 1), d(v, S 2), . . . , d(v, S k)), where d(v, S i) = min{d(v, u) : u ∈ S i} for 1 ⩽ i ⩽ k. If all
distinct vertices of G have different color codes, then c is called a locating coloring of G. The locating
chromatic number is the minimum number of colors needed in a locating coloring. In this paper, we
determine the locating-chromatic number for the middle graphs of Path, Cycle, Wheel, Star, Gear and
Helm graphs.
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1. Introduction

Let G be a connected graph without loops and multiple edges with vertex set V(G) and edge set
E(G). The middle graph M(G) of the graph G is defined by the vertex set V(G) ∪ E(G), where two
vertices are adjacent if and only if they are either adjacent edges of G or one is a vertex and the other
is an edge incident with it. Note that every middle graph is a subdivision graph, however not every
subdivision graph is a middle graph. Many theoretical graph properties and invariants of a middle
graph were studied in the literature see [1] and [2]. For a connected graph G, the distance between the
vertices u and v in V(G), denoted by d(u, v), is the length of the shortest path between them, whereas
for a subset S of V(G), the distance between u and S is given by
d(u, S ) = min{d(u, x) : x ∈ S }. The neighborhood of a vertex u in a graph G, N(u), is the set of
all vertices adjacent to u, i.e. N(u) = {u ∈ V(G) : uv ∈ E(G)}. Moreover, the degree of a vertex u,
degG(u), is defined as the cardinality of N(u).

A proper k-coloring of G, k ∈ N, is a function c defined from V(G) onto a set of colors [k] =
{1, 2, . . . , k} such that every two adjacent vertices of G have different colors. Thus, the coloring c
can be considered as a partition of V(G) into color classes S 1, S 2, . . . , S k, where the vertices of S i

are colored by the color i such that no two vertices belonging to S i are adjacent for 1 ≤ i ≤ k. The
minimum k for which G has a proper k-coloring is the chromatic number of G, denoted by χ(G). Let
π = {S 1, S 2, . . . , S k} be a partition of V(G) induced by c, the color code cπ(v) of a vertex v in V(G) with
respect to π is defined as the ordered k-tuple cπ(v) = (d(v, S 1), d(v, S 2), . . . , d(v, S k)). If all the distinct
vertices of G have distinct color codes, then c is called a locating k-coloring of G. The minimum k for
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which there exists a locating coloring of G using exactly k colors is the locating chromatic number
of G, denoted by χL(G). Since every locating coloring is a proper coloring, χ(G) ⩽ χL(G). The
locating-chromatic number of a graph is a combination concept between the partition dimension of
a graph and the coloring of a graph. There exist many applications of graph coloring and labeling in
various fields. These notions play an important role and they are related to different applications such
as computer science and communication network (see [3] and [4]).

The concept of locating coloring of graphs was first introduced by Chartrand et al. [5] in 2002.
They established some bounds for the locating chromatic number of a connected graph. They proved
that for a connected graph G with n ⩾ 3, χL(G) = n if and only if G is a complete multi-partite graph.
Also for paths and cycles of order n ⩾ 3, they demonstrated that χL(Pn) = 3, χL(Cn) = 3 when n is odd,
and χL(Cn) = 4 when n is even. The authors in [6] characterized all graphs of order n with locating-
chromatic number n − 1. Many results of the locating chromatic graph for connected graph were
studied. Asmiati et al. in [7] and [8] determined the locating-chromatic number of special classes of
trees, an amalgamation of stars and a firecracker graph. Behtoe and Omoomi in [9] found the locating-
chromatic numbers of the Kneser graph. In [10] all graphs containing cycles with locating-chromatic
number 3 are characterized.

The locating-chromatic numbers of graphs obtained by some graph operations are also worthy
studying. Baskoro and Purwasih in [11] studied the locating-chromatic number for the corona prod-
uct of graphs. Behtoei et al. [12], on the other hand, gave the locating-chromatic number for the
Cartesian product of any two graphs. In [13] the locating-chromatic number of the fan graph, wheel
and friendship graph for join multiplication of two graphs are determined.

Recently, Ghanem et al. [14] figured out the locating chromatic number of powers of paths and
powers of cycles. In this paper, we determine the locating-chromatic number for the middle graphs
of Path, Cycle, Star, Wheel, Gear and Helm graphs.

