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Abstract: A complex Hadamard matrix is a matrix Hn ∈ {ω
i|1 ≤ i ≤ m}n×n of order n, where ω is

a primitive mth root of unity, that satisfies HnH∗n = nIn, where H∗n denotes the complex conjugate
transpose of Hn. We show that the Scarpis technique for constructing classic Hadamard matrices
generalizes to Butson-type complex Hadamard matrices.
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1. Introduction

A Hadamard matrix is an n× n matrix Hn ∈ {±1}n×n that satisfies HnHT
n = nIn. In 1896, Hadamard

showed that every matrix M ∈ {±1}n×n satisfied the inequality det|(M)| ≤ nn/2, and any M ∈ {±1}n×n

that met this upper bound was Hadamard. It follows from this definition that if a matrix is Hadamard,
the inner product of any two rows (or columns) ri, rj satisfies ri · rj = 0 if and only if i , j. It is
straightforward to show the following (see [1] for details).

Proposition 1. If Hn is a Hadamard matrix of order n, then:

1) n must be 1, 2 or 4k, where k ∈ N.
2) Both −Hn and HT

n are also Hadamard.
3) Permuting rows and/or columns leaves Hn Hadamard.
4) Multiplying any row or column by −1 leaves Hn Hadamard.

Two Hadamard matrices Hn and H′n of order n are equivalent, denoted Hn ∼ H′n, if H′n can be
obtained from Hn by permuting rows, permuting columns, and negating rows and columns. It is
easy to show that ∼ generates an equivalence relation on the set of all Hadamard matrices of a given
order. A resulting equivalence class is often represented by a normalized Hadamard matrix - that is, a
Hadamard matrix with all 1’s in the initial row and column.

In 1896, Scarpis [2] published an unusual technique for constructing Hadamard matrices of order
p(p + 1), where p is a prime with p ≡ 3(mod 4). His approach appears somewhat ad hoc and
is awkward to implement, which may be one of the reasons that his method, while sound, has not
received the same attention as the more straightforward approaches of, among others, Sylvester and
Paley. To date, the only other direct use of the method of Scarpis appears in [3], where Djokovic
shows the Scarpis construction also generates Hadamard matrices of order q(q + 1) where q is any
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prime power with q ≡ 3(mod 4). In this article, we will show that the method of Scarpis can be
generalized to construct complex Hadamard matrices.

2. The Scarpis Construction

Before presenting both the Scarpis construction and our generalization to CHMs, some historical
clarification is needed.

Williamson [4] mentions, but does not use, the method of Scarpis in his Hadamard constructions;
he simply compares the known orders of Hadamard matrices that result from the methods of Paley
and Scarpis to show that his results generate new orders of Hadamard matrices.

Mukhopadhyay [5] identifies some orders of Williamson Hadamard matrices that exist, but his ap-
proach is based on the Paley construction, and these orders only coincide with the orders of Hadamard
matrices outlined by Scarpis in their base case. In addition, Seberry [6] notes that the Mukhopad-
hyay construction yields no new Hadamard matrices of orders < 40, 000. Moreover, the results of
Mukhopadhyay are based on the existence of L-matrices, but no examples of L-matrices are pro-
vided. On the other hand, both the original Scarpis method and our CHM-based generalization are
constructive. Thus, our main result, that the Scarpis construction can be generalized to CHMs, is
distinct from the work in [5] and [6].

Here is the original construction of Scarpis.

Proposition 2. Let Hn be a normalized Hadamard matrix of order n = p + 1, where p ≡ 3(mod 4) is
prime.

1) Arrange the columns of Hn so that row 2 consists of alternating 1’s and −1’s.
2) Construct H2, the matrix formed by deleting the 2nd row of Hn.
3) Construct the p × p(p + 1) matrix M′ = H2 ⊗ J (J is the 1 × p vector of 1’s).
4) Construct C, the core of −Hn, whose rows are denoted a0, a1, ..., ap−1.
5) For each 0 ≤ r ≤ p − 1, construct the p × p(p + 1) block matrix Mr defined by

Mr =


ar −a0 ar −a2r . . . a(p−2)r −a(p−1)r

ar −a1 ar+1 −a2r+1 . . . a(p−2)r+1 −a(p−1)r+1
...

