

Article

On Real Algebras Admitting Reflections which Commute

André Souleye Diabang^{1,*}, Mankagna Albert Diompy² and Alhousseynou Ba²

- ¹ Département de Mathématiques, UFR. Sciences et Technologies (SET), Université Iba Der Thiam, Thiés (UIDT), Sénégal
- ² Département de Mathématiques et Informatique, Faculté des Sciences et Techniques (FST), Université Cheikh Anta Diop, Dakar (UCAD), Sénégal
- * Correspondence: andre.diabang@univ-thies.sn

Abstract: We study real algebras admitting reflections which commute. In dimension two, we show that two commuting reflections coincide. We specify the two and four-dimensional real algebras cases. We characterize real algebras of division of two-dimensional to third power-associative having a reflection. Finally We give a characterization in four-dimensional, the unitary real algebras of division at third power-associative having two reflections that commute. In eight-dimensional, we give an example of algebra so the group of automorphisms contains a subgroup isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_2$.

Keywords: Division algebra, Algebra isotopy, Derivation and reflexion

1. Introduction

The classification of non-associative division algebras over a commutative field \mathbb{K} with a characteristic different from 2 is a pastionning and topical problem, whose origins date back to the discovery of quaternions (\mathbb{H} , Hamilton 1843) and octonions (\mathbb{O} , Graves 1843, Cayley 1845). Fundamental results appeared, Hopf proved that the dimension of a real algebra of division of finite dimension *n* is a power of 2 and cannot exceed 2 in the commutative case.

Bott and Milnor [1] refined the result of Hopf by reducing the power of 2 to $n \in \{1, 2, 4, 8\}$. It is trivial to show that in dimension one the real algebra \mathbb{R} is unique. In two-dimensional, the classification of these algebras is recently completed. The problem remains open in dimension 4 and 8. The study is quite interesting when there is a sufficient number of distinct reflections which commute for a finite-dimensional division algebra since the product of this last translates a certain symmetry and elegance.

In this paper, we give a description of real algebras of division in two-dimensional having one reflection, and in four-dimensional having two distinct reflections which commute. We recall that the subgroup generated by the latter is isomorphic to the Klein's group $\mathbb{Z}_2 \times \mathbb{Z}_2$ with $\mathbb{Z}_2 := \frac{\mathbb{Z}}{2\mathbb{Z}}$.

In eight-dimensional, we give a class of algebra whose group of automorphisms contains the Klein's group without giving the necessary and sufficient condition of the division.

2. Notations and Preliminary Results

Let A be an arbitrary non-associative real algebra. We define, $I(A) = \{x \in A, x^2 = x\}$ and let x, $y \in A$, [x, y] = xy - yx and (x, y, z) = (xy)z - x(yz).

- A is said to be
 - - division if the operations $L_x : A \to A$, $y \mapsto xy$ and $R_x : A \to A$, $y \mapsto yx$ are bijective, for all $x \in A$, $x \neq 0$.
 - -at third power-associative if (x, x, x) = 0 for all $x \in A$.
 - -at 121 power-associative if $(x, x^2, x) = 0$ for all $x \in A$.
- A linear map ∂ : A → A is said to be a derivation of A if for all x, y ∈ A, we have ∂(x.y) = ∂(x).y+x.∂(y). The derivations of A form a vector subspace of the endomorphisms of A (End_K(A)) which is a Lie algebra, for the bracket of Lie [f, g] = f ∘ g − g ∘ f. Such an algebra is called the Lie algebra of the derivations of A denoted by Der(A).
- A linear map f : A → A is said to be an automorphism of A if f is bijective and for all x, y ∈ A, f(x.y) = f(x).f(y). The automorphisms of A constitute a group Aut_K(A) for the usual law. f ∈ Aut(A) is said to be a reflection of A, if f is involutive (f ∘ f = id_A) not identical (f ≠ id_A). Let f be an automorphism of A and λ ∈ ℝ, we denote by E_λ(f) the kernel of f − λid_A, id_A being the identity operator of A.
- Let $f, g : A \to A$ be linear bijections of A. Recall that the (f, g)-Albert isotope of A denoted by $A_{f,g}$ is a vector space A with the product $x \odot y = f(x)g(y)$.

