Article

On Real Algebras Admitting Reflections which Commute

André Souleye Diabang ${ }^{1, *}$, Mankagna Albert Diompy ${ }^{2}$ and Alhousseynou Ba ${ }^{2}$
${ }^{1}$ Département de Mathématiques, UFR. Sciences et Technologies (SET), Université Iba Der Thiam, Thiés (UIDT), Sénégal
${ }^{2}$ Département de Mathématiques et Informatique, Faculté des Sciences et Techniques (FST), Université Cheikh Anta Diop, Dakar (UCAD), Sénégal
* Correspondence: andre.diabang@univ-thies.sn

Abstract

We study real algebras admitting reflections which commute. In dimension two, we show that two commuting reflections coincide. We specify the two and four-dimensional real algebras cases. We characterize real algebras of division of two-dimensional to third power-associative having a reflection. Finally We give a characterization in four-dimensional, the unitary real algebras of division at third power-associative having two reflections that commute. In eight-dimensional, we give an example of algebra so the group of automorphisms contains a subgroup isomorphic to $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$.

Keywords: Division algebra, Algebra isotopy, Derivation and reflexion

1. Introduction

The classification of non-associative division algebras over a commutative field \mathbb{K} with a characteristic different from 2 is a pastionning and topical problem, whose origins date back to the discovery of quaternions (\mathbb{H}, Hamilton 1843) and octonions (\mathbb{O}, Graves 1843, Cayley 1845). Fundamental results appeared, Hopf proved that the dimension of a real algebra of division of finite dimension n is a power of 2 and cannot exceed 2 in the commutative case.

Bott and Milnor [1] refined the result of Hopf by reducing the power of 2 to $n \in\{1,2,4,8\}$. It is trivial to show that in dimension one the real algebra \mathbb{R} is unique. In two-dimensional, the classification of these algebras is recently completed. The problem remains open in dimension 4 and 8. The study is quite interesting when there is a sufficient number of distinct reflections which commute for a finite-dimensional division algebra since the product of this last translates a certain symmetry and elegance.

In this paper, we give a description of real algebras of division in two-dimensional having one reflection, and in four-dimensional having two distinct reflections which commute. We recall that the subgroup generated by the latter is isomorphic to the Klein's group $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ with $\mathbb{Z}_{2}:=\frac{\mathbb{Z}}{2 \mathbb{Z}}$.

In eight-dimensional, we give a class of algebra whose group of automorphisms contains the Klein's group without giving the necessary and sufficient condition of the division.

Let A be an arbitrary non-associative real algebra. We define, $I(A)=\left\{x \in A, x^{2}=x\right\}$ and let x, $y \in A,[x, y]=x y-y x$ and $(x, y, z)=(x y) z-x(y z)$.

- A is said to be
- - division if the operations $L_{x}: A \rightarrow A, y \mapsto x y$ and $R_{x}: A \rightarrow A, y \mapsto y x$ are bijective, for all $x \in A, x \neq 0$.
- -at third power-associative if $(x, x, x)=0$ for all $x \in A$.
- -at 121 power-associative if $\left(x, x^{2}, x\right)=0$ for all $x \in A$.
- A linear map $\partial: A \rightarrow A$ is said to be a derivation of A if for all $x, y \in A$, we have $\partial(x \cdot y)=\partial(x) \cdot y+$ $x . \partial(y)$. The derivations of A form a vector subspace of the endomorphisms of $A\left(E n d_{\mathbb{K}}(A)\right)$ which is a Lie algebra, for the bracket of Lie $[f, g]=f \circ g-g \circ f$. Such an algebra is called the Lie algebra of the derivations of A denoted by $\operatorname{Der}(A)$.
- A linear map $f: A \rightarrow A$ is said to be an automorphism of A if f is bijective and for all x, $y \in A, f(x . y)=f(x) \cdot f(y)$. The automorphisms of A constitute a group $A u t_{\mathbb{Z}}(A)$ for the usual law. $f \in \operatorname{Aut}(A)$ is said to be a reflection of A, if f is involutive $\left(f \circ f=i d_{A}\right)$ not identical $\left(f \neq i d_{A}\right)$. Let f be an automorphism of A and $\lambda \in \mathbb{R}$, we denote by $E_{\lambda}(f)$ the kernel of $f-\lambda i d_{A}, i d_{A}$ being the identity operator of A.
- Let $f, g: A \rightarrow A$ be linear bijections of A. Recall that the (f, g)-Albert isotope of A denoted by $A_{f, g}$ is a vector space A with the product $x \odot y=f(x) g(y)$.