2. Locating Chromatic Number of a Middle Graph of Path

Let V(Pn) = {x1, x2, x3, . . . , xn} and E(Pn) = {xixi+1 : 1 ⩽ i ⩽ n − 1}. The middle graph of the n-
path Pn is given by subdividing each edge exactly once and joining all the middle vertices of adjacent
edges of Pn. Denote the middle vertex of the edge xixi+1 by yi where 1 ⩽ i ⩽ n− 1. In this section, we
determine the locating chromatic number of a middle graph of Pn.

x1 y1 x2 y2 x3 y3 x4

Figure 1. Middle Graph of the Path Graph P4

Theorem 1. For any postive integer n > 3, χL(M(Pn)) = 4.

Proof. Since M(Pn) contains 3-clique, 3 ⩽ χ(M(Pn)) ⩽ χL(M(Pn)). Let c be locating 3-coloring
of M(Pn). Observe that M(Pn) contains at least two distinct 3-cliques, so definitely two vertices of
M(Pn) must have the same color, as well as the same color code. Thus, χL(M(Pn)) ⩾ 4.

Define the coloring function c : V(M(Pn)) −→ {1, 2, 3, 4} as follows:

c(xi) =


1 if i = 1,
2 if i ≡ 0 (mod 3) and 1 ⩽ i ⩽ n,
3 if i ≡ 2 (mod 3) and 1 ⩽ i ⩽ n,
4 if i ≡ 1 (mod 3) and 2 ⩽ i ⩽ n.
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c(yi) =


2 if i ≡ 1 (mod 3) and 1 ⩽ i ⩽ n,
3 if i ≡ 0 (mod 3) and 1 ⩽ i ⩽ n,
4 if i ≡ 2 (mod 3) and 1 ⩽ i ⩽ n.

Hence, we obtain a partition π = {S 1, S 2, S 3, S 4} of V(M(Pn)), where S 1 = {x1}, S 2 = {x3, x6, . . .}∪

{y1, y4, . . .}, S 3 = {x2, x5, . . .} ∪ {y3, y6, . . .}, and S 4 = {x4, x7, . . .} ∪ {y2, y5, . . .}.
Now, observe that for a distinct pair u, v of V(M(Pn)), we have d(u, x1) = d(v, x1) if and only if

{u, v} = {xi, yi} for some i ∈ {2, . . . , n − 1}. Since xi and yi belong to different color classes, it follows
that d(u, S 1) , d(v, S 1) as long as u and v belong to the same color class. As a result, this coloring c
is indeed a locating 4-coloring of M(Pn). □

3. Locating Chromatic Number of a Middle Graph of a Cycle

Let V(Cn) = {x1, x2, x3, . . . , xn} and E(Cn) = {xixi+1 : 1 ⩽ i ⩽ n − 1} ∪ {xnx1}. The middle graph of
the n-cycle Cn is given by subdividing each edge exactly once and joining all the middle vertices of
the adjacent edges of Cn. Denote the middle vertex of the edge xixi+1 by yi where 1 ⩽ i ⩽ n − 1 and
the middle vertex of the edge xnx1 by yn.

For proof, we rename the vertices as follows:
Let V (M(Cn)) = {x1, x2, x3, . . . , x2n} and E (M(Cn)) = {x1x2, x2x3, x3x4, . . . , x2n−1x2n} ∪

{xixi+2 : i = 2m and 1 ⩽ m ⩽ n − 1} ∪ {x2nx2}.
In this section, we determine the locating chromatic number of a middle graph of Cn.

x1

x3

x5x7

x9

x2

x4

x6

x8

x10

Figure 2. Middle Graph of the Cycle Graph C5

Theorem 2. For any positive integer n ⩾ 3, χL(M(Cn)) ⩾ 4.

Proof. Since the graph M(Cn) contains a 3-clique, χL(M(Cn)) ⩾ 3. Assume that χL(M(Cn)) = 3, and
c is a locating coloring of M(Cn). Let x and y be two distinct vertices of M(Cn) such that c (x) = c (y),
then they are contained in two distinct 3-cliques and so cπ(x) = cπ(y), a contradiction. □

Theorem 3. For 3 ⩽ n ⩽ 8, χL(M(Cn)) = 4.

