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Abstract: We study real algebras admitting reflections which commute. In dimension two, we show
that two commuting reflections coincide. We specify the two and four-dimensional real algebras
cases. We characterize real algebras of division of two-dimensional to third power-associative having
a reflection. Finally We give a characterization in four-dimensional, the unitary real algebras of
division at third power-associative having two reflections that commute. In eight-dimensional, we
give an example of algebra so the group of automorphisms contains a subgroup isomorphic to Z2×Z2.
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1. Introduction

The classification of non-associative division algebras over a commutative field K with a charac-
teristic different from 2 is a pastionning and topical problem, whose origins date back to the discovery
of quaternions (H, Hamilton 1843) and octonions (O, Graves 1843, Cayley 1845). Fundamental re-
sults appeared, Hopf proved that the dimension of a real algebra of division of finite dimension n is a
power of 2 and cannot exceed 2 in the commutative case.

Bott and Milnor [1] refined the result of Hopf by reducing the power of 2 to n ∈ {1, 2, 4, 8}.
It is trivial to show that in dimension one the real algebra R is unique. In two-dimensional, the
classification of these algebras is recently completed. The problem remains open in dimension 4
and 8. The study is quite interesting when there is a sufficient number of distinct reflections which
commute for a finite-dimensional division algebra since the product of this last translates a certain
symmetry and elegance.

In this paper, we give a description of real algebras of division in two-dimensional having one
reflection, and in four-dimensional having two distinct reflections which commute. We recall that the

subgroup generated by the latter is isomorphic to the Klein’s group Z2 × Z2 with Z2 :=
Z

2Z
.

In eight-dimensional, we give a class of algebra whose group of automorphisms contains the
Klein’s group without giving the necessary and sufficient condition of the division.
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2. Notations and Preliminary Results

Let A be an arbitrary non-associative real algebra. We define, I(A) = {x ∈ A, x2 = x} and let x,
y ∈ A, [x, y] = xy − yx and (x, y, z) = (xy)z − x(yz).

• A is said to be

– - division if the operations Lx : A → A, y 7→ xy and Rx : A → A, y 7→ yx are bijective, for
all x ∈ A, x , 0.

– -at third power-associative if (x, x, x) = 0 for all x ∈ A.
– -at 121 power-associative if (x, x2, x) = 0 for all x ∈ A.

• A linear map ∂ : A→ A is said to be a derivation of A if for all x, y ∈ A, we have ∂(x.y) = ∂(x).y+
x.∂(y). The derivations of A form a vector subspace of the endomorphisms of A (EndK(A)) which
is a Lie algebra, for the bracket of Lie [ f , g] = f ◦ g − g ◦ f . Such an algebra is called the Lie
algebra of the derivations of A denoted by Der(A).
• A linear map f : A → A is said to be an automorphism of A if f is bijective and for all x,

y ∈ A, f (x.y) = f (x). f (y). The automorphisms of A constitute a group AutK(A) for the usual law.
f ∈ Aut(A) is said to be a reflection of A, if f is involutive ( f ◦ f = idA) not identical ( f , idA).
Let f be an automorphism of A and λ ∈ R, we denote by Eλ( f ) the kernel of f − λidA, idA being
the identity operator of A.
• Let f , g : A → A be linear bijections of A. Recall that the ( f , g)-Albert isotope of A denoted by

A f ,g is a vector space A with the product x ⊙ y = f (x)g(y).

Remark 1. A linearization of (x, x, x) = 0, gives [x2, y]+ [xy+yx, x] = 0 for all x, y ∈ A. So by taking
y = x2 we get [x.x2 + x2.x, x] = 0 ⇒ 2[x.x2, x] = 0 ⇒ (x.x2)x − x(x.x2) = 0 ⇒ (x.x2)x − x(x2.x) =
0 ⇒ (x, x2, x) = 0. We can therefore affirm that if A is at third power-associative then it is at 121
power-associative. But the converse is not true in the case where the algebra is not of division. For
example the algebra A having a basis {e1, e2, e3, e4} whose product of the elements in this base is given
by, e1

2 = e1, e1e2 = e3, e2e1 = e4 and other null products, is at 121 power-associative and it is not at
third power-associative.

In [2], we have the following result;

Lemma 1. Let A be a real algebra of division of finite 2n-dimensional with n ∈ {1, 2, 4}. We suppose
that there exists an automorphism f of A such that sp( f ) = {−1, 1}. Then the following inclusions
between subalgebras of A are strict,

{0} ⊂ E1( f ) ⊂ E1( f ) + E−1( f ).

