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1. Introduction and Preliminaries

Let us take a graph G = (V(G), E(G)), which is simple, connected and undirected, where its vertex
set is V(G) and edge set is E(G). The order of a graph G is |V(G)| and the size of a graph G is |E(G)|.
The distance d(a, b) between the vertices a, b ∈ V(G) is the length of a shortest path between them.
If d(c, a) , d(c, b), then the vertex c ∈ V(G) is said to resolve two vertices a and b of V(G). Suppose
that N = {n1, n2, . . . , nk} ⊆ V(G) is an ordered set and m is a vertex of V(G), then the representation
r(m,N) of m with respect to N is the k-tuple

(
d(m, n1), d(m, n2), . . . , d(m, nk)

)
. If different vertices of

G have different representations with respect to N, then the set N is said to be a resolving set of G.
The metric basis of G is basically a resolving set having minimum cardinality. The cardinality of
metric basis is represented by dim(G), and is called metric dimension of G.

In [1], Slater introduced the idea of resolving sets and also in [2], Harary and Melter introduced
this concept individually. Different applications of this idea has been introduced in the fields like
network discovery and verification [3], robot navigation [4] and chemistry.

The introduction of doubly resolving sets is given by Caceres et al. (see [5]) by presenting its
connection with metric dimension of the cartesian product G□G of the graph G. The doubly resolving
sets create a valuable means for finding upper bounds on the metric dimension of graphs. The vertices
a and b of the graph G with order |V(G)| ≥ 2 are supposed to doubly resolve vertices u1 and v1 of the
graph G if d(u1, a) − d(u1, b) , d(v1, a) − d(v1, b). A subset D of vertices doubly resolves G if every
two vertices in G are doubly resolved by some two vertices of D. Precisely, in G there do not exist
any two different vertices having the same difference between their corresponding metric coordinates
with respect to D. A doubly resolving set with minimum cardinality is called the minimal doubly
resolving set. The minimum cardinality of a doubly resolving set for G is represented by ψ(G). In
case of some convex polytopes, hamming and prism graphs, the minimal doubly resolving sets has
been obtained in [6], [7] and [8] respectively.
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Clearly, if a and b doubly resolve u1 and v1, then d(u1, a) − d(v1, a) , 0 or d(u1, b) − d(v1, b) , 0,
and thus a or b resolve u1 and v1, this shows that a doubly resolving set is also a resolving set, which
implies dim(G) ≤ ψ(G) for all graphs G. Finding ψ(G) and dim(G) are NP-hard problems proved
in [9, 10].

The line graph L(G) of a graph G is defined as the graph whose vertices are the edges of G, with
two adjacent vertices if the corresponding edges have one vertex common in G. In mathematics, the
metric properties of line graphs have been studied to a great extent (see [11–16]) and in chemistry
literature, its significant applications have been proved (see [17–23]). In [24], the edge version of
metric dimension has been introduced, which is defined as:

Definition 1. 1). The edge distance dE( f , g) between two edges f , g ∈ E(G) is the length of a short-
est path between vertices f and g in the line graph L(G).

2). If dE(e, f ) , dE(e, g), then the edge e ∈ E(G) is said to edge resolve two edges f and g of E(G).
3). Suppose that NE = { f1, f2, . . . , fk} ⊆ E(G) is an ordered set and e is an edge of E(G).

Then the edge version of representation rE(e,NE) of e with respect to NE is the k-tuple(
dE(e, f1), dE(e, f2), . . . , dE(e, fk)

)
.

4). If different edges of G have different edge version of representations with respect to NE, then the
set NE is said to be an edge version of resolving set of G.

5). The edge version of metric basis of G is basically an edge version of resolving set having mini-
mum cardinality. The cardinality of edge version of metric basis is represented by dimE(G), and
is called edge version of metric dimension of G.

The following theorems in [24] are important for us.

Theorem 1. Let S n be the family of n-sunlet graph then

dimE(S n) =


2, if n is even;

3, if n is odd.

Theorem 2. Let Yn be the family of prism graph then dimE(Yn) = 3 for n ≥ 3.