Proof. If n = 3, let S 1 = {x3, x6}, S 2 = {x1, x4}, S 3 = {x2} and S 4 = {x5}. If n = 4, let S 1 = {x3, x8} ,

S 2 = {x1, x4} , S 3 = {x2, x6} and S 4 = {x5, x7}. If n = 5, let S 1 = {x3, x6, x10} , S 2 = {x1, x4, x7} ,

S 3 = {x2, x9} and S 4 = {x5, x8}. If n = 6, let S 1 = {x3, x6, x12} , S 2 = {x1, x4, x7, x9} , S 3 = {x2, x10}

and S 4 = {x5, x8, x11}. If n = 7, let S 1 = {x3, x6, x14} , S 2 = {x1, x4, x7, x10} , S 3 = {x2, x9, x12} and
S 4 = {x5, x8, x11, x13}. If n = 8, let S 1 = {x3, x6, x13, x16} , S 2 = {x1, x4, x7, x10} , S 3 = {x2, x9, x12, x15},
and S 4 = {x5, x8, x11, x14}. Clearly π = {S 1, S 2, S 3, S 4} is a partition of V(M(Cn)), where 3 ⩽ n ⩽ 8.
Therefore, the coloring c defined by c : V(M(Cn)) → {1, 2, 3, 4}, where c(xi) = j for any xi ∈ S j is a
locating 4-coloring for M(Cn). □

Lemma 1. For n ⩾ 9, let c be a locating 4-coloring of M(Cn) and S j, 1 ⩽ j ⩽ 4 be the color
classes of this locating coloring. Let M(Cn)[R] be the induced subgraph of M(Cn) by R, where
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R = {xs, xs+1, . . . , xt−1, xt} such that xs, xt belong to S j and R ∩ S j = {xs, xt}. Then we have the
following:

1. For every S j, there are at most three vertices say u1, u2, u3 ∈ V (M(Cn))⧹S j such that
dM(Cn)

(
ui, S j

)
= 2 where 1 ⩽ j ⩽ 4 and 1 ⩽ i ⩽ 3.

2. In M(Cn) [R], there exist at most three vertices say v1, v2, v3 ∈ V(M(Cn[R])) such that
dM(Cn)[R](vi, {xt, xs}) = 2.

3.
∣∣∣S j

∣∣∣ ⩾ 2, for all 1 ⩽ j ⩽ 4.
4. If x < S j, then dM(Cn)(x, S j) ⩽ 2.

Proof. 1. Let S i be the set of vertices that received the color i, 1 ⩽ i ⩽ 4 . Assume that there exist
four vertices say u j < S i such that dM(Cn)(u j, S i) = 2, 1 ⩽ j ⩽ 4 and i , j. Then two vertices of
M(Cn) say u, v must be share the same color but each vertex of M(Cn) is contained in a 3-clique.
Consequently, cπ(u) = cπ(v), contradiction.

2. Note that for any vertex xi in M(Cn)[R], such that dM(Cn)[R](xi, {xs, xt}) = 2, we have
dM(Cn)[R](xi, S j) = 1 or 0 given that xs, xt < S j. Then the color code of xi in M(Cn)[R] is the
same in M(Cn) and so by the same argument of the proof of part 1 we get the result.

3. Assume that for j = 1,
∣∣∣S j

∣∣∣ = 1, say that S 1 = {x1}, then the distance between each vertex of
{x3, x4, x2n−2, x2n−1} and S 1 is two, which contradict the part 1.

4. Assume that there exists xl ∈ S i such that dM(Cn)(xl, S j) ⩾ 3 for some j , i. Choose xs, xt

such that s < t and xs and xt are the closest vertices in S j to xl. Then s < l < t and
dM(Cn)(xs, xl) ⩾ 3 and dM(Cn)(xl, xt) ⩾ 3. If dM(Cn)(xs, xl) = 3 and dM(Cn)(xl, xt) = 3, then
dM(Cn)[R](xl, S j) = 3 where R = {xs, , . . . , xl, . . . , xt−1, xt}. Therefore, dM(Cn)[R] (xk, S i) = 2 when-
ever k ∈ {s + 1, s + 2, t − 1, t − 2}. By part 2, we get a contradiction. Hence dM(Cn)[R](xl, S j) ⩽ 2
and so, dM(Cn)(xl, S j) ⩽ 2.

□

Theorem 4. For n ⩾ 9, χL(M(Cn)) = 5.

Proof. Assume that χL(M(Cn)) = 4. Let c be a locating coloring and {S i, 1 ⩽ i ⩽ 4} be the set of
the color classes, say that S 1 is of minimum cardinality. Now, let S = V (M(Cn))⧹S 1, by part 1 of
Lemma 1 there exist m vertices in S where m ⩽ 3 such that the distance between each one of them
and S 1 is two. So there exist |S | − m vertecies such that dM(Cn)(xi, S 1) = 1, 1 ⩽ i ⩽ 2n. If u ∈ S 2, then
by part 4 of Lemma 1, dM(Cn)(u, S j) ⩽ 2 for j = 3, 4. Hence cπ (u) = (1, 0, k, d), where k, d ∈ {1, 2}.
But u is contained in a 3-clique, so cπ(u) have three possibilities, similarly for S 3 and S 4. Thus there
are at most 9 vertices such that the distance between each one of them and S 1 equal to one. Hence

|S | − 3 ⩽ |S | − m ⩽ 9⇔ |S | ⩽ 12⇔ 2n − |S 1| ⩽ 12,

where 4 |S 1| ⩽ 2n. So n ⩽ 8, contradiction. Hence χL(M(Cn)) ⩾ 5, for all n ⩾ 9. Now, define the
coloring function c : V (M(Cn)) −→ {1, 2, 3, 4, 5} as follows:

1. If n ≡ 0 (mod 4), then

c(xi) =



1, if i = 2n,
2, if i ≡ 1 (mod 4) and i ⩽ n + 1 or i ≡ 0 (mod 4) and n + 1 < i < 2n,
3, if i ≡ 2 (mod 4) and i < n or i ≡ 1 (mod 4) and n < i < 2n,
4, if i ≡ 3 (mod 4) and i < n or i ≡ 2 (mod 4) and n < i < 2n,
5, if i ≡ 0 (mod 4) and i ⩽ n or i ≡ 3 (mod 4) and n < i < 2n.
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2. If n ≡ 1 (mod 4), then

c(xi) =



1, if i = 2n,
2, if i ≡ 1 (mod 4) and i < n or i ≡ 2 (mod 4) and n < i < 2n,
3, if i ≡ 2 (mod 4) and i < n, i = n or i ≡ 3 (mod 4) and n < i < 2n,
4, if i = 3 (mod 4) and i < n or i ≡ 0 (mod 4) and n < i < 2n,
5, if i ≡ 0 (mod 4) and i < n or i ≡ 1 (mod 4) and n < i < 2n.

3. If n ≡ 2 (mod 4), then

c(xi) =



1, if i = 2n,
2, if i ≡ 1 (mod 4) and i < n or i ≡ 0 (mod 4) and n < i < 2n,
3, if i ≡ 2 (mod 4) and i ⩽ n or i ≡ 1 (mod 4) and n < i < 2n,
4, if i ≡ 3 (mod 4) and i ⩽ n + 1 or i ≡ 2 (mod 4) and n + 1 < i < 2n,
5, if i ≡ 0 (mod 4) and i < n or i ≡ 3 (mod 4) and n < i < 2n.

4. If n ≡ 3 (mod 4), then

c(xi) =



1, if i = 2n,
2, if i ≡ 1 (mod 4) and i < n or i ≡ 2 (mod 4) and n < i < 2n,
3, if i ≡ 2 (mod 4) and i < n or i ≡ 3 (mod 4) and n < i < 2n,
4, if i ≡ 3 (mod 4) and i < n or i ≡ 0 (mod 4) and n < i < 2n,
5, if i ≡ 0 (mod 4) and i < n, i = n or i ≡ 1 (mod 4) and n < i < 2n.

In all the above four cases π = {S 1, S 2, S 3, S 4, S 5} is a partition of V (M(Cn)) and for any two distinct
vertices ui and u j in S l with 2 ⩽ l ⩽ 5, d (ui, S 1) , d

(
u j, S 1

)
, hence cπ (ui) , cπ

(
u j

)
. Therefore, all

vertices in M(Cn) have distinct color codes. □

4. Locating Chromatic Number of a Middle Graph of a Star Graph

Let V
(
K1,n
)
= {x0, x1, x2, x3, . . . , xn} and E

(
K1,n
)
= {x0x1, x0x2, x0x3, x0x4, . . . , x0xn}, then K1,n is

called the n-star graph. The middle graph of the n-star graph is given by subdividing each edge
exactly once and joining all the middle vertices of adjacent edges of K1,n. Denote the middle vertex
corresponding to the edge x0xi by yi where 1 ⩽ i ⩽ n. In this section, we determine the locating
chromatic number of a middle graph of a star graph.

x0

y1 y2 y3 y4

x1 x2 x3 x4

Figure 3. Middle Graph of the Star Graph K1,4

Theorem 5. For any positive integer n ⩾ 2, χL(M(K1,n)) = n + 1.

Proof. The vertices x0, x1, x2, x3, . . . , xn have distinct colors since they induce an n + 1-clique. There-
fore, χL(M(K1,n)) ⩾ n + 1.
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Now, define the coloring function c : V
(
M
(
K1,n
))
−→ {1, 2, . . . , n + 1} in the following way:

c (x0) = c (xi) = n + 1, c (yi) = i, 1 ⩽ i ⩽ n.