In that case dimE1( f ) = n ≥ 1, and dim
(
E1( f ) + E−1( f )

)
= 2n.

In addition, the following statements are equivalent,

(a) f is a reflection of A.
(b) A = E1( f ) ⊕ E−1( f ).

And the following equalities hold,

E1( f )E−1( f ) = E−1( f )E1( f ) = E−1( f ),

E−1( f ).E−1( f ) = E1( f ).

Definition 1. Let α, β, γ, α′, β′ and γ′ be real numbers. We define algebra A having a base {e, e1, e2, e3}
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for which the product is given as

⊙ e e1 e2 e3

e e e1 e2 e3

e1 e1 −e γe3 β′e2

e2 e2 γ′e3 −e αe1

e3 e3 βe2 α′e1 −e

(1)

We denote this algebra A by H(α, β, γ, α′, β′, γ′).

In [3], the author gives the following results:

Theorem 1. A necessary condition that the algebra H(α, β, γ, α′, β′, γ′) should be a division algebra,
is that the six nonzero constants α, β, γ, −α′, −β′, −γ′ should have the same sign. This sign may be
taken to be positive without loss of generality. If the six constants are positive, a sufficient (but not nec-
essary) condition for a division algebra is that they satisfy the relation f (α, β, γ) = f (−α′,−β′,−γ′)
where f is defined by

f (x, y, z) = x + y + z − xyz.

Theorem 2. A necessary and sufficient condition that the division algebra H(α, β, γ, α′, β′, γ′) should
have two sided rank 2 is that the equations α′ = α, β′ = β and γ′ = γ hold true. In the contrary case,
the algebra has two sided rank 4.

Proposition 1. Let A be a finite dimensional real algebra. The following proposals are equivalent,

1. Aut(A) contains two distinct reflections which commute.
2. Aut(A) contains a subgroup isomorphic to the Klein’s group Z2 × Z2.

Proof. (1) =⇒ (2) Let A be a real algebra such that Aut(A) contains two reflections which commute
f and g. Then h = f ◦ g ∈ Aut(A) and is a different reflection of f and g. The subgroup of Aut(A)
generated by f and g is isomorphic to the klein’s group Z2 × Z2.

(2) =⇒ (1) Obvious because the elements of the subgroup of Aut(A) which is isomorphic to Z2×Z2

different from the identity are distinct reflections that commute. □

3. Two-dimensional Division Algebra Case

Proposition 2. Let A be a two-dimensional division algebra and let f , g be two commuting reflections
of A. Then f = g

Proof. The endomorphisms f and g of A are diagonalizable which commute, consequently there
exists a common basis {e, e1} of A, formed of eigenvectors associated with eigenvalues 1 and −1.
According to Lemma 1. The eigpaces E1( f ), E−1( f ), E1(g), E−1(g) of f and g are one-dimensional.
By setting E1( f ) = Re and E−1( f ) = Re1.

Suppose that E1(g) = Re1 and E−1(g) = Re, let x = ae + be1 ∈ A, we have

f (x) = a f (e) + b f (e1) = ae − be1 = −ag(e) − bg(e1) = −g(ae + be1) = −g(x),

thus f = −g (which is not an automophism of A), absurd. So E1(g) = Re and E−1(g) = Re1, therefore
f and g coincide on A = E1( f ) ⊕ E−1( f ). □

Theorem 3. Let A be a two-dimensional division algebra and let f be a reflections of A. Then there
exists a basis B = {e, e1} of A such that the product of A in this basis is given as,

⊙ e e1

e e αe1

e1 βe1 γe
(2)

with α, β, γ are non-zero real numbers and αβγ < 0. We will denote this algebra A(α, β, γ).
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Proof. The eigenspaces E1( f ), E−1( f ) of f are one-dimensional and A = E1( f )⊕ E−1( f ). There exists
e ∈ E1( f ) and e1 ∈ E−1( f ), such that {e, e1} is a basis of A. Taking into account the equalities (∗) of
Lemma 1, we obtain the product of the elements of this basis of (2). □

For the division, the Theorem 3 of [4] gives the result.

Corollary 1. Let A be a two-dimensional division algebra, then the following propositions are equiv-
alent,

1. Aut(A) contains a reflection.
2. A is isomorphic to A(α, β, γ) with αβγ < 0.

Proof. (1)⇒ (2) The Theorem 3 gives the result.
(2) ⇒ (1) The endomorphism f of A(α, β, γ) defined by f (x0e + x1e1) = x0e − x1e1 is a reflection

of A(α, β, γ). □

Theorem 4. Let A be a two-dimensional division algebra and let f be a reflection of A, then the
following propositions are equivalent,

1. A is commutative.
2. A is isomorphic to A(α, β, γ) with β = α and γ < 0.
3. A is at third power-associative.
4. A is at 121 power-associative.