Remark 1. A linearization of (x, x, x) = 0, gives $[x^2, y] + [xy + yx, x] = 0$ for all $x, y \in A$. So by taking $y = x^2$ we get $[x.x^2 + x^2.x, x] = 0 \Rightarrow 2[x.x^2, x] = 0 \Rightarrow (x.x^2)x - x(x.x^2) = 0 \Rightarrow (x.x^2)x - x(x^2.x) = 0 \Rightarrow (x, x^2, x) = 0$. We can therefore affirm that if A is at third power-associative then it is at 121 power-associative. But the converse is not true in the case where the algebra is not of division. For example the algebra A having a basis $\{e_1, e_2, e_3, e_4\}$ whose product of the elements in this base is given by, $e_1^2 = e_1$, $e_1e_2 = e_3$, $e_2e_1 = e_4$ and other null products, is at 121 power-associative and it is not at third power-associative.

In [2], we have the following result;

Lemma 1. Let A be a real algebra of division of finite 2n-dimensional with $n \in \{1, 2, 4\}$. We suppose that there exists an automorphism f of A such that $sp(f) = \{-1, 1\}$. Then the following inclusions between subalgebras of A are strict,

$$\{0\} \subset E_1(f) \subset E_1(f) + E_{-1}(f).$$

In that case $dim E_1(f) = n \ge 1$, and $dim(E_1(f) + E_{-1}(f)) = 2n$. In addition, the following statements are equivalent,

(a) f is a reflection of A. (b) $A = E_1(f) \oplus E_{-1}(f)$.

And the following equalities hold,

$$E_1(f)E_{-1}(f) = E_{-1}(f)E_1(f) = E_{-1}(f),$$

 $E_{-1}(f).E_{-1}(f) = E_1(f).$

Definition 1. Let α , β , γ , α' , β' and γ' be real numbers. We define algebra A having a base $\{e, e_1, e_2, e_3\}$

for which the product is given as

\odot	e	e_1	e_2	e_3
е	e	e_1	e_2	e_3
e_1	e_1	<i>-e</i>	γe_3	$\beta' e_2$
e_2	e_2	$\gamma' e_3$	-e	αe_1
e_3	e_3	βe_2	$\alpha' e_1$	- <i>e</i>

We denote this algebra A by $\mathbb{H}(\alpha, \beta, \gamma, \alpha', \beta', \gamma')$.

In [3], the author gives the following results:

Theorem 1. A necessary condition that the algebra $\mathbb{H}(\alpha, \beta, \gamma, \alpha', \beta', \gamma')$ should be a division algebra, is that the six nonzero constants $\alpha, \beta, \gamma, -\alpha', -\beta', -\gamma'$ should have the same sign. This sign may be taken to be positive without loss of generality. If the six constants are positive, a sufficient (but not necessary) condition for a division algebra is that they satisfy the relation $f(\alpha, \beta, \gamma) = f(-\alpha', -\beta', -\gamma')$ where f is defined by

$$f(x, y, z) = x + y + z - xyz.$$

Theorem 2. A necessary and sufficient condition that the division algebra $\mathbb{H}(\alpha, \beta, \gamma, \alpha', \beta', \gamma')$ should have two sided rank 2 is that the equations $\alpha' = \alpha$, $\beta' = \beta$ and $\gamma' = \gamma$ hold true. In the contrary case, the algebra has two sided rank 4.

Proposition 1. Let A be a finite dimensional real algebra. The following proposals are equivalent,

- *1.* Aut(A) contains two distinct reflections which commute.
- 2. Aut(A) contains a subgroup isomorphic to the Klein's group $\mathbb{Z}_2 \times \mathbb{Z}_2$.

Proof. (1) \implies (2) Let *A* be a real algebra such that Aut(A) contains two reflections which commute *f* and *g*. Then $h = f \circ g \in Aut(A)$ and is a different reflection of *f* and *g*. The subgroup of Aut(A) generated by *f* and *g* is isomorphic to the klein's group $\mathbb{Z}_2 \times \mathbb{Z}_2$.

(2) \implies (1) Obvious because the elements of the subgroup of Aut(A) which is isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_2$ different from the identity are distinct reflections that commute.

3. Two-dimensional Division Algebra Case

Proposition 2. Let A be a two-dimensional division algebra and let f, g be two commuting reflections of A. Then f = g

Proof. The endomorphisms f and g of A are diagonalizable which commute, consequently there exists a common basis $\{e, e_1\}$ of A, formed of eigenvectors associated with eigenvalues 1 and -1. According to Lemma 1. The eigpaces $E_1(f)$, $E_{-1}(f)$, $E_1(g)$, $E_{-1}(g)$ of f and g are one-dimensional. By setting $E_1(f) = \mathbb{R}e$ and $E_{-1}(f) = \mathbb{R}e_1$.