Remark 1. A linearization of $(x, x, x)=0$, gives $\left[x^{2}, y\right]+[x y+y x, x]=0$ for all $x, y \in A$. So by taking $y=x^{2}$ we get $\left[x \cdot x^{2}+x^{2} \cdot x, x\right]=0 \Rightarrow 2\left[x \cdot x^{2}, x\right]=0 \Rightarrow\left(x \cdot x^{2}\right) x-x\left(x \cdot x^{2}\right)=0 \Rightarrow\left(x \cdot x^{2}\right) x-x\left(x^{2} \cdot x\right)=$ $0 \Rightarrow\left(x, x^{2}, x\right)=0$. We can therefore affirm that if A is at third power-associative then it is at 121 power-associative. But the converse is not true in the case where the algebra is not of division. For example the algebra A having a basis $\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$ whose product of the elements in this base is given by, $e_{1}^{2}=e_{1}, e_{1} e_{2}=e_{3}, e_{2} e_{1}=e_{4}$ and other null products, is at 121 power-associative and it is not at third power-associative.

In [2], we have the following result;
Lemma 1. Let A be a real algebra of division of finite $2 n$-dimensional with $n \in\{1,2,4\}$. We suppose that there exists an automorphism f of A such that $s p(f)=\{-1,1\}$. Then the following inclusions between subalgebras of A are strict,

$$
\{0\} \subset E_{1}(f) \subset E_{1}(f)+E_{-1}(f)
$$

In that case $\operatorname{dim} E_{1}(f)=n \geq 1$, and $\operatorname{dim}\left(E_{1}(f)+E_{-1}(f)\right)=2 n$.
In addition, the following statements are equivalent,
(a) f is a reflection of A.
(b) $A=E_{1}(f) \oplus E_{-1}(f)$.

And the following equalities hold,

$$
\begin{gathered}
E_{1}(f) E_{-1}(f)=E_{-1}(f) E_{1}(f)=E_{-1}(f), \\
E_{-1}(f) \cdot E_{-1}(f)=E_{1}(f)
\end{gathered}
$$

Definition 1. Let $\alpha, \beta, \gamma, \alpha^{\prime}, \beta^{\prime}$ and γ^{\prime} be real numbers. We define algebra A having a base $\left\{e, e_{1}, e_{2}, e_{3}\right\}$

\odot	e	e_{1}	e_{2}	e_{3}
e	e	e_{1}	e_{2}	e_{3}
e_{1}	e_{1}	$-e$	γe_{3}	$\beta^{\prime} e_{2}$
e_{2}	e_{2}	$\gamma^{\prime} e_{3}$	$-e$	αe_{1}
e_{3}	e_{3}	βe_{2}	$\alpha^{\prime} e_{1}$	$-e$

We denote this algebra A by $\mathbb{H}\left(\alpha, \beta, \gamma, \alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}\right)$.
In [3], the author gives the following results:
Theorem 1. A necessary condition that the algebra $\mathbb{H}\left(\alpha, \beta, \gamma, \alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}\right)$ should be a division algebra, is that the six nonzero constants $\alpha, \beta, \gamma,-\alpha^{\prime},-\beta^{\prime},-\gamma^{\prime}$ should have the same sign. This sign may be taken to be positive without loss of generality. If the six constants are positive, a sufficient (but not necessary) condition for a division algebra is that they satisfy the relation $f(\alpha, \beta, \gamma)=f\left(-\alpha^{\prime},-\beta^{\prime},-\gamma^{\prime}\right)$ where f is defined by

$$
f(x, y, z)=x+y+z-x y z .
$$

Theorem 2. A necessary and sufficient condition that the division algebra $\mathbb{H}\left(\alpha, \beta, \gamma, \alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}\right)$ should have two sided rank 2 is that the equations $\alpha^{\prime}=\alpha, \beta^{\prime}=\beta$ and $\gamma^{\prime}=\gamma$ hold true. In the contrary case, the algebra has two sided rank 4.