By using the coloring c, we obtain the following color codes of V(M(K1,n))

cπ (x0) = (1, 1, 1, . . . , 0) ,

cπ (xi) =


0 for (n + 1)th component,
1 for ith component 1 ⩽ i ⩽ n,
2 otherwise.

cπ
(
y j

)
=

{
0 for jth component 1 ⩽ j ⩽ n,
1 otherwise.

As a result, this coloring c is indeed a locating n + 1-coloring of M(Wn). □

5. Locating Chromatic Number of a Middle Graph of a Wheel Graph

Let V (Wn) = {x0, x1, x2, x3, . . . , xn} , x0 be the center vertex and other vertices be x1, x2, x3, . . . , xn

on the rim and E(Wn) = {x0xi, 1 ⩽ i ⩽ n} ∪ {xixi+1, 1 ⩽ i ⩽ n − 1} ∪ {xnx1}. Then Wn is called the
n-wheel graph.

The middle graph of the n-wheel is given by subdividing each edge only once and joining all the
middle vertices of adjacent edges of Wn. Denote the middle vertex of the edge x0xi where 1 ⩽ i ⩽ n
by yi, the middle vertex of the edge xixi+1, where 1 ⩽ i ⩽ n− 1 by y

′

i and the middle vertex of the edge
xnx1 by y

′

n. In this section, we determine the locating chromatic number of the middle graph of Wn.

x0

x1

x2x3

x4

y1

y2y3

y4

y
′
1

y
′
2

y
′
3

y
′
4

Figure 4. Middle Graph of the Wheel Graph W4

Theorem 6. For n = 3, χL(M(Wn)) = 6.

Proof. Let c be a locating 4-coloring of M(W3). Let u and v be two distinct vertices of M(W3) that
were assigned the same color by c. Certainly, each one of them is contained in a 4-clique and hence
they share the same color code i.e., χL(M(W3)) ⩾ 5. If χL(M(W3)) = 5, then there exist at least two
vertices of {y j, y

′

k : 1 ⩽ j, k ⩽ 3} that share the same color . So, we get one of the following cases.

Case 1: One repeated color.
Let c

(
y j

)
= c
(
y
′

k

)
. Since N

(
y j

)
∩ N
(
y
′

k

)
= {yi, 1 ⩽ i ⩽ 3} ∪

{
y
′

l, 1 ⩽ l ⩽ 3
}
⧹
{
y j, y

′

k

}
, we get

cπ(y j) = cπ(y
′

k), a contradiction.
Case 2: Two repeated colors.

Let c (y1) = c
(
y
′

2

)
= 1, c (y2) = c

(
y
′

3

)
= 2, c (y3) = 3, and c

(
y
′

1

)
= 4. Then there is only one

vertex of {x0, x1, x2, x3} that can be colored by the remaining color. Otherwise, cπ(y1) = cπ(y
′

2) or
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cπ(y2) = cπ(y
′

3) which is a contradiction. But on the other hand, if c(x0) = 5 or c(x3) = 5, then,
the vertices x1, x2 must share the same color and consequently they have the same color code,
which is also a contradiction. On the same vein, we get a contradiction if c(x1) = 5 or c(x2) = 5.

Case 3: Three repeated colors.
Let c(y1) = c

(
y
′

2

)
= 1, c (y2) = c

(
y
′

3

)
= 2, and c(y3) = c(y

′

1) = 3. Clearly, c(xi) ∈ {4, 5} for
0 ⩽ i ⩽ 3}. Consequently, there exist two vertices xi, x j share the same color, but each one of
them is contained in a different 4-clique. Moreover, d(xi, x j) = 2, so xi and x j must have the
same color code, a contradiction.
From the previous cases, we get χL(M(W3)) ⩾ 6. Let S 1 = {x0} , S 2 = {y1, x2}, S 3 = {y2, x3} ,

S 4 =
{
y3, y

′

1

}
, S 5 =

{
y
′

3

}
, and S 6 =

{
x1, y

′

2

}
, then the coloring c defined by c : V (M(W3)) −→

{1, . . . , 6} such that c (u) = j for all u ∈ S j is a locating 6-coloring of M(W3).

□

Theorem 7. For n = 4, χL(M(Wn)) = 6.