Suppose that $E_1(g) = \mathbb{R}e_1$ and $E_{-1}(g) = \mathbb{R}e$, let $x = ae + be_1 \in A$, we have

$$f(x) = af(e) + bf(e_1) = ae - be_1 = -ag(e) - bg(e_1) = -g(ae + be_1) = -g(x),$$

thus f = -g (which is not an automophism of *A*), absurd. So $E_1(g) = \mathbb{R}e$ and $E_{-1}(g) = \mathbb{R}e_1$, therefore f and g coincide on $A = E_1(f) \oplus E_{-1}(f)$.

Theorem 3. Let A be a two-dimensional division algebra and let f be a reflections of A. Then there exists a basis $B = \{e, e_1\}$ of A such that the product of A in this basis is given as,

with α , β , γ are non-zero real numbers and $\alpha\beta\gamma < 0$. We will denote this algebra $A(\alpha, \beta, \gamma)$.

Proof. The eigenspaces $E_1(f)$, $E_{-1}(f)$ of f are one-dimensional and $A = E_1(f) \oplus E_{-1}(f)$. There exists $e \in E_1(f)$ and $e_1 \in E_{-1}(f)$, such that $\{e, e_1\}$ is a basis of A. Taking into account the equalities (*) of Lemma 1, we obtain the product of the elements of this basis of (2).

For the division, the Theorem 3 of [4] gives the result.

Corollary 1. Let A be a two-dimensional division algebra, then the following propositions are equivalent,

1. Aut(A) contains a reflection.

2. A is isomorphic to $A(\alpha, \beta, \gamma)$ with $\alpha\beta\gamma < 0$.

Proof. (1) \Rightarrow (2) The Theorem 3 gives the result.

(2) \Rightarrow (1) The endomorphism *f* of $A(\alpha, \beta, \gamma)$ defined by $f(x_0e + x_1e_1) = x_0e - x_1e_1$ is a reflection of $A(\alpha, \beta, \gamma)$.

Theorem 4. Let A be a two-dimensional division algebra and let f be a reflection of A, then the following propositions are equivalent,

1. A is commutative.

2. A is isomorphic to $A(\alpha, \beta, \gamma)$ with $\beta = \alpha$ and $\gamma < 0$.

- *3. A is at third power-associative.*
- 4. A is at 121 power-associative.

Proof. (1) \Rightarrow (2) Since *f* be a reflection of *A*, the Corollary 1 asserts that *A* is isomorphic to $A(\alpha, \beta, \gamma)$ with $\alpha\beta\gamma < 0$. Since *A* is commutative, $e_1e = ee_1 \Longrightarrow \alpha = \beta$, therefore we get the result.

(2) \Rightarrow (3) It is easy to show that $A(\alpha, \beta, \gamma)$, with $\beta = \alpha$ and $\gamma < 0$, is at third power-associative.

 $(3) \Rightarrow (4)$ The Remark 1 gives the result.

(4) \Rightarrow (1) *A* is isomorphic to $A(\alpha, \beta, \gamma)$ with $\alpha\beta\gamma < 0$ and it is at 121 power-associative. We have $(e_1, e_1^2, e_1) = 0 \Rightarrow \gamma^2(\alpha - \beta)e = 0 \Rightarrow \alpha = \beta$. and $\gamma < 0$. Then *A* is commutative.

Theorem 5. Let A be a two-dimensional division algebra and let f be a reflection of A. We are obtained the idempotents and the derivations of A.

	$I(A(\alpha,\beta,\gamma))$	$Der(A(\alpha,\beta,\gamma))$
$\alpha + \beta \neq 0 \ et \ \gamma(\alpha + \beta - 1) > 0$	$\{e, \lambda_0 e - \lambda_1 e_1, \lambda_0 e + \lambda_1 e_1\}$	{0}
otherwise	{ <i>e</i> }	{0}

with $\lambda_0 = \frac{1}{\alpha+\beta}$, $\lambda_1^2 = \frac{\alpha+\beta-1}{\gamma(\alpha+\beta)^2}$.

