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Abstract: Let ε0, ε1 be two linear homogenous equations, each with at least three variables and
coefficients not all the same sign. Define the 2-color off-diagonal Rado number R2(ε0, ε1) to be the
smallest N such that for any 2-coloring of [1,N], it must admit a monochromatic solution to ε0 of
the first color or a monochromatic solution to ε1 of the second color. Mayers and Robertson gave
the exact 2-color off-diagonal Rado numbers R2(x + qy = z, x + sy = z). Xia and Yao established the
formulas for R2(3x+3y = z, 3x+qy = z) and R2(2x+3y = z, 2x+2qy = z). In this paper, we determine
the exact numbers R2(2x + qy = 2z, 2x + sy = 2z), where q, s are odd integers with q > s ≥ 1.
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1. Introduction

Let [a, b] denote the set {x ∈ Z|a ≤ x ≤ b}. A function ∆: [1, n] → [0, k − 1] is called a k-coloring
of the set [1, n]. If ε is a system of equations in m variables, then we say that a solution x1, x2, . . . , xm

to ε is monochromatic if and only if

∆(x1) = ∆(x2) = · · · = ∆(xm).

In 1916, Schur [1] proved that for every integer k ≥ 2, there exists a least integer n = S (k) such that
for every k-coloring of the set [1, n], there exists a monochromatic solution to x + y = z, the integer
S k is called Schur number. Rado [2, 3] generalized the work of Schur to arbitrary system of linear
equations and found necessary and sufficient conditions to determine if an arbitrary system of linear
equations admits a monochromatic solution for every coloring of the natural numbers with a finite
number of colors. For a given system of linear equations ε, the least integer n, provided that it exists,
such that for every coloring of the set [1, n] with k colors, there exists a monochromatic solution to
ε, is called k-color Rado number. If such an integer n does not exist, then the k-color Rado number
for the system ε is infinite. In recent years there has been considerable interest in finding the exact
Rado numbers for particular linear equations and in several other closely related problems, see for
example [4–12].

For positive integer k ≥ 2 and equations εi, where i = 0, 1, . . . , k− 1, the k-color off-diagonal Rado
number is the least integer N provided that it exists for which any k-coloring of [1,N] must admit
a monochromatic solution of color i to εi for some i ∈ [0, k − 1]. Note that if εi = ε j for all i, j
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(1 ≤ i, j ≤ k), then the k-color off-diagonal Rado number is the k-color Rado number. Robertson and
Schaal [13] gave some 2-color off-diagonal Rado numbers for particular linear equations. In [14],
Mayers and Robertson gave the exact 2-color off-diagonal Rado numbers when the two equations are
of the form x + qy = z and x + sy = z. They showed that

R2(x + qy = z, x + y = z) = 2q + 2
⌊
q + 1

2

⌋
+ 1

and for s ≥ 2,
R2(x + qy = z, x + sy = z) = qs + q + 2s + 1.

Motivated by Myers and Robertson’s work, Xia and Yao [15] proved the following results:

R2(3x + 3y = z, 3x + 3qy = z) = 54q + 57, q ≥ 2

and
R2(2x + 3y = z, 2x + 2qy = z) = 20q + 26, q ≥ 2.

In this paper, we are also interested in precise values of 2-color off-diagonal Rado numbers and
let R2(ε0, ε1) denote it. Let blue and red be the two colors and denoted by 0 and 1, respectively. We
determine the exact numbers R2(2x+qy = 2z, 2x+ sy = 2z), where q, s are odd integers and q > s ≥ 1.
The main results of this paper can be stated as follows.

Theorem 1. For odd integers q, s and q > s > 2, we have

R2(2x + qy = 2z, 2x + sy = 2z) = min{qs + q + 2s + 1, qs + 2q + 1}.

Theorem 2. For odd integer q ≥ 3, we have

R2(2x + qy = 2z, 2x + y = 2z) = 2q + 4.