Proposition 1. Let A be a finite dimensional real algebra. The following proposals are equivalent,

1. Aut (A) contains two distinct reflections which commute.
2. Aut (A) contains a subgroup isomorphic to the Klein's group $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$.

Proof. (1) $\Longrightarrow(2)$ Let A be a real algebra such that $\operatorname{Aut}(A)$ contains two reflections which commute f and g. Then $h=f \circ g \in \operatorname{Aut}(A)$ and is a different reflection of f and g. The subgroup of $\operatorname{Aut}(A)$ generated by f and g is isomorphic to the klein's group $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$.
$(2) \Longrightarrow(1)$ Obvious because the elements of the subgroup of $\operatorname{Aut}(A)$ which is isomorphic to $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ different from the identity are distinct reflections that commute.

3. Two-dimensional Division Algebra Case

Proposition 2. Let A be a two-dimensional division algebra and let f, g be two commuting reflections of A. Then $f=g$
Proof. The endomorphisms f and g of A are diagonalizable which commute, consequently there exists a common basis $\left\{e, e_{1}\right\}$ of A, formed of eigenvectors associated with eigenvalues 1 and -1 . According to Lemma 1. The eigpaces $E_{1}(f), E_{-1}(f), E_{1}(g), E_{-1}(g)$ of f and g are one-dimensional. By setting $E_{1}(f)=\mathbb{R} e$ and $E_{-1}(f)=\mathbb{R} e_{1}$.

Suppose that $E_{1}(g)=\mathbb{R} e_{1}$ and $E_{-1}(g)=\mathbb{R} e$, let $x=a e+b e_{1} \in A$, we have

$$
f(x)=a f(e)+b f\left(e_{1}\right)=a e-b e_{1}=-a g(e)-b g\left(e_{1}\right)=-g\left(a e+b e_{1}\right)=-g(x),
$$

thus $f=-g$ (which is not an automophism of A), absurd. So $E_{1}(g)=\mathbb{R} e$ and $E_{-1}(g)=\mathbb{R} e_{1}$, therefore f and g coincide on $A=E_{1}(f) \oplus E_{-1}(f)$.

Theorem 3. Let A be a two-dimensional division algebra and let f be a reflections of A. Then there exists a basis $B=\left\{e, e_{1}\right\}$ of A such that the product of A in this basis is given as,

\odot	e	e_{1}
e	e	αe_{1}
e_{1}	βe_{1}	γe

with α, β, γ are non-zero real numbers and $\alpha \beta \gamma<0$. We will denote this algebra $A(\alpha, \beta, \gamma)$.

Proof. The eigenspaces $E_{1}(f), E_{-1}(f)$ of f are one-dimensional and $A=E_{1}(f) \oplus E_{-1}(f)$. There exists $e \in E_{1}(f)$ and $e_{1} \in E_{-1}(f)$, such that $\left\{e, e_{1}\right\}$ is a basis of A. Taking into account the equalities (*) of Lemma 1, we obtain the product of the elements of this basis of (2).

For the division, the Theorem 3 of [4] gives the result.
Corollary 1. Let A be a two-dimensional division algebra, then the following propositions are equivalent,

1. Aut (A) contains a reflection.
2. A is isomorphic to $A(\alpha, \beta, \gamma)$ with $\alpha \beta \gamma<0$.

Proof. (1) \Rightarrow (2) The Theorem 3 gives the result.
(2) \Rightarrow (1) The endomorphism f of $A(\alpha, \beta, \gamma)$ defined by $f\left(x_{0} e+x_{1} e_{1}\right)=x_{0} e-x_{1} e_{1}$ is a reflection of $A(\alpha, \beta, \gamma)$.

Theorem 4. Let A be a two-dimensional division algebra and let f be a reflection of A, then the following propositions are equivalent,

1. A is commutative.
2. A is isomorphic to $A(\alpha, \beta, \gamma)$ with $\beta=\alpha$ and $\gamma<0$.
3. A is at third power-associative.
4. A is at 121 power-associative.