Proof. A is isomorphic to $A(\alpha, \beta, \gamma)$ with $\alpha\beta\gamma < 0$.

• Let $x = \lambda_0 e + \lambda_1 e_1 \in I(A)$, we have

$$x^{2} = x \Leftrightarrow \begin{cases} \lambda_{0}^{2} + \gamma \lambda_{1}^{2} = \lambda_{0} \\ (\alpha + \beta)\lambda_{0}\lambda_{1} = \lambda_{1} \end{cases}$$

We obtain I(A) by resolving the system and discussing on $\alpha + \beta$ and $\frac{\alpha + \beta - 1}{\gamma}$.

• $A(\alpha, \beta, \gamma)$ with $\alpha\beta\gamma < 0$ be a two-dimensional division algebra, then $Der(A) = \{0\}$.

Proposition 3. Let A be a two-dimensional division algebra and f be a reflection of A. Then the following propositions are equivalent,

1. Aut(A) is isomorphic to S_3 .

2. A is isomorphic to McClay $\mathbb{C}:=(\mathbb{C},\odot)$ with $x \odot y = \overline{x} \overline{y}$ for $x, y \in \mathbb{C}$.

Here, \overline{x} and \overline{y} , are the respective conjugates of x and y.

Proof. (1) \implies (2) By hypothesis *A* is isomorphic to $A(\alpha, \beta, \gamma)$ with $\alpha\beta\gamma < 0$ and $Aut(A) \simeq S_3$, then there exists $f \in Aut(A)$ not identical of order 3.

We suppose that $\alpha + \beta = 0$ where $\gamma(\alpha + \beta - 1) \leq 0$. Since $f(e) \in I(A) = \{e\}$ then f(e) = e and $f(e_1) = \pm e_1$ therefore $f^2 = id_A$, absurd because f is of order 3. We now assume that $\alpha + \beta \neq 0$ and $\gamma(\alpha + \beta - 1) > 0$. Since $f(e) \in I(A) = \{e, \lambda_0 e_0 + \lambda_1 e_1, \lambda_0 e_0 - \lambda_1 e_1\}$. If f(e) = e we have $f(e_1) = \pm e_1$, contradiction because f is of order 3. There is only one case left $f(e) = \lambda_0 e \pm \lambda_1 e_1$. Let $f(e_1) = x_0 e_0 + x_1 e_1$, with x_0, x_1 non-zero real numbers.

Looking at the components of *e* of the equations $f(e)f(e_1) = \alpha f(e_1)$ et $f(e_1)f(e) = \beta f(e_1)$ we have $\alpha x_0 = \beta x_o \Rightarrow \alpha = \beta$. Therefore *A* is commutative so it is reflexive. In conclusion *A* is reflexive and $Aut(A) \simeq S_3$, hence the result follows.

(2) \implies (1) By simple calculation we have $Aut(\mathbb{C}) \simeq S_3$.

4. Four-dimensional Division Algebra Case

Proposition 4. Let A be a four-dimensional division algebra, let f and g are reflections of A. Then there exists a basis $B = \{e, e_1, e_2, e_3\}$ of A where $e^2 = e$ and

$$E_1(f) = \mathbb{R}e + \mathbb{R}e_1,$$
$$E_{-1}(f) = \mathbb{R}e_2 + \mathbb{R}e_3,$$
$$E_1(g) = \mathbb{R}e + \mathbb{R}e_2,$$

and

$$E_{-1}(g) = \mathbb{R}e_1 + \mathbb{R}e_3.$$

Proof. Since *f* and *g* are diagonalizable and commute, so there is a common basis $\{e, e_1, e_2, e_3\}$ formed by eigenvectors associated to eigenvalues 1 or -1. The Lemma 1 shows that $E_1(f)$, $E_{-1}(f)$, $E_1(g)$ and $E_{-1}(g)$ are vector spaces of two-dimensional. If $E_1(f) = \mathbb{R}e + \mathbb{R}e_1$, $E_{-1}(f) = \mathbb{R}e_2 + \mathbb{R}e_3$, then one of the eigenvectors *e*, e_1 (and only one) belongs to $E_1(g)$, otherwise *f* and *g* coincide in $A = E_1(f) \oplus E_{-1}(f)$.