2. Lower Bounds

Lemma 1. For odd integers q, s and q > s > 2, we have

R2(2x + qy = 2z, 2x + sy = 2z) ≥ min{qs + q + 2s + 1, qs + 2q + 1}.

Proof. Let N = min{qs + q + 2s + 1, qs + 2q + 1}, consider the 2-coloring of [1,N − 1] defined by
coloring

R = {2i|i = 1, 2, . . . , s} ∪ { j|qs + q + 1 ≤ j ≤ N − 1 and j is an odd integer}

red and its complement blue. Now, we show that there is no suitable red solution to 2x + sy = 2z and
no suitable blue solution to 2x + qy = 2z. Assume that (x0, y0, z0) is a red solution to 2x + sy = 2z.
Note that

qs + q + 1 > s(s + 2)

since q > s. If z0 < qs + q + 1, then there exist integers a and b such that x0 = 2a, z0 = 2b and
1 ≤ a < b < s. Thus, sy0 = 4(b − a). The fact that s is an odd integer implies that 4|y0 and y0 ≥ 4.
However,

z0 =
2x0 + sy0

2
≥

4 + 4s
2
= 2s + 2,

which is a contradiction and therefore z0 ≥ qs + q + 1. If y0 ≥ qs + q + 1, then

z0 =
2x0 + sy0

2
≥

4 + s(qs + q + 1)
2

> N − 1,
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which is a contradiction and hence, y0 ∈ {2i|i = 1, 2, . . . , s}. If x0 ∈ {2i|i = 1, 2, . . . , s}, we see that

z0 =
2x0 + sy0

2
≤ 2s + s2 < qs + q + 1,

which is a contradiction and thus, x0 ≥ qs+q+1. Note that z0 and x0 are all odd, therefore, 4|(2z0−2x0),
i.e., 4|sy0. Recall that s is odd, therefore, 4|y0 and y0 ≥ 4. However,

z0 =
2x0 + sy0

2
≥

2(qs + q + 1) + 4s
2

= qs + q + 2s + 1 > N − 1,

which is a contradiction, and there is no suitable red solution to 2x + sy = 2z.
Assume that (x0, y0, z0) is a blue solution to 2x+ qy = 2z. Note that y0 must be even this is because

q is an odd integer. Therefore y0 ≥ 2s + 2 and

z0 =
2x0 + qy0

2
≥

2 + q(2s + 2)
2

= qs + q + 1,

which implies that z0 must be even. If y0 = 2s+2, then 2x0 = 2z0−q(2s+2), that is, x0 = z0−q(s+1).
Therefore, 2|x0 and x0 ≥ 2s + 2. However,

z0 =
2x0 + qy0

2
≥

2(2s + 2) + q(2s + 2)
2

= qs + q + 2s + 2 > N − 1,

which is a contradiction. If y0 ≥ 2s + 4, then

z0 =
2x0 + qy0

2
≥

2 × 1 + q(2s + 4)
2

= qs + 2q + 1 > N − 1,

which is a contradiction. Thus, there is no suitable blue solution to 2x + qy = 2z. The proof is
complete. □

Lemma 2. For odd integer q > 2, we have

R2(2x + qy = 2z, 2x + y = 2z) ≥ 2q + 4. (1)

Proof. Let {1}
⋃

[3, 2q]
⋃
{2q + 2} be colored blue and {2, 2q + 1, 2q + 3} be colored red. It is easy

to verify that there is no suitable blue solutions to 2x + qy = 2z and no suitable red solution to
2x + y = 2z. □

3. Proof of Theorem 1

Proof. It follows from Lemma 1 that

R2(2x + qy = 2z, 2x + sy = 2z) ≥ min{qs + q + 2s + 1, qs + 2q + 1}, (2)

where q, s are odd integers and q > s ≥ 3. In order to prove this theorem, it suffices to show that