Proof. The vertices x0, y1, y2, y3, y4 induce a 5-clique, so χL(M(W4)) ⩾ 5. Now, suppose that
χL(M(W4)) = 5. Let c be a locating coloring of M(W4), then the neighbors of y

′

j, 1 ⩽ j ⩽ 4, are
colored by three or four colors since each y

′

j is a common vertex between two 4-cliques. If there is
y
′

j such that its neighbor colors set is {1, 2, 3, 4, 5} \ {c(y
′

j)}, then cπ(y
′

j) = cπ(yi) or cπ(y
′

j) = cπ(x0).
Therefore, the neighbors of y

′

j must be colored by only three different colors. Since there exist ex-
actly four 4-cliques where each one of them contains two vertices of {y

′

j, 1 ⩽ i ⩽ 4}, 1 ⩽ i ⩽ 4, all
4-cliques must be colored by the same set of colors. On the other hand, each vertex of {yi, 1 ⩽ i ⩽ 4}
is contained in exactly one of the four 4-clique, this implies that all the 4-cliques must be colored by
the same set of colors {c(yi), 1 ⩽ i ⩽ 4}. So there exist at least two vertices xk and y

′

j that share the
same color and their neighbors are colored by the same colors besides, the distance between each one
of them and x0 is two, so they have the same color code, a contradiction.

Let S 1 = {x0}, S 2 = {x2, y1}, S 3 =
{
x3, y2, y

′

4

}
, S 4 =

{
x4, y3, y

′

1

}
, S 5 =

{
x1, y4, y

′

2

}
, and S 6 =

{
y
′

3

}
.

Thus the coloring c defined by c : V(M(W4)) −→ {1, . . . , 6} such that c(u) = j, for all u ∈ S j, is a
locating 6-coloring of M(W4). □

Theorem 8. For n ⩾ 5, χL(M(Wn)) = n + 1.

Proof. Since the vertices x0, y1, y2, y3, . . . , yn induce an n + 1-clique, χL(M(Wn)) ⩾ n + 1.
Define, the coloring function c : V (M (Wn)) −→ {1, 2, . . . , n + 1} in the following way:

c (x0) = n + 1, c (yi) = i, 1 ⩽ i ⩽ n,

c (x1) = n, c (xi+1) = i, 1 ⩽ i ⩽ n − 1,

c(y
′

1) = n − 1, c
(
y
′

2

)
= n, c

(
y
′

i+2

)
= i, 1 ⩽ i ⩽ n − 2.

By using the coloring c, we obtain the following color codes of V(M(Wn))

cπ (x0) = (1, 1, 1, . . . , 0) ,

cπ (xi) =


0 for jth component j ≡ i − 1 (mod n),
1 for jth component j ≡ i, i − 2 or i − 3 (mod n),
2 otherwise.

cπ (yi) =
{

0 for ith component 1 ⩽ i ⩽ n,
1 otherwise.

cπ
(
y
′

i

)
=


0 for jth component j ≡ i − 2 (mod n),
1 for jth component j ≡ i, i + 1, i − 1 or i − 3 (mod n),
2 otherwise.
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As a consequence, the coloring c is a locating n + 1-coloring of M(Wn). □

6. Locating Chromatic Number of a Middle Graph of a Gear Graph

The gear graph Gn is a graph obtained by inserting an extra vertex between each pair of the adja-
cent vertices on the perimeter of the wheel graph Wn. Let V (Gn) = {x0, x1, x2, x3, . . . , xn, z1, z2, . . . , zn} ,

x0 be the center vertex, the vertices {x1, x2, x3, . . . , xn} be on the rim and the other vertices
z1, z2, z3, . . . , zn−1 divide the edges xixi+1, 1 ⩽ i ⩽ n − 1, respectively and zn be the subdivision of
the edge {xnx1} and E (Gn) = {x0xi, 1 ⩽ i ⩽ n} ∪ {xizi, 1 ⩽ i ⩽ n} ∪ {zixi+1, 1 ⩽ i ⩽ n − 1} ∪ {znx1}.

The middle graph of the gear graph is given by subdividing each edge only once and joining all
the middle vertices of the adjacent edges of Gn. Denote the middle vertex of the edge x0xi, where
1 ⩽ i ⩽ n, by yi, the middle vertex of the edge xizi, where 1 ⩽ i ⩽ n, by y′i , the middle vertex of the
edge zixi+1, where 1 ⩽ i ⩽ n − 1, by y

′′

i , and the middle vertex of the edge znx1, by y
′′

n . In this section,
we determine the locating chromatic number of the middle graph of Gn.
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y4
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y
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2
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3
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Figure 5. Middle Graph of the Gear Graph G4

Theorem 9. For n = 3, χL(M(Gn)) = 5.