We can therefore set $E_1(g) = \mathbb{R}e + \mathbb{R}e_2$ and $E_{-1}(g) = \mathbb{R}e_1 + \mathbb{R}e_2$. We have

$$e_1 \in E_1(f) \Rightarrow e_1^2 \in E_1(f).E_1(f) = E_1(f),$$

and

$$e_1 \in E_{-1}(g) \Rightarrow e_1^2 \in E_{-1}(g).E_{-1}(g) = E_1(g).$$

Therefore $e_1 \in E_1(f) \cap E_1(g) = \mathbb{R}e$. Thus by analogy, the elements $e_i^2 \in E_1(f) \cap E_1(g) = \mathbb{R}e$ for all $i \in \{2, 3\}$. Since $E_1(f) \cap E_1(g)$ is a subalgebra of *A*, the element *e* is a scalar multiple of an idempotent and can be assumed to be idempotent.

Proposition 5. Let A be a real division algebra of unit four-dimensional of unit e. Then the following propositions are equivalent,

- *1.* Aut(A) contains two distinct reflections which commute.
- 2. Aut(A) contains a subgroup isomorphic to the Klein's group $\mathbb{Z}_2 \times \mathbb{Z}_2$.
- *3. A* is isomorphic to the algebra $\mathbb{H}(\alpha, \beta, \gamma, \alpha', \beta', \gamma')$.

Proof. (1) \iff (2) This is true according to Proposition 1.

(2) \iff (3) We have two distinct reflections which commute. Proposition 2 ensures the existence of a basis $\{e, e_1, e_2, e_3\}$ of A, and the subalgebras $\mathbb{R}e + \mathbb{R}e_i$, for all $i \in \{1, 2, 3\}$, are isomorphic to the algebra \mathbb{C} since they are real algebras of unit division of two-dimensional. We can now set

$$E_1(f) = \mathbb{R}e + \mathbb{R}e_1,$$
$$E_{-1}(f) = \mathbb{R}e_2 + \mathbb{R}e_3,$$
$$E_1(g) = \mathbb{R}e + \mathbb{R}e_2$$

and

 $E_{-1}(g) = \mathbb{R}e_1 + \mathbb{R}e_3.$

We have $e_1 \in E_1(f)$ et $e_2 \in E_{-1}(f) \Rightarrow e_1e_2$, $e_2e_1 \in E_1(f)$. $E_{-1}(f) = E_{-1}(f)$, $e_1 \in E_{-1}(g)$ and $e_2 \in E_1(g) \Rightarrow e_1e_2$, $e_2e_1 \in E_{-1}(g)$. $E_1(g) = E_{-1}(g)$.

As a result e_1e_2 , and $e_2e_1 \in E_{-1}(f) \cap E_{-1}(g) = \mathbb{R}e_3$. In the same way we have

$$e_1e_3, \quad e_3e_1 \in E_{-1}(f) \cap E_1(g) = \mathbb{R}e_2,$$

 $e_2e_3, \quad e_3e_2 \in E_1(f) \cap E_{-1}(g) = \mathbb{R}e_1.$

This gives the multiplication table for (1).

$$(3) \Longrightarrow (1) f : A \longrightarrow A; \ \lambda_0 e + \sum_{i=1}^3 \lambda_i e_i \longmapsto \lambda_0 e + \lambda_1 e_1 - \sum_{i=2}^3 \lambda_i e_i \text{ and } g : A \longrightarrow A; \ \lambda_0 e + \sum_{i=1}^3 \lambda_i e_i \longmapsto \lambda_0 e - \lambda_1 e_1 + \lambda_2 e_2 - \lambda_3 e_3 \text{ are distinct reflections that commute.} \qquad \Box$$

Corollary 2. If A is a real division algebra of four-dimensional with two commute distinct reflections then A is isotope in the sens of Albert to $\mathbb{H}(\alpha, \beta, \gamma, \alpha', \beta', \gamma')$ with $e \in I(A)$.