R2(2x + qy = 2z, 2x + sy = 2z) ≤ min{qs + q + 2s + 1, qs + 2q + 1},

where q, s are odd integers and q > s ≥ 3. Let ∆ be a 2-coloring of [1,min{qs+q+2s+1, qs+2q+1}]
using the colors red and blue. Without loss of generality, we assume, for contradiction, that there is
no blue solution to 2x + qy = 2z and no red solution to 2x + sy = 2z. We break the argument into 4
cases;
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Case 1: ∆(2) = 0 and ∆(s) = 0.
∆(2) = 0 and ∆(s) = 0 imply that ∆(q + s) = 1, otherwise (s, 2, q + s) is a blue solution to
2x+qy = 2z. Since ∆(q+s) = 1, we must have ∆(q+s+ (q+s)s

2 ) = 0 or else (q+s, q+s, q+s+ (q+s)s
2 )

is a red solution to 2x+ sy = 2z. Now, ∆(q+ s+ (q+s)s
2 ) = 0 and ∆(2) = 0, so ∆(2q+ s+ (q+s)s

2 ) = 1,
otherwise (q + s + (q+s)s

2 , 2, 2q + s + (q+s)s
2 ) is a blue solution to 2x + qy = 2z. Note that

2q + s +
(q + s)s

2
≤ min{qs + q + 2s + 1, qs + 2q + 1}

since q − s ≥ 2. ∆(2q + s + (q+s)s
2 ) = 1 and ∆(q + s) = 1 imply that ∆(2q + s) = 0, otherwise

(2q+ s, s+ q, 2q+ s+ (q+s)s
2 ) is a red solution to 2x+ sy = 2z. Since ∆(2q+ s) = 0 and ∆(s) = 0,

we must have ∆(4) = 1 or else (s, 4, 2q + s) is a blue solution to 2x + qy = 2z. If ∆(q + 3s) = 1,
then (q + s, 4, q + 3s) is a red solution to 2x + sy = 2z, so we may assume that ∆(q + 3s) = 0. If
∆(3s) = 0, then (3s, 2, q+3s) is a blue solution to 2x+qy = 2z, so we may assume that ∆(3s) = 1.
Now, ∆(3s) = 1 and ∆(4) = 1, we must have ∆(5s) = 0 or else (3s, 4, 5s) is a red solution to
2x + sy = 2z. ∆(5s) = 0 and ∆(2) = 0, imply that ∆(q + 5s) = 1, otherwise (5s, 2, q + 5s) is a
blue solution to 2x + qy = 2z. Since ∆(q + 5s) = 1 and ∆(q + s) = 1, we must have ∆(8) = 0
or else (q + s, 8, q + 5s) is a red solution to 2x + sy = 2z. If ∆(4q + s) = 0, then (s, 8, 4q + s)
is a blue solution to 2x + qy = 2z, so we may assume that ∆(4q + s) = 1. If ∆(4q − s) = 1,
then (4q − s, 4, 4q + s) is a red solution to 2x + sy = 2z, so we may assume that ∆(4q − s) = 0.
Since ∆(4q − s) = 0 and ∆(2) = 0, we must have ∆(3q − s) = 1 or else (3q − s, 2, 4q − s) is a
blue solution to 2x + qy = 2z. ∆(3q − s) = 1 and ∆(4) = 1 imply that ∆(3q + s) = 0, otherwise
(3q − s, 4, 3q + s) is a red solution to 2x + sy = 2z. Now we have ∆(3q + s) = 0, ∆(2) = 0
and ∆(2q + s) = 0, and then (2q + s, 2, 3q + s) is a blue solution to 2x + qy = 2z, which is a
contradiction.

Case 2: ∆(2) = 0 and ∆(s) = 1.
If ∆(2) = ∆(4) = · · · = ∆(2q + 2) = 0 and then (2, 4, 2q + 2) is a blue solution to 2x + qy = 2z,
which is a contradiction. So we can assume that k (1 ≤ k < q + 1) is the least number such that
∆(2) = · · · = ∆(2k) = 0 and ∆(2k + 2) = 1.

Subcase 1: k ≤ min{ (s−1)q+1
s , q − 2}.