Proof. (1) \Rightarrow (2) Since f be a reflection of A, the Corollary 1 asserts that A is isomorphic to $A(\alpha, \beta, \gamma)$ with $\alpha \beta \gamma<0$. Since A is commutative, $e_{1} e=e e_{1} \Longrightarrow \alpha=\beta$, therefore we get the result.
(2) \Rightarrow (3) It is easy to show that $A(\alpha, \beta, \gamma)$, with $\beta=\alpha$ and $\gamma<0$, is at third power-associative.
(3) \Rightarrow (4) The Remark 1 gives the result.
(4) \Rightarrow (1) A is isomorphic to $A(\alpha, \beta, \gamma)$ with $\alpha \beta \gamma<0$ and it is at 121 power-associative, We have $\left(e_{1}, e_{1}^{2}, e_{1}\right)=0 \Rightarrow \gamma^{2}(\alpha-\beta) e=0 \Rightarrow \alpha=\beta$. and $\gamma<0$. Then A is commutative.

Theorem 5. Let A be a two-dimensional division algebra and let f be a reflection of A. We are obtained the idempotents and the derivations of A.

$$
\begin{array}{c|c|c}
& I(A(\alpha, \beta, \gamma)) & \operatorname{Der}(A(\alpha, \beta, \gamma)) \\
\hline \alpha+\beta \neq 0 \text { et } \gamma(\alpha+\beta-1)>0 & \left\{e, \lambda_{0} e-\lambda_{1} e_{1}, \lambda_{0} e+\lambda_{1} e_{1}\right\} & \{0\} \\
\hline \text { otherwise } & \{e\} & \{0\}
\end{array}
$$

with $\lambda_{0}=\frac{1}{\alpha+\beta}, \lambda_{1}{ }^{2}=\frac{\alpha+\beta-1}{\gamma(\alpha+\beta)^{2}}$.
Proof. A is isomorphic to $A(\alpha, \beta, \gamma)$ with $\alpha \beta \gamma<0$.

- Let $x=\lambda_{0} e+\lambda_{1} e_{1} \in I(A)$, we have

$$
x^{2}=x \Leftrightarrow\left\{\begin{array}{l}
\lambda_{0}^{2}+\gamma \lambda_{1}^{2}=\lambda_{0} \\
(\alpha+\beta) \lambda_{0} \lambda_{1}=\lambda_{1}
\end{array}\right.
$$

We obtain $I(A)$ by resolving the system and discussing on $\alpha+\beta$ and $\frac{\alpha+\beta-1}{\gamma}$.

- $A(\alpha, \beta, \gamma)$ with $\alpha \beta \gamma<0$ be a two-dimensional division algebra, then $\operatorname{Der}(A)=\{0\}$.

Proposition 3. Let A be a two-dimensional division algebra and f be a reflection of A. Then the following propositions are equivalent,

1. $\operatorname{Aut}(A)$ is isomorphic to S_{3}.
2. A is isomorphic to McClay $\stackrel{*}{\mathbb{C}}:=(\mathbb{C}, \odot)$ with $x \odot y=\bar{x} \bar{y}$ for $x, y \in \mathbb{C}$.

Here, \bar{x} and \bar{y}, are the respective conjugates of x and y.
Proof. (1) \Longrightarrow (2) By hypothesis A is isomorphic to $A(\alpha, \beta, \gamma)$ with $\alpha \beta \gamma<0$ and $\operatorname{Aut}(A) \simeq S_{3}$, then there exists $f \in \operatorname{Aut}(A)$ not identical of order 3 .

We suppose that $\alpha+\beta=0$ where $\gamma(\alpha+\beta-1) \leq 0$. Since $f(e) \in I(A)=\{e\}$ then $f(e)=e$ and $f\left(e_{1}\right)= \pm e_{1}$ therefore $f^{2}=i d_{A}$, absurd because f is of order 3. We now assume that $\alpha+\beta \neq 0$ and $\gamma(\alpha+\beta-1)>0$. Since $f(e) \in I(A)=\left\{e, \lambda_{0} e_{0}+\lambda_{1} e_{1}, \lambda_{0} e_{0}-\lambda_{1} e_{1}\right\}$. If $f(e)=e$ we have $f\left(e_{1}\right)= \pm e_{1}$, contradiction because f is of order 3. There is only one case left $f(e)=\lambda_{0} e \pm \lambda_{1} e_{1}$. Let $f\left(e_{1}\right)=x_{0} e_{0}+x_{1} e_{1}$, with x_{0}, x_{1} non-zero real numbers.