Proof. Since M(G3) contains at least two distinct 4-cliques, χL(M(G3)) ⩾ 5. Let S 1 =
{
x0, x1, y

′

3, y
′′

1

}
,

S 2 =
{
y1, y

′′

2 , z3

}
, S 3 = {x3, y2, z2} , S 4 =

{
y3, y

′

1, y
′

2

}
, and S 5 =

{
x2, z1, y

′′

3

}
. Clearly, the coloring c

defined by c : V(M(G3)) −→ {1, . . . , 5} such that c(u) = j, for all u ∈ S j, is a locating 5-coloring of
M(G3). □

Theorem 10. For n ⩾ 4, χL(M(Gn)) = n + 1.

Proof. Since the vertices x0, y1, y2, y3, . . . , yn induce an n + 1-clique, χL(M(Gn)) ⩾ n + 1. For n = 4,
let S 1 =

{
x0, x1, y

′

3, y
′

4

}
, S 2 =

{
x4, z4, y1, y

′′

1

}
, S 3 =

{
x2, x3, z1, z2, z3, y4, y

′′

4

}
, S 4 =

{
y3, y

′

1, y
′

2

}
, and

S 5 =
{
y2, y

′′

2 , y
′′

3

}
. As a result, the coloring c defined by c : V(M(G4)) −→ {1, . . . , 5} such that

c(u) = j, for all u ∈ S j, is a locating 5-coloring of M(G4). For n ⩾ 5, define the coloring function
c : V (M (Gn)) −→ {1, 2, . . . , n + 1} in the following way:

c(x0) = n + 1, c(yi) = c(zi) = i, 1 ⩽ i ⩽ n,

c(x1) = c(y
′′

1 ) = n, c(xi+1) = c(y
′′

i+1) = i, 1 ⩽ i ⩽ n − 1,

c(y
′

1) = n − 2, c(y
′

2) = n − 1, c(y
′

3) = n, c(y
′

i+3) = i, 1 ⩽ i ⩽ n − 3.

Then the color codes of the vertices of M (Gn) are

cπ (yi) =
{

0 for ith component 1 ⩽ i ⩽ n,
1 otherwise.
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cπ (zi) =


0 for ith component,
1 for jth component j ≡ i − 1 or i − 3 (mod n),
2 otherwise.

cπ (xi) =


0 for jth component j ≡ i − 1 (mod n),
1 for jth component j ≡ i, i − 2 or i − 3 (mod n),
2 otherwise.

cπ
(
y
′

i

)
=


0 for jth component j ≡ i − 3 (mod n),
1 for jth component j ≡ i, i − 1 or i − 2 (mod n),
2 otherwise.

cπ
(
y
′′

i

)
=


0 for jth component j ≡ i − 1 (mod n),
1 for jth component j ≡ i, i − 2, i − 3 or i + 1 (mod n),
2 otherwise.

Clearly, the coloring c is a locating n + 1-coloring of M(Gn). □

7. Locating Chromatic Number of a Middle Graph of a Helm Graph

The helm graph Hn is obtained from an n-wheel graph by adjoining a pendant edge at each node
of the cycle. Let V (Hn) =

{
x0, x1, x2, x3, . . . , xn, x

′

1, . . . , x
′

n

}
, x0 be the center vertex, the vertices

x1, x2, x3, . . . , xn be on the rim and other vertices x
′

1, x
′

2, . . . , x
′

n be the leaves and E(Hn) = {x0xi, 1 ⩽
i ⩽ n} ∪ {xixi+1, 1 ⩽ i ⩽ n − 1 }∪{ xnx1} ∪

{
xix

′

i, 1 ⩽ i ⩽ n
}
.

The middle graph of the helm graph is given by subdividing each edge only once and joining
all the middle vertices of adjacent edges of Hn. Denote the middle vertex of the edge x0xi, where
1 ⩽ i ⩽ n, by yi, the middle vertex of the edge xixi+1, where 1 ⩽ i ⩽ n − 1, by y

′

i, the middle vertex of
the edge xnx1, by y

′

n and the middle vertex of the edge xix
′

i, where 1 ⩽ i ⩽ n, by y
′′

i . In this section, we
determine the locating chromatic number of the middle graph of Hn.
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Figure 6. Middle Graph of the Helm Graph H4

Theorem 11. For n = 3, χL(M(Hn)) = 6.