...
...

...
. . .

...
...

ar −ap−1 ar+(p−1) −a2r+(p−1) . . . a(p−2)r+(p−1) −a(p−1)r+(p−1)

 .
Then the block matrix M below is a Hadamard matrix of order p(p + 1):

M =
[
M′ M0 M1 . . . Mp−1

]T
.

Figure 1 is for a color-coded example of a Scarpis Hadamard matrix, constructed using the prime
p = 7. As mentioned in [7], the Scarpis construction, used in conjunction with the methods of Paley
and Sylvester, results in new orders of Hadamard matrices.

3. A Generalization of the Scarpis Construction

Given any primitive mth root of unity ω, a complex Hadamard matrix of order n, or CHM, often
called a Butson-type Hadamard matrix, is a matrix Hn ∈ {ω

i|1 ≤ i ≤ m}n×n that satisfies HnH∗n = nIn,
where H∗n denotes the complex conjugate transpose of Hn. Unlike the real case, there exists a CHM
of every order. The following are well-known results, see [1] for details.

Proposition 3. If Hn is a CHM, then

1) Permuting rows and/or columns of Hn yields a CHM.
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Figure 1. A Scarpis Hadamard Matrix of Order 56, Using p = 7, Color-coded as Indicated

2) Each of −Hn, HT
n and H∗n is also a CHM.

3) Multiplying a row/column of Hn by any mth root of unity yields a CHM.
4) If Hn is normalized, each noninitial row or column sums to 0.

Two CHMs Hn and H′n are equivalent, denoted Hn ∼ H′n, if H′n can be obtained from a permutation
of the rows or columns of Hn, allowing any row or column to be multiplied by any mth root of unity.

The Scarpis construction generalizes directly into a CHM, but with two important differences: the
construction can be based on any prime p, and any row may be deleted from Hn, the initial normalized
CHM. Here is our generalization.

Theorem 1. Let p be any prime, and let Hn be a normalized CHM of order n = p+ 1. Now define the
following

1) rk, the kth row of Hn, whose entries are x1, x2, ..., xn.
2) Hk, the p × n matrix resulting from removing rk from Hn.
3) M′, the order p(p + 1) matrix defined via M′ = Hk ⊗ J.
4) C, the core of −Hn, whose rows are in order a0, a1, ..., ap−1.
5) For each 0 ≤ r ≤ p − 1, construct the p × p(p + 1) matrix Mr, defined in block form as

x1ar x2a0 x3ar x4a2r . . . xn−1a(p−2)r xna(p−1)r

x1ar x2a1 x3ar+1 x4a2r+1 . . . xn−1a(p−2)r+1 xna(p−1)r+1
...

...
...

...
. . .

...
...

x1ar x2ap−1 x3ar+(p−1) x4a2r+(p−1) . . . xn−1a(p−2)r+(p−1) xna(p−1)r+(p−1)

 .
Then the block matrix M below is a CHM of order p(p + 1):

M =
[
M′ M0 M1 . . . Mp−1

]T
.

We now give an example, using p = 5, of this generalized Scarpis construction.

Example 1. Let p = 5. Note that Hn =



1 1 1 1 1 1
1 −1 i −i −i i
1 i −1 i −i −i
1 −i i −1 i −i
1 −i −i i −1 i
1 i −i −i i −1


is a normalized quaternary CHM.
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Deleting the third row of Hn gives us

H3 =


1 1 1 1 1 1
1 −1 i −i −i i
1 −i i −1 i −i
1 −i −i i −1 i
1 i −i −i i −1


.