Looking at the components of e of the equations $f(e) f\left(e_{1}\right)=\alpha f\left(e_{1}\right)$ et $f\left(e_{1}\right) f(e)=\beta f\left(e_{1}\right)$ we have $\alpha x_{0}=\beta x_{o} \Rightarrow \alpha=\beta$. Therefore A is commutative so it is reflexive. In conclusion A is reflexive and $\operatorname{Aut}(A) \simeq S_{3}$, hence the result follows.
$(2) \Longrightarrow(1)$ By simple calculation we have $\operatorname{Aut}(\stackrel{*}{\mathbb{C}}) \simeq S_{3}$.

4. Four-dimensional Division Algebra Case

Proposition 4. Let A be a four-dimensional division algebra, let f and g are reflections of A. Then there exists a basis $B=\left\{e, e_{1}, e_{2}, e_{3}\right\}$ of A where $e^{2}=e$ and

$$
\begin{aligned}
E_{1}(f) & =\mathbb{R} e+\mathbb{R} e_{1}, \\
E_{-1}(f) & =\mathbb{R} e_{2}+\mathbb{R} e_{3}, \\
E_{1}(g) & =\mathbb{R} e+\mathbb{R} e_{2},
\end{aligned}
$$

and

$$
E_{-1}(g)=\mathbb{R} e_{1}+\mathbb{R} e_{3}
$$

Proof. Since f and g are diagonalizable and commute, so there is a common basis $\left\{e, e_{1}, e_{2}, e_{3}\right\}$ formed by eigenvectors associated to eigenvalues 1 or -1 . The Lemma 1 shows that $E_{1}(f), E_{-1}(f), E_{1}(g)$ and $E_{-1}(g)$ are vector spaces of two-dimensional. If $E_{1}(f)=\mathbb{R} e+\mathbb{R} e_{1}, E_{-1}(f)=\mathbb{R} e_{2}+\mathbb{R} e_{3}$, then one of the eigenvectors e, e_{1} (and only one) belongs to $E_{1}(g)$, otherwise f and g coincide in $A=E_{1}(f) \oplus E_{-1}(f)$.

We can therefore set $E_{1}(g)=\mathbb{R} e+\mathbb{R} e_{2}$ and $E_{-1}(g)=\mathbb{R} e_{1}+\mathbb{R} e_{2}$. We have

$$
e_{1} \in E_{1}(f) \Rightarrow e_{1}^{2} \in E_{1}(f) \cdot E_{1}(f)=E_{1}(f)
$$

and

$$
e_{1} \in E_{-1}(g) \Rightarrow e_{1}^{2} \in E_{-1}(g) \cdot E_{-1}(g)=E_{1}(g)
$$

Therefore $e_{1} \in E_{1}(f) \cap E_{1}(g)=\mathbb{R} e$. Thus by analogy, the elements $e_{i}^{2} \in E_{1}(f) \cap E_{1}(g)=\mathbb{R} e$ for all $i \in\{2,3\}$. Since $E_{1}(f) \cap E_{1}(g)$ is a subalgebra of A, the element e is a scalar multiple of an idempotent and can be assumed to be idempotent.

Proposition 5. Let A be a real division algebra of unit four-dimensional of unit e. Then the following propositions are equivalent,

1. Aut (A) contains two distinct reflections which commute.
2. Aut (A) contains a subgroup isomorphic to the Klein's group $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$.
3. A is isomorphic to the algebra $\mathbb{H}\left(\alpha, \beta, \gamma, \alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}\right)$.

Proof. (1) $\Longleftrightarrow(2)$ This is true according to Proposition 1.
(2) $\Longleftrightarrow(3)$ We have two distinct reflections which commute. Proposition 2 ensures the existence of a basis $\left\{e, e_{1}, e_{2}, e_{3}\right\}$ of A, and the subalgebras $\mathbb{R} e+\mathbb{R} e_{i}$, for all $i \in\{1,2,3\}$, are isomorphic to the algebra \mathbb{C} since they are real algebras of unit division of two-dimensional. We can now set

$$
\begin{aligned}
E_{1}(f) & =\mathbb{R} e+\mathbb{R} e_{1}, \\
E_{-1}(f) & =\mathbb{R} e_{2}+\mathbb{R} e_{3} \\
E_{1}(g) & =\mathbb{R} e+\mathbb{R} e_{2}
\end{aligned}
$$