In this article, we proposed minimal edge version of doubly resolving sets of a graph G, based on
edge distances of graph G as follows:

Definition 2. 1). The edges f and g of the graph G with size |E(G)| ≥ 2 are supposed to edge doubly
resolve edges f1 and f2 of the graph G if dE( f1, f ) − dE( f1, g) , dE( f2, f ) − dE( f2, g).

2). Let DE = { f1, f2, . . . , fk} be an ordered set of the edges of G. Then if any two edges e , f ∈ E(G)
are edge doubly resolved by some two edges of set DE then the set DE ⊆ E(G) is said to be an
edge version of doubly resolving set of G. The minimum cardinality of an edge version of doubly
resolving set of G is represented by ψE(G).

Note that every edge version of a doubly resolving set is an edge version of a resolving set, which
implies dimE(G) ≤ ψE(G) for all graphs G.

2. The Edge Version of Doubly Resolving Sets for Family of N-Sunlet Graph S n

The family of n-sunlet graph S n is obtained by joining n pendant edges to a cycle graph Cn (see
Figure 1).

For our purpose, we label the inner edges of S n by {ei : ∀ 0 ≤ i ≤ n − 1} and the pendent edges by
{ fi : ∀ 0 ≤ i ≤ n − 1} as shown in Figure 1.

As motivated by Theorem 1, we obtain

ψE(S n) ≥


2, if n is even;

3, if n is odd.
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Figure 1. n-sunlet Graph S n
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Figure 2. L(S n) of n-sunlet Graph S n

Furthermore, we will show that ψE(S n) = 3 for n ≥ 4.
In order to calculate the edge distances for family of n-sunlet graphs S n, consider the line graph L(S n)
as shown in Figure 2.
Define S i(e0) = {e ∈ E(S n) : d(e0, e) = i}. For ψE(S n) with n ≥ 4, we can locate the sets S i(e0) that
are represented in the Table 1. It is clearly observed from Figure 2 that S i(e0) = ∅ when i ≥ k + 1
for n = 2k, and S i(e0) = ∅ when i ≥ k + 2 for n = 2k + 1. From the above mentioned sets S i(e0), it
is clear that they can be utilized to define the edge distances between two arbitrary edges of E(S n) in
the subsequent way.

n i S i(e0)
1 ≤ i ≤ k { fi−1, ei, fn−i, en−i}

2k(k ≥ 2) k { fk−1, fk, ek}

2k + 1(k ≥ 2) k { fk−1, ek, fk+1, ek+1}

k + 1 { fk}

Table 1. S i(e0) for S n

The symmetry in Figure 2 shows that dE(ei, e j) = dE(e0, e| j−i|) for 0 ≤ | j − i| ≤ n − 1. If n = 2k,
where k ≥ 2, we have

dE( fi, f j) =


dE(e0, f| j−i|) − 1, if | j − i| = 0;

dE(e0, f| j−i|), if 1 ≤ | j − i| < k;

dE(e0, f| j−i|) + 1, if k ≤ | j − i| ≤ n − 1,

dE(ei, f j) =



dE(e0, f| j−i|), if 0 ≤ | j − i| ≤ n − 1 for i ≤ j;

dE(e0, f| j−i|) − 1, if 1 ≤ | j − i| < k for i > j;

dE(e0, f| j−i|), if | j − i| = k for i > j;

dE(e0, f| j−i|) + 1, if k < | j − i| ≤ n − 1 for i > j.

If n = 2k + 1 where k ≥ 2, we have
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dE( fi, f j) =


dE(e0, f| j−i|) − 1, if | j − i| = 0;

dE(e0, f| j−i|), if 1 ≤ | j − i| ≤ k;

dE(e0, f| j−i|) + 1, if k < | j − i| ≤ n − 1,

dE(ei, f j) =


dE(e0, f| j−i|), if 0 ≤ | j − i| ≤ n − 1 for i ≤ j;

dE(e0, f| j−i|) − 1, if 1 ≤ | j − i| ≤ k for i > j;

dE(e0, f| j−i|) + 1, if k < | j − i| ≤ n − 1 for i > j.

As a result, if we know the edge distance dE(e0, e) for any e ∈ E(S n), then one can recreate the
edge distances between any two edges from E(S n).