Proof. (1)⇒ (2) Since f be a reflection of A, the Corollary 1 asserts that A is isomorphic to A(α, β, γ)
with αβγ < 0. Since A is commutative, e1e = ee1 =⇒ α = β, therefore we get the result.

(2)⇒ (3) It is easy to show that A(α, β, γ), with β = α and γ < 0, is at third power-associative.
(3)⇒ (4) The Remark 1 gives the result.
(4) ⇒ (1) A is isomorphic to A(α, β, γ) with αβγ < 0 and it is at 121 power-associative, We have

(e1, e1
2, e1) = 0⇒ γ2(α − β)e = 0⇒ α = β. and γ < 0. Then A is commutative. □

Theorem 5. Let A be a two-dimensional division algebra and let f be a reflection of A. We are
obtained the idempotents and the derivations of A.

I
(
A(α, β, γ)

)
Der(A(α, β, γ))

α + β , 0 et γ(α + β − 1) > 0 {e, λ0e − λ1e1, λ0e + λ1e1} {0}
otherwise {e} {0}

with λ0 =
1
α+β

, λ1
2 =

α+β−1
γ(α+β)2 .

Proof. A is isomorphic to A(α, β, γ) with αβγ < 0.

• Let x = λ0e + λ1e1 ∈ I(A), we have

x2 = x⇔
{
λ0

2 + γλ1
2 = λ0

(α + β)λ0λ1 = λ1

We obtain I(A) by resolving the system and discussing on α + β and
α + β − 1
γ

.

• A(α, β, γ) with αβγ < 0 be a two-dimensional division algebra, then Der(A) = {0}.

□

Proposition 3. Let A be a two-dimensional division algebra and f be a reflection of A. Then the
following propositions are equivalent,

1. Aut(A) is isomorphic to S 3.
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2. A is isomorphic to McClay
∗

C:= (C,⊙) with x ⊙ y = x y for x, y ∈ C.

Here, x and y, are the respective conjugates of x and y.

Proof. (1) =⇒ (2) By hypothesis A is isomorphic to A(α, β, γ) with αβγ < 0 and Aut(A) ≃ S 3, then
there exists f ∈ Aut(A) not identical of order 3.

We suppose that α + β = 0 where γ(α + β − 1) ≤ 0. Since f (e) ∈ I(A) = {e} then f (e) = e and
f (e1) = ±e1 therefore f 2 = idA, absurd because f is of order 3. We now assume that α + β , 0
and γ(α + β − 1) > 0. Since f (e) ∈ I(A) = {e, λ0e0 + λ1e1, λ0e0 − λ1e1}. If f (e) = e we have
f (e1) = ±e1, contradiction because f is of order 3. There is only one case left f (e) = λ0e ± λ1e1. Let
f (e1) = x0e0 + x1e1, with x0, x1 non-zero real numbers.

Looking at the components of e of the equations f (e) f (e1) = α f (e1) et f (e1) f (e) = β f (e1) we have
αx0 = βxo ⇒ α = β. Therefore A is commutative so it is reflexive. In conclusion A is reflexive and
Aut(A) ≃ S 3, hence the result follows.

(2) =⇒ (1) By simple calculation we have Aut(
∗

C) ≃ S 3. □

4. Four-dimensional Division Algebra Case

Proposition 4. Let A be a four-dimensional division algebra, let f and g are reflections of A. Then
there exists a basis B = {e, e1, e2, e3} of A where e2 = e and

E1( f ) = Re + Re1,

E−1( f ) = Re2 + Re3,

E1(g) = Re + Re2,

and
E−1(g) = Re1 + Re3.

Proof. Since f and g are diagonalizable and commute, so there is a common basis {e, e1, e2, e3} formed
by eigenvectors associated to eigenvalues 1 or −1. The Lemma 1 shows that E1( f ), E−1( f ), E1(g) and
E−1(g) are vector spaces of two-dimensional. If E1( f ) = Re+Re1, E−1( f ) = Re2+Re3, then one of the
eigenvectors e, e1 (and only one) belongs to E1(g), otherwise f and g coincide in A = E1( f )⊕ E−1( f ).

We can therefore set E1(g) = Re + Re2 and E−1(g) = Re1 + Re2. We have

e1 ∈ E1( f )⇒ e1
2 ∈ E1( f ).E1( f ) = E1( f ),

and
e1 ∈ E−1(g)⇒ e1

2 ∈ E−1(g).E−1(g) = E1(g).