and

$$
E_{-1}(g)=\mathbb{R} e_{1}+\mathbb{R} e_{3}
$$

We have $e_{1} \in E_{1}(f)$ et $e_{2} \in E_{-1}(f) \Rightarrow e_{1} e_{2}, \quad e_{2} e_{1} \in E_{1}(f) . E_{-1}(f)=E_{-1}(f), e_{1} \in E_{-1}(g)$ and $e_{2} \in E_{1}(g) \Rightarrow e_{1} e_{2}, e_{2} e_{1} \in E_{-1}(g) \cdot E_{1}(g)=E_{-1}(g)$.

As a result $e_{1} e_{2}$, and $e_{2} e_{1} \in E_{-1}(f) \cap E_{-1}(g)=\mathbb{R} e_{3}$. In the same way we have

$$
\begin{array}{ll}
e_{1} e_{3}, & e_{3} e_{1} \in E_{-1}(f) \cap E_{1}(g)=\mathbb{R} e_{2}, \\
e_{2} e_{3}, & e_{3} e_{2} \in E_{1}(f) \cap E_{-1}(g)=\mathbb{R} e_{1} .
\end{array}
$$

This gives the multiplication table for (1).
(3) \Longrightarrow (1) $f: A \longrightarrow A ; \lambda_{0} e+\sum_{i=1}^{3} \lambda_{i} e_{i} \longmapsto \lambda_{0} e+\lambda_{1} e_{1}-\sum_{i=2}^{3} \lambda_{i} e_{i}$ and $g: A \longrightarrow A ; \lambda_{0} e+\sum_{i=1}^{3} \lambda_{i} e_{i} \longmapsto$ $\lambda_{0} e-\lambda_{1} e_{1}+\lambda_{2} e_{2}-\lambda_{3} e_{3}$ are distinct reflections that commute.

Corollary 2. If A is a real division algebra of four-dimensional with two commute distinct reflections then A is isotope in the sens of Albert to $\mathbb{H}\left(\alpha, \beta, \gamma, \alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}\right)$ with $e \in I(A)$.
Proof. Let A be a real division algebra of four-dimensional having two distinct reflections that commute f and g. According to Proposition 2 there is a basis $\left\{e, e_{1}, e_{2}, e_{3}\right\}$ where $e \in I(A)$ and $f(e)=g(e)=e$. Let $x \in A$, we have

$$
f \circ R_{e}(x)=f\left(R_{e}(x)\right)=f(x e)=f(x) f(e)=f(x) e=R_{e}(f(x))=R_{e} \circ f(x),
$$

so

$$
f \circ R_{e}=R_{e} \circ f \Leftrightarrow f \circ R_{e}^{-1}=R_{e}^{-1} \circ f .
$$

As well as $f \circ L_{e}^{-1}=L_{e}^{-1} \circ f,(A, \odot)$ where $x \odot y=R_{e}^{-1}(x) \cdot L_{e}{ }^{-1}(y)$ for all $x, y \in A$, is isotope to A, and is unitary of unit e. We have,

$$
f(x \odot y)=f\left(R_{e}^{-1}(x) \cdot L_{e}^{-1}(y)\right)=f\left(R_{e}^{-1}(x)\right) \cdot f\left(L_{e}^{-1}(y)\right)=R_{e}^{-1}(f(x)) \cdot L_{e}^{-1}(f(y))=f(x) \odot f(y),
$$

then $f \in \operatorname{Aut}((A, \odot))$. We also show by analogy that $g \in \operatorname{Aut}((A, \odot))$. Hence (A, \odot) verifies the assumptions of Proposition 5 therefore it is isomorphic to $\mathbb{H}\left(\alpha, \beta, \gamma, \alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}\right)$.

Theorem 6. Let A be a real division algebra of unit four-dimensional having two reflections that commute. Then the following statements are equivalent,

1. A is isomorphic to $\mathbb{H}\left(\alpha, \beta, \gamma, \alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}\right)$, with $\alpha^{\prime}=\alpha, \beta^{\prime}=\beta, \gamma^{\prime}=\gamma$.
2. A is at third power-associative.
3. A is at 121 power-associative.