Lemma 1. ψE(S n) > 2, for n = 2k, k ≥ 2.

Proof. As we know that for n = 2k, ψE(S n) ≥ 2. So it is necessary to prove that each of the subset DE

of edge set E(S n) such that |DE | = 2 is not an edge version of doubly resolving set for S n. In Table 2,
seven possible types of the set DE are presented and for each of them the resultant non-edge doubly
resolved pair of edges from edge set E(S n) is found. To verify, let us take an example, the edges
ek, ek+1 are not edge doubly resolved by any two edges of the set {e0, ei; k < i ≤ n − 1}. Obviously,
for k < i ≤ n − 1, we have dE(e0, ek) = dE(e0, e|k−0|) = k, dE(e0, ek+1) = dE(e0, e|k+1−0|) = k − 1,
dE(ei, ek) = dE(e0, e|k−i|) = i−k and dE(ei, ek+1) = dE(e0, e|k+1−i|) = i−k−1. So, dE(e0, ek)−dE(e0, ek+1) =
dE(ei, ek) − dE(ei, ek+1) = 1, that is, {e0, ei; k < i ≤ n − 1} is not an edge version of doubly resolving
set of S n. Using this procedure we can verify all other non-edge doubly resolved pairs of edges for
all other possible types of DE from Table 2.

DE Non-edge doubly resolved pairs
{e0, ei}, 0 < i < k {e0, en−1}

{e0, ei}, k < i ≤ n − 1 {ek, ek+1}

{e0, fi}, 0 ≤ i < k {e0, fn−1}

{e0, fi}, k ≤ i ≤ n − 1 {e0, f0}

{ f0, fi}, 1 ≤ i < k {ek, fk}

{ f0, fk} {e0, e1}

{ f0, fi}, k < i ≤ n − 1 {e1, f1}

Table 2. Non-edge Doubly Resolved Pairs of S n for n = 2k, k ≥ 2

□

Lemma 2. ψE(S n) = 3, for n = 2k, k ≥ 2.

Proof. The Table 3 demonstrate that edge version of representations of S n in relation to the set D∗E =
{e0, e1, ek} in a different manner.

Now from Table 3, as e0 ∈ D∗E, so the first edge version of metric coordinate of the vector of
e0 ∈ S i(e0) is equal to 0. For each i ∈ {1, 2, 3, . . . , k}, one can easily check that there are no two edges
h1, h2 ∈ S i(e0) such that rE(h1,D∗E) − rE(h2,D∗E) = 0. Also, for each i, j ∈ {1, 2, 3, . . . , k}, i , j, there
are no two edges h1 ∈ S i(e0) and h2 ∈ S j(e0) such that rE(h1,D∗E)− rE(h2,D∗E) = i− j. In this manner,
the set D∗E = {e0, e1, ek} is the minimal edge version of doubly resolving set for S n with n = 2k, k ≥ 2
and hence Lemma 2 holds. □

Lemma 3. ψE(S n) = 3, for n = 2k + 1, k ≥ 2.
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i S i(e0) D∗E = {e0, e1, ek}

0 e0 (0, 1, k)
1 ≤ i < k fi−1 (i, i − 1, k + 1 − i)

ei (i, i − 1, k − i)
fn−i (i, i + 1, k + 1 − i)
en−i (i, i + 1, k − i)

i = k fk−1 (k, k − 1, 1)
fk (k, k, 1)
ek (k, k − 1, 0)

Table 3. Vectors of Edge Metric Coordinates for S n, n = 2k, k ≥ 2

i S i(e0) D∗E = {e0, e1, ek+1}

0 e0 (o, 1, k)
1 ≤ i < k fi−1 (i, i − 1, k + 2 − i)

ei (i, i − 1, k + 1 − i)
fn−i (i, i + 1, k + 1 − i)
en−1 (i, i + 1, k − i)

i = k fk−1 (k, k − 1, 2)
ek (k, k − 1, 1)
fk+1 (k, k + 1, 1)
ek+1 (k, k, 0)

i = k + 1 fk (k + 1, k, 1)

Table 4. Vectors of Edge Metric Coordinates for S n, n = 2k + 1, k ≥ 2

Proof. The Table 4 demonstrate that the edge version of representations of S n in relation to the set
D∗E = {e0, e1, ek+1} in a different way.