Note that r3 =
[
1 i −1 i −i −i

]
. Also note that

M′ =


1 1 1 1 1 1
1 −1 i −i −i i
1 −i i −1 i −i
1 −i −i i −1 i
1 i −i −i i −1


⊗
[
1 1 1 1 1

]
,

which simplifies to


1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 −1 −1 −1 −1 −1 i i i i i −i −i −i −i −i −i −i −i −i −i i i i i i
1 1 1 1 1 −i −i −i −i −i i i i i i −1 −1 −1 −1 −1 i i i i i −i −i −i −i −i
1 1 1 1 1 −i −i −i −i −i −i −i −i −i −i i i i i i −1 −1 −1 −1 −1 i i i i i
1 1 1 1 1 i i i i i −i −i −i −i −i −i −i −i −i −i i i i i i −1 −1 −1 −1 −1

 .

The core of −H is C =


1 −i i i −i
−i 1 −i i i
i −i 1 −i i
i i −i 1 −i
−i i i −i 1


. We then label the rows of C as

a0 =
[
1 −i i i −i

]
,

a1 =
[
−i 1 −i i i

]
,

a2 =
[
i −i 1 −i i

]
,

a3 =
[
i i −i 1 −i

]
,

a4 =
[
−i i i −i 1

]
.

Next, we construct each block matrix Mr. For brevity, we will only construct M0

M0 =


a0 ia0 −1a0 ia0 −ia0 −ia0

a0 ia1 −1a1 ia1 −ia1 −ia1

a0 ia2 −1a2 ia2 −ia2 −ia2

a0 ia3 −1a3 ia3 −ia3 −ia3

a0 ia4 −1a4 ia4 −ia4 −ia4


,

where M0 is a 5 × 30 matrix and each ai block is of size 1 × 5. Note, for instance, that

ia2 = i
[
i −i 1 −i i

]
=
[
−1 1 i 1 −1

]
.

Finally, we construct M:

M =
[
M′ M0 M1 M2 M3 M4

]T
.

For a color-coded visual representation of M, see Figure 2.
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Figure 2. A Color-coded Scarpis Quaternary CHM of Order 30, Using p = 5 and Selecting
k = 3

Proof. Given any prime p, to prove that the matrix M in the statement of Theorem 1 yields a CHM,
we will show that every pair of distinct rows of M is mutually orthogonal. To begin, note that the
orthogonality of pairs of distinct rows of M′ = Hk ⊗ J follows directly from the orthogonality of the
rows of Hn.

Secondly, we must show pairwise orthogonality of distinct rows within each Mr. To this end, we
fix r and compare two rows of Mr. Recall that the row blocks that build these rows are generated from
the rows of C. Note that one pair of row blocks in one column are identical, whereas the remaining
pairs of row blocks in all other columns are distinct. It is clear that this is the case for any prime p:
any two rows of Mr will, by definition, include one pair of row blocks of C that are identical, while
the remaining n = p + 1 pairs of row blocks of C will be distinct.

Let at =
[
at,1 at,2 ... at,p

]
be any row of −C. Because the entries in at are roots of unity, it

follows that at · at = p, since at is a vector of length p. Also note that because each an is a row of the
core of a normalized matrix with all distinct rows pairwise orthogonal, each of their inner products
are 0. Since C is the core of −Hn, it follows that for distinct s and t, at · as = −1.

Thirdly, we must show that each row of M′ is orthogonal to each row of Mr. Consider the inner
product of the bth row of M′ and an arbitrary row of Mr for some r, which involves products of the
form yiJ · xiat, where xi is an arbitrary entry in rk and yi is an arbitrary entry in a row of Hn distinct
from rk and J is the 1 × p vector of all 1’s. Since C is the core of −Hn, the elements in each row of C
sum to 1. Thus,

yiJ · xiat = (yixi)J · at

= yixi(at,1 + at,2 + ... + at,p)
= yixi(1)
= yixi.