Proof. (1) \Longrightarrow (2) For all $x=\lambda_{0} e+\sum_{i=1}^{3} \lambda_{i} e_{i} \in \mathbb{H}\left(\alpha, \beta, \gamma, \alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}\right)$, with $\alpha^{\prime}=\alpha, \beta^{\prime}=\beta, \gamma^{\prime}=\gamma$, we have $x^{2}=-N(x) e+2 \lambda_{0} x$ with $N(x)=\sum_{i=0}^{3} \lambda_{i}{ }^{2}$ and it is easy to check that $(x, x, x)=0$
$(2) \Longrightarrow(3)$ It is clear from Remark 1
(3) \Longrightarrow (1) A simple calculation show that $\alpha=\alpha^{\prime}, \beta=\beta^{\prime}$ et $\gamma=\gamma^{\prime}$.
5. A Note on Eight-dimensional Division Algebras having a Reflection

Proposition 6. Let A be a division algebra of eight-dimensional, the following statements are equivalent,

1. Aut (A) contains two distinct reflections which commute.
2. Aut (A) contains a subgroup isomorphic to the Klein's group $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$.
3. There are vector subspaces X, Y, Z and T of two-dimensional, for which the multiplication of A is given by,

	X	Y	Z	T
X	X	Y	Z	T
Y	Y	X	T	Z
Z	Z	T	X	Y
T	T	Z	Y	X

Proof. $(1) \Longrightarrow(2)$ This is true according to Proposition 5.
$(2) \Longrightarrow(3)$ The group $\operatorname{Aut}(A)$ contains two distinct reflections f and g which commute. Then there is a basis $\left\{e, e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, e_{6}, e_{7}\right\}$ consisting of eigenvectors common to f and g where $E_{1}(f)=$ $\operatorname{Lin}\left\{e, e_{1}, e_{2}, e_{3}\right\}$ and $E_{-1}(f)=\operatorname{Lin}\left\{e_{4}, e_{5}, e_{6}, e_{7}\right\}$. As $f \neq g$ the subalgebras $E_{1}(f), E_{1}(g)$ of dimension 4 , cannot coincide. Consequently the subalgebra $X:=E_{1}(f) \cap E_{1}(g)$, is of dimension ≤ 2.

Moreover the subalgebra X cannot be reduced to $\mathbb{R} e$. Otherwise the vector subspace $\operatorname{Lin}\left\{e_{1}, e_{2}, e_{3}\right\}:=E$ of $E_{1}(f)$, would be contained in $E_{-1}(g)$ and we would have $E^{2} \subset E_{1}(f)^{2} \cap E_{-1}(g)^{2}=$ $E_{1}(f) \cap E_{1}(g)=\mathbb{R} e$ nonsense because, $e_{1}, e_{2} e_{3} \in E$ then $e_{1} e_{2}, e_{1} e_{3} \in E^{2} \subset \mathbb{R} e$ so there exist $\alpha, \beta \in \mathbb{R}$ nonzero, such that $e_{1} \cdot e_{2}=\alpha e$ and $e_{1} e_{3}=\beta e$. We have $e_{1} \cdot\left(\beta e_{2}-\alpha e_{3}\right)=0 \Longrightarrow \beta e_{2}-\alpha e_{3}=0$, as A is of division so $\beta e_{2}=\alpha e_{3}$ contradicting the fact that e_{2} and e_{3} are linearly independent. So X is of dimension 2.

If for example $X=\operatorname{Lin}\left\{e, e_{1}\right\}$ we can state that $E_{1}(g)=\operatorname{Lin}\left\{e, e_{1}, e_{4}, e_{5}\right\}$ and $E_{-1}(g)=$ $\operatorname{Lin}\left\{e_{2}, e_{3}, e_{6}, e_{7}\right\}$, we then obtain the following sub-vector spaces of dimension 2 .

$$
\begin{aligned}
Y & :=E_{1}(f) \cap E_{-1}(g)=\operatorname{Lin}\left\{e_{2}, e_{3}\right\}, \\
Z & :=E_{1}(g) \cap E_{-1}(f)=\operatorname{Lin}\left\{e_{4}, e_{5}\right\}, \\
T & :=E_{-1}(f) \cap E_{-1}(g)=\operatorname{Lin}\left\{e_{6}, e_{7}\right\} .
\end{aligned}
$$

It is easy to show that the multiplication of A is done according to (3).
(3) $\Longrightarrow(1)$ The vector space A decomposes into a direct sum of the subspaces vector espaces X, Y, Z, T and the two endomorphisms $f, g: A:=X \oplus Y \oplus Z \oplus T \rightarrow X \oplus Y \oplus Z \oplus T$ defined by, for all $u=x+y+z+t \in X \oplus Y \oplus Z \oplus T$ we have $f(u)=x+y-z-t$ and $g(u)=x-y+z-t$. They are distinct reflections, which commute. Thus the subgroup of $\operatorname{Aut}(A)$ generated by f and g is isomorphic to $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$.