Now from Table 4, as e0 ∈ D∗E, so the first edge version of metric coordinate of the vector of e0 ∈

S i(e0) is equal to 0. Similarly for each i ∈ {1, 2, 3, . . . , k + 1}, one can easily find that there are no two
edges h1, h2 ∈ S i(e0) such that rE(h1,D∗E) − rE(h2,D∗E) = 0. Likewise, for every i, j ∈ {1, 2, 3, . . . , k +
1}, i , j, there are no two edges h1 ∈ S i(e0) and h2 ∈ S j(e0) such that rE(h1,D∗E) − rE(h2,D∗E) = i − j.
Like so, the set D∗E = {e0, e1, ek+1} is the minimal edge version of doubly resolving set for S n with
n = 2k + 1, k ≥ 2 and consequently Lemma 3 holds. □

It is displayed from the whole technique that ψE(S n) = 3, for n ≥ 4. We state the resulting main
theorem by using Lemma 2 and Lemma 3 as mentioned below;

Theorem 3. Let S n be the n-sunlet graph for n ≥ 4. Then ψE(S n) = 3.

3. The Edge Version of Doubly Resolving Sets for Family of Prism Graph Yn

A family of prism graph Yn is a cartesian product graph Cn×P2, where Cn is a cycle graph of order
n and P2 is a path of order 2 (see Figure 3). The family of prism graph Yn consists of 4-sided faces
and n-sided faces. For our purpose, we label the inner cycle edges of Yn by {ei : 0 ≤ i ≤ n−1}, middle
edges by { fi : 0 ≤ i ≤ n − 1} and the outer cycle edges by {gi : 1 ≤ i ≤ n − 1} as shown in Figure 3.
As motivated by Theorem 2, we obtain ψE(Yn) ≥ 3. Furthermore, we will show that ψE(Yn) = 3 for
n ≥ 6.

In order to calculate the edge distances for family of prism graphs Yn, consider the line graph L(Yn)
as shown in Figure 4.
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Figure 4. L(Yn) of Prism Graph Yn

Define S i( f0) = { f ∈ E(Yn) : dE( f0, f ) = i}. For ψE(Yn) with n ≥ 6, we can locate the sets S i( f0)
that are represented in the Table 5. It is clearly observed from Figure 4 that S i( f0) = ∅ for i ≥ k + 2.
From the above mentioned sets S i( f0), it is clear that they can be utilized to define the edge distance
between two arbitrary edges of E(Yn) in the subsequent way.

n i S i( f0)
1 {e0, g0, en−1, gn−1}

2 ≤ i ≤ k { fi−1, ei−1, gi−1, fn+1−i, en−i, gn−i}

2k(k ≥ 3) k + 1 { fk}

2k + 1(k ≥ 3) k + 1 { fk, ek, gk, fk+1}

Table 5. S i( f0) for Yn

The symmetry in Figure 4 shows that dE( fi, f j) = dE( f0, f| j−i|) for 0 ≤ | j − i| ≤ n − 1. If n = 2k, where

k ≥ 3, we have

dE(ei, e j) = dE(gi, g j) =


dE( f0, e| j−i|) − 1, if 0 ≤ | j − i| < k;

dE( f0, e| j−i|), if k ≤ | j − i| ≤ n − 1,

dE( fi, e j) = dE( fi, g j) =



dE( f0, e| j−i|), if 0 ≤ | j − i| ≤ n − 1, for i ≤ j;

dE( f0, e| j−i|) − 1, if 1 ≤ | j − i| < k, for i > j;

dE( f0, e| j−i|), if | j − i| = k, for i > j;

dE( f0, e| j−i|) + 1, if k < | j − i| ≤ n − 1, for i > j,
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dE(ei, g j) =


dE( f0, e| j−i|) + 1, if | j − i| = 0;

dE( f0, e| j−i|), if 1 ≤ | j − i| < k;

dE( f0, e| j−i|) + 1, if k ≤ | j − i| ≤ n − 1.