∆(2k + 2) = 1 and ∆(s) = 1 implies that ∆(ks + 2s) = 0, otherwise (s, 2k + 2, ks + 2s) is a red
solution to 2x+ sy = 2z. Since ∆(ks+ 2s) = 0 and ∆(2) = 0, we must have ∆(q+ ks+ 2s) = 1 or
else (ks+2s, 2, q+ks+2s) is a blue solution to 2x+qy = 2z. ∆(q+ks+2s) = 1 and ∆(2k+2) = 1
imply that ∆(q + s) = 0, otherwise (q + s, 2k + 2, q + ks + 2s) is a red solution to 2x + sy = 2z.
If ∆(2q + s) = 0, then (q + s, 2, 2q + s) is a blue solution to 2x + qy = 2z, so we may assume
that ∆(2q + s) = 1. If ∆(2q + ks + 2s) = 1 then (2q + s, 2k + 2, 2q + ks + 2s) is a red solution to
2x + sy = 2z, so we may assume that ∆(2q + ks + 2s) = 0. Note that

2q + ks + 2s ≤ min{qs + q + 2s + 1, qs + 2q + 1}

since k ≤ min{ (s−1)q+1
s , q − 2}. Since ∆(2q + ks + 2s) = 0 and ∆(ks + 2s) = 0, we must have

∆(4) = 1, otherwise (ks + 2s, 4, ks + 2s + 2q) is a blue solution to 2x + qy = 2z. ∆(4) = 1 and
∆(2q+ s) = 1 imply that ∆(2q− s) = 0 or else (2q− s, 4, 2q+ s) is a red solution to 2x+ sy = 2z.
If ∆(3q − s) = 0, then (2q − s, 2, 3q − s) is a blue solution to 2x + qy = 2z, so we may assume
that ∆(3q − s) = 1. Since ∆(3q − s) = 1 and ∆(4) = 1, we must have ∆(3q + s) = 0 or else
(3q − s, 4, 3q + s) is a red solution to 2x + sy = 2z. If ∆(4q + s) = 0, then (3q + s, 2, 4q + s) is
a blue solution to 2x + qy = 2z, so we may assume that ∆(4q + s) = 1. If ∆(4q − s) = 1, then
(4q− s, 4, 4q+ s) is a red solution to 2x+ sy = 2z, so we may assume that ∆(4q− s) = 0. ∆(s) = 1
and ∆(4) = 1 imply that ∆(3s) = 0 or else (s, 4, 3s) is a red solution to 2x + sy = 2z. Since
∆(3s) = 0 and ∆(2) = 0, we must have ∆(q + 3s) = 1 or else (3s, 2, q + 3s) is a blue solution to
2x + qy = 2z. ∆(4) = 1 and ∆(q + 3s) = 1 imply that ∆(q + 5s) = 0, otherwise (q + 3s, 4, q + 5s)
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is a red solution to 2x + sy = 2z. ∆(q + 5s) = 0 and ∆(2) = 0 imply that ∆(5s) = 1, otherwise
(5s, 2, q + 5s) is a blue solution to 2x + qy = 2z. Since ∆(5s) = 1 and ∆(s) = 1, we must have
∆(8) = 0 or else (s, 8, 5s) is a red solution to 2x + sy = 2z. When s = 3, by the above proof, we
have ∆(4q + s) = ∆(4q + 3) = 1 and ∆(q + 3s) = ∆(q + 9) = 1, then ∆(2q − 4) = 0, otherwise
(q + 9, 2q − 4, 4q + 3) is a red solution to 2x + 3y = 2z. ∆(2) = 0 implies that ∆(q + 2) = 1
or else (2, 2, q + 2) is a blue solution to 2x + qy = 2z. Since ∆(q + 2) = 1 and ∆(4) = 1, we
must have ∆(q − 4) = 0, otherwise (q − 4, 4, q + 2) is a red solution to 2x + 3y = 2z. Now we
have ∆(2q − 4) = 0, ∆(q − 4) = 0 and ∆(2) = 0, and then (q − 4, 2, 2q − 4) is a blue solution to
2x + qy = 2z, which is a contradiction. When s ≥ 5, since ∆(8) = 0 and ∆(q + s) = 0, we must
have ∆(5q + s) = 1, otherwise (q + s, 8, 5q + s) is a blue solution to 2x + qy = 2z. Note that