Proof. Note that the middle graph M(H3) contains at least two distinct 5-cliques so, χL(M(H3)) ⩾ 6.
Let S 1 =

{
y1, x2, x

′

2

}
, S 2 =

{
y2, x3, x

′

3

}
, S 3 =

{
y3, y

′′

2 , x1, x
′

1

}
, S 4 =

{
y
′

1, y
′′

3

}
, S 5 =

{
y
′

2, y
′′

1

}
, and S 6 ={

x0, y
′

3

}
. As a consequence, the coloring c defined by c : V (M(H3)) −→ {1, . . . , 6}, where c (u) = j,

for all u ∈ S j, is a locating 6-coloring of M(H3). □

Theorem 12. For n = 4, 5, χL(M(Hn)) = n + 2.
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Proof. The vertices x0, y1, y2, . . . , yn induce an n + 1-clique, χL(M(Hn)) ⩾ n + 1. For n = 4, the
middle graph M(Hn) contains at least two distinct 5-cliques, so χL(M(H4)) ⩾ 6. For n = 5, assuming
that χL(M(Hn)) = 6, then there exists a coloring function c : V(M(H5)) −→ {1, . . . , 6}, such that for
u, v ∈ V(M(H5)), we have cπ(u) , cπ(v). Since each y

′

j where 1 ⩽ j ⩽ 4, is a common vertex between
two 5-cliques, the neighbors of y

′

j are colored by four or five colors. And so by the similar argument
of proof of Theorem 7, we get a contradiction. Thus, χL(M(H5)) ⩾ 7.

Therefore, χL(M(Hn)) ⩾ n+2. Now for n = 4, let S 1 =
{
y1, y

′

3, y
′′

2

}
, S 2 =

{
y2, y

′′

1

}
, S 3 =

{
y3, x4, x

′

4

}
,

S 4 =
{
x3, x

′

3, y4, y
′

1

}
, S 5 =

{
x0, x1, x

′

1, y
′

2, y
′′

4

}
, and S 6 =

{
x2, x

′

2, y
′

4, y
′′

3

}
. While, for n = 5, let S 1 =

{x2, x
′

2, y1, y
′

3}, S 2 = {x3, x
′

3, y2, y
′

4}, S 3 = {x4, x
′

4, y3, y
′

5}, S 4 = {x5, x
′

5, y4, y
′

1}, S 5 = {x1, x
′

1, y5, y
′

2},
S 6 = {x0}, and S 7 = {y

′′

1 , y
′′

2 , y
′′

3 , y
′′

4 , y
′′

5}.
Clearly, the coloring c defined by c : V (M(Hn)) −→ {1, . . . , n + 2}, where c (u) = j, for all u ∈ S j,

is a locating n + 2-coloring of M(Hn). □

Theorem 13. For any positive integer n ⩾ 6, χL(M(Hn)) = n + 1.

Proof. The vertices x0, y1, y2, y3, . . . , yn induce an n + 1-clique. Therefore, χL(M(Hn)) ⩾ n + 1. Now,
define the coloring function c : V (M (Hn)) −→ {1, 2, . . . , n + 1} in the following way:

c (x0) = n + 1, c (yi) = i, 1 ⩽ i ⩽ n,

c (x1) = c
(
x
′

1

)
= n, c(xi+1) = c

(
x
′

i+1

)
= i, 1 ⩽ i < n,

c
(
y
′

1

)
= n − 1, c

(
y
′

2

)
= n, c

(
y
′

i+2

)
= i, 1 ⩽ i ⩽ n − 2,

c
(
y
′′

1

)
= n − 3, c(y

′′

2) = n − 2, c(y
′′

3) = n − 1, c(y
′′

4) = n, c
(
y
′′

i+4

)
= i, 1 ⩽ i ⩽ n − 4.

Let π = {S 1, S 2, . . . , S n+1} where S i is the set of all vertices of the color i. Then the color codes of the
vertices of M (Hn) are

cπ (yi) =
{

0 for ith component,
1 otherwise.

cπ
(
x
′

i

)
=


0 for jth component j ≡ i − 1 (mod n),
1 for jth component j ≡ i − 4 (mod n),
2 otherwise.

cπ (xi) =


0 for jth component j ≡ i − 1 (mod n),
1 for jth component j ≡ i, i − 2, i − 3 or i − 4 (mod n),
2 otherwise.

cπ
(
y
′

i

)
=


0 for jth component j ≡ i − 2 (mod n),
1 for jth component j ≡ i − 4, i − 3, i − 1, i or i + 1 (mod n),
2 otherwise.

cπ
(
y
′′

i

)
=


0 for jth component j ≡ i − 4 (mod n),
1 for jth component j ≡ i, i − 1, i − 2 or i − 3 (mod n),
2 otherwise.

As consequence, this coloring c is definitely a locating n + 1-coloring of M(Hn). □
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