If n = 2k + 1 where k ≥ 3, we have

dE(ei, e j) = dE(gi, g j) =


dE( f0, e| j−i|) − 1, if 0 ≤ | j − i| ≤ k;

dE( f0, e| j−i|), if k < | j − i| ≤ n − 1,

dE( fi, e j) = dE( fi, g j) =


dE( f0, e| j−i|), if 0 ≤ | j − i| ≤ n − 1 for i ≤ j;

dE( f0, e| j−i|) − 1, if 1 ≤ | j − i| ≤ k for i > j;

dE( f0, e| j−i|) + 1, if k < | j − i| ≤ n − 1 for i > j,

dE(ei, g j) =


dE( f0, e| j−i|) + 1, if | j − i| = 0;

dE( f0, e| j−i|), if 1 ≤ | j − i| ≤ k;

dE( f0, e| j−i|) + 1, if k < | j − i| ≤ n − 1.

As a result, if we know the edge distance dE( f0, f ) for any f ∈ E(Yn) then one can recreate the edge
distances between any two edges from E(Yn).

i S i( f0) D∗E = {e0, ek−1, fk+1}

0 f0 (1, k, k)
1 e0 (0, k − 1, k)

g0 (2, k, k)
en−1 (1, k, k − 1)
gn−1 (2, k + 1, k − 1)

2 f1 (1, k − 1, k + 1)
e1 (1, k − 2, k)
g1 (2, k − 1, k)
fn−1 (2, k, k − 1)
en−2 (2, k − 1, k − 2)
gn−2 (3, k, k − 2)

3 ≤ i ≤ k fi−1 (i − 1, k + 1 − i, k + 3 − i)
ei−1 (i − 1, k − i, k + 2 − i)

gi−1 =

 (k, 2, 2), if i = k;

(i, k + 1 − i, k + 2 − i), if i < k.

fn+1−i =

 (k, 2, 0), if i = k;

(i, k + 2 − i, k + 1 − i), if i<k

en−i =

 (k, 1, 1), if i = k;

(i, k + 1 − i, k − i), if i < k

gn−i =

 (k + 1, 2, 1), if i = k;

(i, k + 2 − i, k − i), if i < k
i = k + 1 fk (k, 1, 2)

Table 6. Vectors of Edge Metric Coordinates for Yn, n = 2k, k ≥ 3

Lemma 4. ψE(Yn) = 3, for n = 2k, k ≥ 3.
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i S i( f0) D∗E = {e0, ek, gk+2}

0 f0 (1, k + 1, k − 1)
1 e0 (0, k, k)

g0 (2, k + 1, k − 1)
en−1 (1, k, k − 1)
gn−1 (2, k + 1, k − 2)

2 f1 (1, k, k)
e1 (1, k − 1, k + 1)
g1 (2, k, k)
fn−1 (2, k, k − 2)

en−2 =

 (2, 2, 2), if k = 3;

(2, k − i, k − 2), if k < 3.
gn−2 (3, k, k − 3)

3 ≤ i ≤ k fi−1 (i − 1, k + 2 − i, k + 4 − i)
ei−1 (i − 1, k + 1 − i, k + 4 − i)
gi−1 (i, k + 2 − i, k + 3 − i)

fn+1−i =

 (k, 2, 1), if i = k;

(i, k + 2 − i, k − i), if i + 1 ≤ k

en−i =


(k, 1, 2), if i = k;

(i, 2, 2), if i + 1 = k;

(i, k + 1 − i, k − i), if i + 1 < k

gn−i =

 (k + 1, 2, 1), if i = k;

(i + 1, k + 2 − i, k − 1 − i), if i + 1 ≤ k
i = k + 1 fk (k, 1, 3)

ek (k, 0, 3)
gk (k + 1, 2, 2)
fk+1 (k + 1, 1, 2)

Table 7. Vectors of Edge Metric Coordinates for Yn, n = 2k + 1, k ≥ 3

Proof. The Table 6 demonstrate that edge version of representations of Yn in relation to the set D∗E =
{e0, ek−1, fk+1} in a different manner.