5q + s ≤ min{qs + q + 2s + 1, qs + 2q + 1},

since s ≥ 5. ∆(5q + s) = 1 and ∆(4) = 1 imply that ∆(5q − s) = 0 or else (5q − s, 4, 5q + s) is a
red solution to 2x + sy = 2z. Now we have ∆(5q − s) = 0, ∆(2) = 0 and ∆(4q − s) = 0, and then
(4q − s, 2, 5q − s) is a blue solution to 2z + qy = 2z, which is a contradiction.

Subcase 2: min{ (s−1)q+1
s , q − 2} < k ≤ q.

It is easy to verify that

q + 1 ≤ 2 min
{

(s − 1)q + 1
s

, q − 2
}

and

s + 1 < 2s ≤ 2 min
{

(s − 1)q + 1
s

, q − 2
}
.

Thus, q+ 1 ≤ 2k and s+ 1 < 2s ≤ 2k, and we have ∆(s+ 1) = ∆(2s) = ∆(q+ 1) = 0. Obviously,
k ≥ 2 and ∆(2) = ∆(4) = 0, then ∆(2q + 2) = 1, otherwise (2, 4, 2q + 2) is a blue solution to
2x + qy = 2z. Since ∆(q + 1) = 0 and ∆(2) = 0, we must have ∆(1) = 1 or else (1, 2, q + 1) is a
blue solution to 2x+qy = 2z. ∆(1) = 1 and ∆(2q+2) = 1 imply that ∆(qs+ s+1) = 0, otherwise
(1, 2q+ 2, qs+ s+ 1) is a red solution to 2x+ sy = 2z. Now we have ∆(qs+ s+ 1) = 0, ∆(2s) = 0
and ∆(s + 1) = 0, and then (s + 1, 2s, qs + s + 1) is a blue solution to 2x + qy = 2z, which is a
contradiction.

Case 3: ∆(2) = 1 and ∆(s) = 0.
If ∆(2) = ∆(4) = · · · = ∆(2s + 2) = 1, then (2, 4, 2s + 2) is a red solution to 2x + sy = 2z,
which is a contradiction. So we can assume that l (1 ≤ l < s + 1) is the least integer such that
∆(2) = · · · = ∆(2l) = 1 and ∆(2l + 2) = 0.

Subcase 1: l ≤ s − 1.
∆(2) = 1 implies that ∆(s + 2) = 0, otherwise (2, 2, s + 2) is a red solution to 2x + sy = 2z. If
∆((l+1)q+s+2) = 0, then (s+2, 2l+2, (l+1)q+s+2) is a blue solution to 2x+qy = 2z, so we may
assume that ∆((l+1)q+s+2) = 1. If ∆((l+1)q+2s+2) = 1, then ((l+1)q+s+2, 2, (l+1)q+2s+2)
is a red solution to 2x + sy = 2z, so we may assume that ∆((l + 1)q + 2s + 2) = 0. Note that