Therefore e1 ∈ E1( f ) ∩ E1(g) = Re. Thus by analogy, the elements ei
2 ∈ E1( f ) ∩ E1(g) = Re for all

i ∈ {2, 3}. Since E1( f )∩E1(g) is a subalgebra of A, the element e is a scalar multiple of an idempotent
and can be assumed to be idempotent. □

Proposition 5. Let A be a real division algebra of unit four-dimensional of unit e. Then the following
propositions are equivalent,

1. Aut(A) contains two distinct reflections which commute.
2. Aut(A) contains a subgroup isomorphic to the Klein’s group Z2 × Z2.
3. A is isomorphic to the algebra H(α, β, γ, α′, β′, γ′).

Journal of Combinatorial Mathematics and Combinatorial Computing Volume 119, 45–52
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Proof. (1)⇐⇒ (2) This is true according to Proposition 1.
(2)⇐⇒ (3) We have two distinct reflections which commute. Proposition 2 ensures the existence

of a basis {e, e1, e2, e3} of A, and the subalgebras Re + Rei, for all i ∈ {1, 2, 3}, are isomorphic to the
algebra C since they are real algebras of unit division of two-dimensional. We can now set

E1( f ) = Re + Re1,

E−1( f ) = Re2 + Re3,

E1(g) = Re + Re2

and
E−1(g) = Re1 + Re3.

We have e1 ∈ E1( f ) et e2 ∈ E−1( f ) ⇒ e1e2, e2e1 ∈ E1( f ).E−1( f ) = E−1( f ), e1 ∈ E−1(g) and
e2 ∈ E1(g)⇒ e1e2, e2e1 ∈ E−1(g).E1(g) = E−1(g).

As a result e1e2, and e2e1 ∈ E−1( f ) ∩ E−1(g) = Re3. In the same way we have

e1e3, e3e1 ∈ E−1( f ) ∩ E1(g) = Re2,

e2e3, e3e2 ∈ E1( f ) ∩ E−1(g) = Re1.

This gives the multiplication table for (1).

(3) =⇒ (1) f : A −→ A; λ0e +
3∑

i=1
λiei 7−→ λ0e + λ1e1 −

3∑
i=2
λiei and g : A −→ A; λ0e +

3∑
i=1
λiei 7−→

λ0e − λ1e1 + λ2e2 − λ3e3 are distinct reflections that commute. □

Corollary 2. If A is a real division algebra of four-dimensional with two commute distinct reflections
then A is isotope in the sens of Albert to H(α, β, γ, α′, β′, γ′) with e ∈ I(A).

Proof. Let A be a real division algebra of four-dimensional having two distinct reflections that
commute f and g. According to Proposition 2 there is a basis {e, e1, e2, e3} where e ∈ I(A) and
f (e) = g(e) = e. Let x ∈ A, we have

f ◦ Re(x) = f (Re(x)) = f (xe) = f (x) f (e) = f (x)e = Re( f (x)) = Re ◦ f (x),

so
f ◦ Re = Re ◦ f ⇔ f ◦ Re

−1 = Re
−1 ◦ f .

As well as f ◦ Le
−1 = Le

−1 ◦ f , (A,⊙) where x ⊙ y = Re
−1(x).Le

−1(y) for all x, y ∈ A, is isotope to A,
and is unitary of unit e. We have,

f (x ⊙ y) = f
(
Re
−1(x).Le

−1(y)
)
= f
(
Re
−1(x)
)
. f
(
Le
−1(y)
)
= Re

−1( f (x)).Le
−1( f (y)) = f (x) ⊙ f (y),

then f ∈ Aut((A,⊙)). We also show by analogy that g ∈ Aut((A,⊙)). Hence (A,⊙) verifies the
assumptions of Proposition 5 therefore it is isomorphic to H(α, β, γ, α′, β′, γ′). □

Theorem 6. Let A be a real division algebra of unit four-dimensional having two reflections that
commute. Then the following statements are equivalent,

1. A is isomorphic to H(α, β, γ, α′, β′, γ′), with α′ = α, β′ = β, γ′ = γ.
2. A is at third power-associative.
3. A is at 121 power-associative.