Now from Table 6, as e0 ∈ D∗E, so the first edge version of metric coordinate of the vector of
f0 ∈ S i( f0) is equal to 1. For each i ∈ {1, 2, 3, . . . , k + 1}, one can easily check that there are no two
edges h1, h2 ∈ S i( f0) such that rE(h1,D∗E)−rE(h2,D∗E) = 0. Also, for each i, j ∈ {1, 2, 3, . . . , k+1}, i , j,
there are no two edges h1 ∈ S i( f0) and h2 ∈ S j( f0) such that rE(h1,D∗E) − rE(h2,D∗E) = i − j. In this
manner, the set D∗E = {e0, ek−1, fk+1} is the minimal edge version of doubly resolving set for Yn with
n = 2k, k ≥ 3 and hence Lemma 4 holds. □

Lemma 5. ψE(Yn) = 3, for n = 2k + 1, k ≥ 3.

Proof. The Table 7 demonstrate that the edge version of representations of Yn in relation to the set
D∗E = {e0, ek, gk+2} in a different way.

Now from Table 7, as e0 ∈ D∗E, so the first edge version of metric coordinate of the vector of f0 ∈

S i( f0) is equal to 1. Similarly for each i ∈ {1, 2, 3, . . . , k + 1}, one can easily find that here are no two
edges h1, h2 ∈ S i( f0) such that rE(h1,D∗E) − rE(h2,D∗E) = 0. Likewise, for every i, j ∈ {1, 2, 3, . . . , k +
1}, i , j, there are no two edges h1 ∈ S i( f0) and h2 ∈ S j( f0) such that rE(h1,D∗E) − rE(h2,D∗E) = i − j.
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Like so, the set D∗E = {e0, ek, gk+2} is the minimal edge version of doubly resolving set for Yn with
n = 2k + 1, k ≥ 3 and consequently Lemma 5 holds.

□

It is displayed from the whole technique that ψE(Yn) = 3, for n ≥ 6. We state the resulting main
theorem by using Lemma 4 and Lemma 5 as mentioned below;

Theorem 4. Let Yn be the prism graph for n ≥ 6. Then ψE(Yn) = 3.

4. Conclusion

In this article, we computed the minimal edge version of doubly resolving sets and its cardinality
ψE(G) by considering G as a family of n-sunlet graph S n and prism graph Yn. In case of n-sunlet
graphs, the graph is interesting to consider in the sense that its edge version of metric dimension
dimE(S n) is dependent on the parity of n for both even and odd cases. The cardinality ψE(S n) of
minimal edge version of doubly resolving set of n-sunlet graph S n is independent from the parity of
n. In the case of prism graph Yn, the edge version of metric dimension dimE(Yn) and the cardinality
ψE(Yn) of its minimal edge version of doubly resolving set are same for every n ≥ 6.

Problem 1. Compute edge version of doubly resolving sets for some generalized petersen graphs.
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10. Kratica, J., Čangalović, M. and Kovačević-Vujčić, V., 2009. Computing minimal doubly resolving
sets of graphs. Computers & Operations Research, 36(7), pp.2149-2159.

11. Buckley, F., 1981. Mean distance in line graphs, Congr. Numer., 32, pp.153-162.

12. Gutman, I., 1996. Distance of line graphs. Graph Theory Notes NY, 31, pp.49-52.

13. Gutman, I. and Pavlovic, L., 1997. More on distance of line graphs. Graph Theory Notes NY, 33,
pp.14-18.

14. Liu, J.B., Nadeem, M.F., Siddiqui, H.M.A. and Nazir, W., 2019. Computing metric dimension of
certain families of Toeplitz graphs. IEEE Access, 7, pp.126734-126741.

15. Ramane, H.S. and Gutman, I., 2010. Counterexamples for properties of line graphs of graphs of
diameter two. Kragujevac Journal of Mathematics, 34(34), pp.147-150.

16. Ramane, H.S., Ganagi, A.B. and Gutman, I., 2012. On a conjecture on the diameter of line graphs
of graphs of diameter two. Kragujevac Journal of Mathematics, 36(1), pp.59-62.

17. Gutman, I. and Estrada, E., 1996. Topological indices based on the line graph of the molecular
graph. Journal of Chemical Information and Computer Sciences, 36(3), pp.541-543.
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