(l + 1)q + 2s + 2 ≤ min{qs + q + 2s + 1, qs + 2q + 1}

since l ≤ s − 1. ∆((l + 1)q + 2s + 2) = 0 and ∆(2l + 2) = 0 imply that ∆(2s + 2) = 1, otherwise
(2s + 2, 2l + 2, (l + 1)q + 2s + 2) is a blue solution to 2x + qy = 2z. Since ∆(2s + 2) = 1 and
∆(2) = 1, we must have ∆(4) = 0 or else (2, 4, 2s + 2) is a red solution to 2x + sy = 2z. ∆(s) = 0
and ∆(4) = 0 imply that ∆(2q+ s) = 1, otherwise (s, 4, 2q+ s) is a blue solution to 2x+ qy = 2z.
If ∆(2q+2s) = 1, then (2q+ s, 2, 2q+2s) is a red solution to 2x+ sy = 2z, so we may assume that
∆(2q + 2s) = 0. If ∆(2s) = 0, then (2s, 4, 2q + 2s) is a blue solution to 2x + qy = 2z, so we may
assume that ∆(2s) = 1. Now, ∆(2s) = 1 and ∆(2) = 1, we must have ∆(3s) = 0 or else (2s, 2, 3s)
is a red solution to 2x + sy = 2z. If ∆(3s + 2q) = 0, then (3s, 4, 3s + 2q) is a blue solution to
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2x + qy = 2z, so we may assume that ∆(3s + 2q) = 1. Since ∆(3s + 2q) = 1 and ∆(2) = 1,
we must have ∆(2q + 4s) = 0 or else (3s + 2q, 2, 4s + 2q) is a red solution to 2x + sy = 2z.
Since ∆(2q + 4s) = 0 and ∆(4) = 0, we must have ∆(4s) = 1, otherwise (4s, 4, 2q + 4s) is a blue
solution to 2x + qy = 2z. ∆(4s) = 1 and ∆(2) = 1 imply that ∆(5s) = 0, otherwise (4s, 2, 5s)
is a red solution to 2x + sy = 2z. If ∆(5s + 2q) = 0, then (5s, 4, 5s + 2q) is a blue solution to
2x + qy = 2z, so we may assume that ∆(5s + 2q) = 1. When q = 5, then s = 3, by the above
proof, we have ∆(2s + 2) = ∆(8) = 1 and ∆(2) = 1, then ∆(14) = 0, otherwise (2, 8, 14) is a
red solution to 2x + 3y = 2z. Now we have ∆(14) = 0 and ∆(4) = 0, so (4, 4, 14) is a blue
solution to 2x + 5y = 2z, which is a contradiction. When q > 5 and s = 3, ∆(4) = 0 implies that
∆(2q+4) = 1, otherwise (4, 4, 2q+4) is a blue solution to 2x+qy = 2z. Since ∆(2q+4) = 1 and
∆(2) = 1, we must have ∆(2q+ 1) = 0 or else (2q+ 1, 2, 2q+ 4) is a red solution to 2x+ 3y = 2z.
If ∆(4q + 1) = 0, then (2q + 1, 4, 4q + 1) is a blue solution to 2x + qy = 2z, so we may assume
that ∆(4q + 1) = 1. If ∆(4q + 4) = 1, then (4q + 1, 2, 4q + 4) is a red solution to 2x + 3y = 2z,
so we may assume that ∆(4q + 4) = 0. Now we have ∆(8) = 0, ∆(4) = 0 and ∆(4q + 4) = 0, so
(4, 8, 4q + 4) is a blue solution to 2x + qy = 2z, which is a contradiction. When q > s ≥ 5, we
see that

max{2q + 6s, 6q + s} ≤ min{qs + q + 2s + 1, qs + 2q + 1}.

Since ∆(5s + 2q) = 1 and ∆(2) = 1, then ∆(2q + 6s) = 0 or else (2q + 5s, 2, 2q + 6s) is a red
solution to 2x + sy = 2z. If ∆(6s) = 1, then (6s, 4, 2q + 6s) is a blue solution to 2x + qy = 2z.
Since ∆(6s) = 1 and ∆(2s) = 1, we must have ∆(8) = 0, otherwise (2s, 8, 6s) is a red solution to
2x + sy = 2z. ∆(2q + s) = 1 and ∆(2) = 1 imply that ∆(2q) = 0 or else (2q, 2, 2q + s) is a red
solution to 2x + sy = 2z. Since ∆(2q) = 0 and ∆(4) = 0, then ∆(4q) = 1, otherwise (2q, 4, 4q)
is a blue solution to 2x + qy = 2z. If ∆(4q + s) = 1, then (4q, 2, 4q + s) is a red solution to
2x + sy = 2z, so we may assume that ∆(4q + s) = 0. If ∆(6q + s) = 0, then (4q + s, 4, 6q + s)
is a blue solution to 2x + qy = 2z. Since ∆(6q + s) = 1 and ∆(2) = 1, we must have ∆(6q) = 0,
otherwise (6q, 2, 6q+ s) is a red solution to 2x+ sy = 2z. Now we have ∆(2q) = 0, ∆(8) = 0 and
∆(6q) = 0, so (2q, 8, 6q) is a blue solution to 2x + qy = 2z, which is a contradiction.