Proof. Let A be a real division algebra of four-dimensional having two distinct reflections that commute f and g. According to Proposition 2 there is a basis $\{e, e_1, e_2, e_3\}$ where $e \in I(A)$ and f(e) = g(e) = e. Let $x \in A$, we have

$$f \circ R_e(x) = f(R_e(x)) = f(xe) = f(x)f(e) = f(x)e = R_e(f(x)) = R_e \circ f(x),$$

so

$$f \circ R_e = R_e \circ f \Leftrightarrow f \circ R_e^{-1} = R_e^{-1} \circ f.$$

As well as $f \circ L_e^{-1} = L_e^{-1} \circ f$, (A, \odot) where $x \odot y = R_e^{-1}(x) L_e^{-1}(y)$ for all $x, y \in A$, is isotope to A, and is unitary of unit e. We have,

$$f(x \odot y) = f(R_e^{-1}(x).L_e^{-1}(y)) = f(R_e^{-1}(x)).f(L_e^{-1}(y)) = R_e^{-1}(f(x)).L_e^{-1}(f(y)) = f(x) \odot f(y),$$

then $f \in Aut((A, \odot))$. We also show by analogy that $g \in Aut((A, \odot))$. Hence (A, \odot) verifies the assumptions of Proposition 5 therefore it is isomorphic to $\mathbb{H}(\alpha, \beta, \gamma, \alpha', \beta', \gamma')$.

Theorem 6. Let A be a real division algebra of unit four-dimensional having two reflections that commute. Then the following statements are equivalent,

- 1. A is isomorphic to $\mathbb{H}(\alpha, \beta, \gamma, \alpha', \beta', \gamma')$, with $\alpha' = \alpha, \beta' = \beta, \gamma' = \gamma$.
- 2. A is at third power-associative.
- 3. A is at 121 power-associative.

Proof. (1)
$$\Longrightarrow$$
 (2) For all $x = \lambda_0 e + \sum_{i=1}^3 \lambda_i e_i \in \mathbb{H}(\alpha, \beta, \gamma, \alpha', \beta', \gamma')$, with $\alpha' = \alpha, \beta' = \beta, \gamma' = \gamma$, we have $x^2 = -N(x)e + 2\lambda_0 x$ with $N(x) = \sum_{i=0}^3 \lambda_i^2$ and it is easy to check that $(x, x, x) = 0$
(2) \Longrightarrow (3) It is clear from Remark 1

(3) \implies (1) A simple calculation show that $\alpha = \alpha', \beta = \beta'$ et $\gamma = \gamma'$.

5. A Note on Eight-dimensional Division Algebras having a Reflection

Proposition 6. Let A be a division algebra of eight-dimensional, the following statements are equivalent,

- *1.* Aut(A) contains two distinct reflections which commute.
- 2. Aut(A) contains a subgroup isomorphic to the Klein's group $\mathbb{Z}_2 \times \mathbb{Z}_2$.
- 3. There are vector subspaces X, Y, Z and T of two-dimensional, for which the multiplication of A is given by,

	X	Y	Z	T
X	X	Y	Z	T
Y	Y	X	T	Ζ
Ζ	Ζ	T	X	Y
Т	T	Ζ	Y	X

Proof. (1) \implies (2) This is true according to Proposition 5.

(2) \implies (3) The group Aut(A) contains two distinct reflections f and g which commute. Then there is a basis $\{e, e_1, e_2, e_3, e_4, e_5, e_6, e_7\}$ consisting of eigenvectors common to f and g where $E_1(f) =$ $Lin\{e, e_1, e_2, e_3\}$ and $E_{-1}(f) = Lin\{e_4, e_5, e_6, e_7\}$. As $f \neq g$ the subalgebras $E_1(f)$, $E_1(g)$ of dimension 4, cannot coincide. Consequently the subalgebra $X := E_1(f) \cap E_1(g)$, is of dimension ≤ 2 .

Moreover the subalgebra X cannot be reduced to $\mathbb{R}e$. Otherwise the vector subspace $Lin\{e_1, e_2, e_3\} := E \text{ of } E_1(f)$, would be contained in $E_{-1}(g)$ and we would have $E^2 \subset E_1(f)^2 \cap E_{-1}(g)^2 = E_1(f) \cap E_1(g) = \mathbb{R}e$ nonsense because, $e_1, e_2, e_3 \in E$ then $e_1e_2, e_1e_3 \in E^2 \subset \mathbb{R}e$ so there exist $\alpha, \beta \in \mathbb{R}$ nonzero, such that $e_1.e_2 = \alpha e$ and $e_1e_3 = \beta e$. We have $e_1.(\beta e_2 - \alpha e_3) = 0 \Longrightarrow \beta e_2 - \alpha e_3 = 0$, as A is of division so $\beta e_2 = \alpha e_3$ contradicting the fact that e_2 and e_3 are linearly independent. So X is of dimension 2.