Example 1. Let A be a division algebra of eight-dimensional whose product in the base $B=$ $\left\{e, u_{1}, \ldots, u_{7}\right\}$ is given by,

.	e	u_{1}	u_{2}	u_{3}	u_{4}	u_{5}	u_{6}	u_{7}
e	e	u_{1}	u_{2}	u_{3}	u_{4}	u_{5}	u_{6}	u_{7}
u_{1}	u_{1}	$-e$	γu_{3}	$-\beta^{\prime} u_{2}$	δu_{5}	$-\eta^{\prime} u_{4}$	λu_{7}	$-\mu^{\prime} u_{6}$
u_{2}	u_{2}	$-\gamma^{\prime} u_{3}$	$-e$	αu_{1}	σu_{6}	ηu_{7}	$-\rho^{\prime} u_{4}$	$-\xi^{\prime} u_{5}$
u_{3}	u_{3}	βu_{2}	$-\alpha^{\prime} u_{1}$	$-e$	πu_{7}	τu_{6}	$-\varepsilon^{\prime} u_{5}$	$\kappa^{\prime} u_{4}$
u_{4}	u_{4}	$-\delta^{\prime} u_{5}$	$\sigma^{\prime} u_{6}$	$-\pi^{\prime} u_{7}$	$-e$	θu_{1}	ωu_{2}	ιu_{3}
u_{5}	u_{5}	ηu_{4}	$-\eta^{\prime} u_{7}$	$-\pi^{\prime} u_{6}$	$-\theta^{\prime} u_{1}$	$-e$	χu_{3}	ζu_{2}
u_{6}	u_{6}	$-\lambda^{\prime} u_{7}$	ρu_{4}	εu_{5}	$-\omega^{\prime} u_{2}$	$-\chi^{\prime} u_{3}$	$-e$	$v u_{1}$
u_{7}	u_{7}	μu_{6}	ξu_{5}	κu_{4}	$-\iota^{\prime} u_{3}$	$-\zeta^{\prime} u_{2}$	$-\gamma^{\prime} u_{1}$	$-e$

Let $x=x_{0} e+\sum_{i=1}^{7} x_{i} u_{i} \in A$, the endomorphisms $f: A \longrightarrow A$ and $g: A \longrightarrow A$ defined by $f(x)=x_{0} e+$ $x_{1} u_{1}-x_{2} u_{2}-x_{3} u_{3}+x_{4} u_{4}+x_{5} u_{5}-x_{6} u_{6}-x_{7} u_{7}$ and $g(x)=x_{0} e+x_{1} u_{1}+x_{2} u_{2}+x_{3} u_{3}-x_{4} u_{4}-x_{5} u_{5}-x_{6} u_{6}-x_{7} u_{7}$ are automorphisms of A which commute. Thus Aut(A) contains a subgroup isomorphic to the Klein's group $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$.

Funding

The authors did not receive support from any organization for the submitted work.

Conflict of interest

The authors declare no conflict of interest.

References

1. Bott, R. and Milnor, J., 1958. On the parallelizability of the spheres. Bulletin of the American Mathematical Society 64, pp.87-89.
2. Diabang, A.S., Diankha, O. and Rochdi, A., 2016. On the automorphisms of absolute-valued algebras. International Journal of Algebra, 10(3), pp.113-123.
3. Bruck, R.H., 1944. Some results in the theory of linear non-associative algebras. Transactions of the American Mathematical Society, 56, pp.141-199.
4. Althoen, S.C. and Kugler, L.D., 1983. When is \mathbb{R}^{2} a division algebra?. The American Mathematical Monthly, 90(9), pp.625-635.
© 2024 the Author(s), licensee Combinatorial Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