Subcase 2: l = s.
We have ∆(2) = ∆(4) = · · · = ∆(2s) = 1 and ∆(2s + 2) = 0. Note that 2|(s + 1) and s + 1 < 2s,
thus, ∆(s + 1) = 1. Since ∆(2) = 1 and ∆(s + 1) = 1, we must have ∆(2s + 1) = 0 and ∆(1) = 0
or else (s + 1, 2, 2s + 1) and (1, 2, s + 1) are red solutions to 2x + sy = 2z. When 2s ≤ q, since
∆(2s+1) = 0 and ∆(2s+2) = 0, then ∆(qs+q+2s+1) = 1, otherwise (2s+1, 2s+2, qs+q+2s+1)
is a blue solution to 2x+qy = 2z. If ∆(qs+q+1) = 0, then (1, 2s+2, qs+q+1) is a blue solution
to 2x + qy = 2z, so we may assume that ∆(qs + q + 1) = 1. Now we have ∆(qs + q + 1) = 1,
∆(4) = 1 and ∆(qs + q + 2s + 1) = 1, thus (qs + q + 1, 4, qs + q + 2s + 1) is a red solution to
2x + sy = 2z, which is a contradiction. When 2s ≥ q + 1, note that 2|(q + 1), so ∆(q + 1) = 1.
If ∆(q + 1 − s) = 1, then (q + 1 − s, 2, q + 1) is a red solution to 2x + sy = 2z, so we may
assume that ∆(q + 1 − s) = 0. Since ∆(q + 1 − s) = 0 and ∆(2s + 2) = 0, we must have
∆(qs+ 2q+ 1− s) = 1 or else (q+ 1− s, 2s+ 2, qs+ 2q+ 1− s) is a blue solution to 2x+ qy = 2z.
∆(4) = 1 implies that ∆(2s + 4) = 0, otherwise (4, 4, 2s + 4) is a red solution to 2x + sy = 2z. If
∆(qs+2q+1) = 0, then (1, 2s+4, qs+2q+1) is a blue solution to 2x+qy = qz, so we may assume
that ∆(qs + 2q + 1) = 1. Now we have ∆(qs + 2q + 1) = 1, ∆(2) = 1 and ∆(qs + 2q + 1 − s) = 1,
so (qs + 2q + 1 − s, 2, qs + 2q + 1) is a red solution to 2x + sy = 2z, which is a contradiction.