If for example $X = Lin\{e, e_1\}$ we can state that $E_1(g) = Lin\{e, e_1, e_4, e_5\}$ and $E_{-1}(g) = Lin\{e_2, e_3, e_6, e_7\}$, we then obtain the following sub-vector spaces of dimension 2.

$$Y := E_1(f) \cap E_{-1}(g) = Lin\{e_2, e_3\}, Z := E_1(g) \cap E_{-1}(f) = Lin\{e_4, e_5\}, T := E_{-1}(f) \cap E_{-1}(g) = Lin\{e_6, e_7\}.$$

It is easy to show that the multiplication of A is done according to (3).

(3) \implies (1) The vector space *A* decomposes into a direct sum of the subspaces vector espaces *X*, *Y*, *Z*, *T* and the two endomorphisms $f, g : A := X \oplus Y \oplus Z \oplus T \rightarrow X \oplus Y \oplus Z \oplus T$ defined by, for all $u = x + y + z + t \in X \oplus Y \oplus Z \oplus T$ we have f(u) = x + y - z - t and g(u) = x - y + z - t. They are distinct reflections, which commute. Thus the subgroup of *Aut*(*A*) generated by *f* and *g* is isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_2$.

Example 1. Let A be a division algebra of eight-dimensional whose product in the base $B = \{e, u_1, \ldots, u_7\}$ is given by,

	e	u_1	u_2	u_3	u_4	<i>u</i> ₅	u_6	u_7
e	e	<i>u</i> ₁	<i>u</i> ₂	<i>u</i> ₃	u_4	<i>u</i> ₅	<i>u</i> ₆	<i>u</i> ₇
u_1	u_1	- <i>e</i>	<i>γu</i> ₃	$-\beta' u_2$	δu_5	$-\eta' u_4$	λu_7	$-\mu' u_6$
u_2	<i>u</i> ₂	$-\gamma' u_3$	- <i>e</i>	αu_1	σu_6	ηu_7	$-\rho' u_4$	$-\xi' u_5$
u_3	<i>u</i> ₃	βu_2	$-\alpha' u_1$	-e	πu_7	τu_6	$-\varepsilon' u_5$	<i>к' и</i> 4
u_4	u_4	$-\delta' u_5$	$\sigma' u_6$	$-\pi' u_7$	- <i>e</i>	θu_1	ωu_2	<i>u</i> ₃
u_5	u_5	ηu_4	$-\eta' u_7$	$-\pi' u_6$	$-\theta' u_1$	- <i>e</i>	χu_3	ζu_2
u_6	u_6	$-\lambda' u_7$	ρu_4	εu_5	$-\omega' u_2$	$-\chi' u_3$	-e	vu_1
u_7	u_7	μu_6	ξu ₅	ки4	$-\iota' u_3$	$-\zeta' u_2$	$-v'u_1$	-e

Let $x = x_0e + \sum_{i=1}^{7} x_iu_i \in A$, the endomorphisms $f : A \longrightarrow A$ and $g : A \longrightarrow A$ defined by $f(x) = x_0e + x_1u_1 - x_2u_2 - x_3u_3 + x_4u_4 + x_5u_5 - x_6u_6 - x_7u_7$ and $g(x) = x_0e + x_1u_1 + x_2u_2 + x_3u_3 - x_4u_4 - x_5u_5 - x_6u_6 - x_7u_7$ are automorphisms of A which commute. Thus Aut(A) contains a subgroup isomorphic to the Klein's group $\mathbb{Z}_2 \times \mathbb{Z}_2$.

Funding

The authors did not receive support from any organization for the submitted work.

Conflict of interest

The authors declare no conflict of interest.

References

- 1. Bott, R. and Milnor, J., 1958. On the parallelizability of the spheres. *Bulletin of the American Mathematical Society* 64, pp.87-89.
- 2. Diabang, A.S., Diankha, O. and Rochdi, A., 2016. On the automorphisms of absolute-valued algebras. *International Journal of Algebra, 10*(3), pp.113-123.
- 3. Bruck, R.H., 1944. Some results in the theory of linear non-associative algebras. *Transactions of the American Mathematical Society*, *56*, pp.141-199.
- 4. Althoen, S.C. and Kugler, L.D., 1983. When is \mathbb{R}^2 a division algebra?. *The American Mathematical Monthly*, 90(9), pp.625-635.

© 2024 the Author(s), licensee Combinatorial Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)