It then follows that inner product of the entire bth row of M′ and an arbitrary row of Mr for some r is

y1x1 + y2x2 + ... + ynxn = 0,

since this is the complex inner product of two rows of the original complex Hadamard matrix Hn.
Lastly, we must show that for any r , s, the rows of Mr and Ms are pairwise orthogonal. Let u

denote the αth row of Mr, and let v denote the βth row of Ms, where 0 ≤ α, β ≤ p − 1. That is,

u =
[
x1ar x2aααα x3a(r+ααα) ... xna(p−1)r+ααα)

]
,

v =
[
x1as x2aβββ x3a(s+βββ) ... xna(p−1)s+βββ)

]
.
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Note that the inner product of u and v satisfies

u · v = ar · as +

p−1∑
i=0

air+ααα · ais+βββ,

where the subscripts are reduced modulo p. This sum will have p pairs of distinct vector products,
and exactly one such pair wherein the two vectors are the same. The matching pair occurs at the
unique value of i that satisfies i(r − s) ≡ β − α(mod p). It then follows that u · v = 0. Therefore, M is
a CHM. □

As Djokovic shows in [3], the classic Scarpis construction can be modified to generate Hadamard
matrices of order q(q + 1) where q is any prime power and q ≡ 3(mod 4). This restriction on q is
unnecessary in CHM constructions as CHMs can exist of order p + 1 where p ≡ 1(mod 4).

Let CHn be the set of complex Hadamard matrices of a given order n and let Fq denote the unique
finite field of order q. Given a bijection

α : {0, 1, 2, 3..., q − 1} → Fq,

where q is an odd prime power, the algorithm described in Theorem 1 yields a map

Φq,α : CHq → CHq(q+1),

in which the multiplication occurs in Fq - specifically, ai = aα(i) and aj·r+k = aα(j)·α(r)+α(k). These
observations lead to the following generalization of Theorem 1.

Corollary 1. Let H be a CHM of order q + 1 where q is an odd prime power. Then there exists a
CHM of order q(q + 1).

It is worth noting that the pattern of + and - signs in the 2nd row removed from Hn in the classic
Scarpis construction is identical to the pattern of + and - signs attached to the columns of each block
matrix Mr. This is not a coincidence. In fact, just as in our generalized Scarpis construction, any
row could have been removed from Hn in the classic Scarpis construction. In a similar vein, Scarpis
unnecessarily negated the core of Hn in his construction, whereas Djokovic does not do so in his
generalization to prime powers. In what follows, we let H(k; ) denote a given matrix H with the kth

row removed.

Corollary 2. In the classic Scarpis construction, given any 1 ≤ k ≤ p + 1, let x1, x2, ...xn denote
the entries of the removed kth row, and let H(k; ) denote the remaining matrix. The resulting block
matrices Mr for 0 ≤ r ≤ p − 1 that comprise the resulting Scarpis Hadamard matrix are given by

x1ar x2a0 x3ar x4a2r . . . xn−1a(p−2)r xna(p−1)r

x1ar x2a1 x3ar+1 x4a2r+1 . . . xn−1a(p−2)r+1 xna(p−1)r+1
...

...
...

...
. . .

...
...

x1ar x2ap−1 x3ar+(p−1) x4a2r+(p−1) . . . xn−1a(p−2)r+(p−1) xna(p−1)r+(p−1)

 .
It appears that each choice of a kth deleted row of the original CHM results in the larger Scarpis-

constructed CHM. The different choices of k generally result in different equivalence classes; how-
ever, this is not always true and it is unclear under what circumstances this does not hold.

We note that our Scarpis-inspired CHM construction can be employed in more general contexts,
such as using Vandermonde matrices generated using a primitive complex p + 1st root of unity as the
initial seed matrix. See Figure 3 for an example.
Open Problem In our generalized complex Scarpis construction, determine conditions under which
the choices of a kth deleted row of a given CHM results in larger Scarpis-constructed CHMs belonging
to different equivalence classes.
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Figure 3. Vandermonde-type Scarpis CHM Using 12th Roots of Unity
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