Proof. (1) =⇒ (2) For all x = λ0e +
3∑

i=1

λiei ∈ H(α, β, γ, α′, β′, γ′), with α′ = α, β′ = β, γ′ = γ, we

have x2 = −N(x)e + 2λ0x with N(x) =
3∑

i=0

λi
2 and it is easy to check that (x, x, x) = 0

(2) =⇒ (3) It is clear from Remark 1
(3) =⇒ (1) A simple calculation show that α = α′, β = β′ et γ = γ′. □
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5. A Note on Eight-dimensional Division Algebras having a Reflection

Proposition 6. Let A be a division algebra of eight-dimensional, the following statements are equiv-
alent,

1. Aut(A) contains two distinct reflections which commute.
2. Aut(A) contains a subgroup isomorphic to the Klein’s group Z2 × Z2.
3. There are vector subspaces X, Y, Z and T of two-dimensional, for which the multiplication of A

is given by,
X Y Z T

X X Y Z T
Y Y X T Z
Z Z T X Y
T T Z Y X

(3)

Proof. (1) =⇒ (2) This is true according to Proposition 5.
(2) =⇒ (3) The group Aut(A) contains two distinct reflections f and g which commute. Then

there is a basis {e, e1, e2, e3, e4, e5, e6, e7} consisting of eigenvectors common to f and g where E1( f ) =
Lin{e, e1, e2, e3} and E−1( f ) = Lin{e4, e5, e6, e7}. As f , g the subalgebras E1( f ), E1(g) of dimension
4, cannot coincide. Consequently the subalgebra X := E1( f ) ∩ E1(g), is of dimension ≤ 2.

Moreover the subalgebra X cannot be reduced to Re. Otherwise the vector subspace
Lin{e1, e2, e3} := E of E1( f ), would be contained in E−1(g) and we would have E2 ⊂ E1( f )2∩E−1(g)2 =

E1( f ) ∩ E1(g) = Re nonsense because, e1, e2 e3 ∈ E then e1e2, e1e3 ∈ E2 ⊂ Re so there exist α, β ∈ R
nonzero, such that e1.e2 = αe and e1e3 = βe. We have e1.(βe2 − αe3) = 0 =⇒ βe2 − αe3 = 0, as A
is of division so βe2 = αe3 contradicting the fact that e2 and e3 are linearly independent. So X is of
dimension 2.

If for example X = Lin{e, e1} we can state that E1(g) = Lin{e, e1, e4, e5} and E−1(g) =
Lin{e2, e3, e6, e7}, we then obtain the following sub-vector spaces of dimension 2.

Y := E1( f ) ∩ E−1(g) = Lin{e2, e3},
Z := E1(g) ∩ E−1( f ) = Lin{e4, e5},
T := E−1( f ) ∩ E−1(g) = Lin{e6, e7}.

It is easy to show that the multiplication of A is done according to (3).
(3) =⇒ (1) The vector space A decomposes into a direct sum of the subspaces vector espaces X,

Y , Z, T and the two endomorphisms f , g : A := X ⊕ Y ⊕ Z ⊕ T → X ⊕ Y ⊕ Z ⊕ T defined by, for all
u = x + y + z + t ∈ X ⊕ Y ⊕ Z ⊕ T we have f (u) = x + y − z − t and g(u) = x − y + z − t. They are
distinct reflections, which commute. Thus the subgroup of Aut(A) generated by f and g is isomorphic
to Z2 × Z2. □

Example 1. Let A be a division algebra of eight-dimensional whose product in the base B =
{e, u1, . . . , u7} is given by,

. e u1 u2 u3 u4 u5 u6 u7

e e u1 u2 u3 u4 u5 u6 u7

u1 u1 −e γu3 −β′u2 δu5 −η′u4 λu7 −µ′u6

u2 u2 −γ′u3 −e αu1 σu6 ηu7 −ρ′u4 −ξ′u5

u3 u3 βu2 −α′u1 −e πu7 τu6 −ε′u5 κ′u4

u4 u4 −δ′u5 σ′u6 −π′u7 −e θu1 ωu2 ιu3

u5 u5 ηu4 −η′u7 −π′u6 −θ′u1 −e χu3 ζu2

u6 u6 −λ′u7 ρu4 εu5 −ω′u2 −χ′u3 −e νu1

u7 u7 µu6 ξu5 κu4 −ι′u3 −ζ′u2 −ν′u1 −e
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Let x = x0e +
7∑

i=1
xiui ∈ A, the endomorphisms f : A −→ A and g : A −→ A defined by f (x) = x0e +

x1u1−x2u2−x3u3+x4u4+x5u5−x6u6−x7u7 and g(x) = x0e+x1u1+x2u2+x3u3−x4u4−x5u5−x6u6−x7u7

are automorphisms of A which commute. Thus Aut(A) contains a subgroup isomorphic to the Klein’s
group Z2 × Z2.
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