Case 4: ∆(2) = 1 and ∆(s) = 1.
Since ∆(2) = ∆(s) = 1, we must have ∆(s+2) = 0 and ∆(2s) = 0 or else (2, 2, s+2) and (s, 2, 2s)
are red solutions to 2x + sy = 2z. If ∆(qs + s + 2) = 0, then (s + 2, 2s, qs + s + 2) is a blue
solution to 2x + qy = 2z, so we may assume that ∆(qs + s + 2) = 1. If ∆(qs + 2s + 2) = 1,
then (qs + s + 2, 2, qs + 2s + 2) is a red solution to 2x + sy = 2z, so we may assume that
∆(qs + 2s + 2) = 0. Since ∆(qs + 2s + 2) = 0 and ∆(2s) = 0, we must have ∆(2s + 2) = 1,
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otherwise (2s + 2, 2s, qs + 2s + 2) is a blue solution to 2x + qy = 2z. ∆(2s + 2) = 1 and ∆(2) = 1
imply that ∆(4) = 0, otherwise (2, 4, 2s+2) is a red solution to 2x+sy = 2z. ∆(4) = 0 implies that
∆(2q+4) = 1, otherwise (4, 4, 2q+4) is a blue solution to 2x+qy = 2z. If ∆(2q+4− s) = 1, then
(2q+ 4− s, 2, 2q+ 4) is a red solution to 2x+ sy = 2z, so we may assume that ∆(2q+ 4− s) = 0.
If ∆(4q+ 4− s) = 0, then (2q+ 4− s, 4, 4q+ 4− s) is a blue solution to 2x+ qy = 2z, so we may
assume that ∆(4q + 4 − s) = 1. If ∆(4q + 4) = 1, then (4q + 4 − s, 2, 4q + 4) is a red solution to
2x + sy = 2z, so we may assume that ∆(4q+ 4) = 0. Since ∆(4q+ 4) = 0 and ∆(4) = 0, we must
have ∆(8) = 1, otherwise (4, 8, 4q + 4) is a blue solution to 2x + qy = 2z. ∆(8) = 1 and ∆(s) = 1
imply that ∆(5s) = 0 or else (s, 8, 5s) is a red solution to 2x + sy = 2z. Since ∆(4) = 0 and
∆(5s) = 0, we must have ∆(2q+5s) = 1 or else (5s, 4, 2q+5s) is a blue solution to 2x+qy = 2z.
Note that

min{qs + q + 2s + 1, qs + 2q + 1} ≥ 2q + 5s

since s ≥ 3 and q ≥ 5. ∆(2q + 5s) = 1 and ∆(2) = 1 imply that ∆(2q + 4s) = 0, otherwise
(2q + 4s, 2, 2q + 5s) is a red solution to 2x + sy = 2z. If ∆(4s) = 0, then (4s, 4, 2q + 4s) is a
blue solution to 2x + qy = 2z, so we may assume that ∆(4s) = 1. If ∆(3s) = 1, then (3s, 2, 4s)
is a red solution to 2x + sy = 2z, so we may assume that ∆(3s) = 0. If ∆(2q + 3s) = 0, then
(3s, 4, 2q + 3s) is a blue solution to 2x + qy = 2z, so we may assume that ∆(2q + 3s) = 1. If
∆(2q + 2s) = 1, then (2q + 2s, 2, 2q + 3s) is a red solution to 2x + sy = 2z, so we may assume
that ∆(2q + 2s) = 0. Now we have ∆(2s) = 0, ∆(4) = 0 and ∆(2q + 2s) = 0, so (2s, 4, 2q + 2s) is
a blue solution to 2x + qy = 2z, which is a contradiction and the proof is complete.

□

4. Proof of Theorem 2

Proof. It follows from Lemma 2 that when q ≥ 3 is an odd integer,

R2(2x + qy = 2z, 2x + y = 2z) ≥ 2q + 4.

In order to prove this theorem, it suffices to show that when q ≥ 3 is an odd integer,

R2(2x + qy = 2z, 2x + y = 2z) ≤ 2q + 4.

Let ∆ be a 2-coloring of [1, 2q + 4] using the colors red and blue. Without loss of generality, we
assume, for contradiction, that there is no blue solution to 2x + qy = 2z and no red solution to
2x + y = 2z. We break our proof into 3 cases.

Case 1: ∆(2) = 1.
Since ∆(2) = 1, then the solution (2, 4, 4) to 2x+ y = 2z forces ∆(4) = 0 and the solution (2, 2, 3)
to 2x + y = 2z forces ∆(3) = 0. Since ∆(4) = 0, then the solution (4, 4, 2q + 4) to 2x + qy = 2z
forces ∆(2q + 4) = 1. Since ∆(2) = 1 and ∆(2q + 4) = 1, then the solution (2q + 3, 2, 2q + 4) to
2x+ y = 2z forces ∆(2q+ 3) = 0. Now we have ∆(3) = ∆(4) = ∆(2q+ 3) = 0, so (3, 4, 2q+ 3) is
a blue solution to 2x + qy = 2z, which is a contradiction.

Case 2: ∆(2) = 0 and ∆(4) = 1.
∆(4) = 1 implies that ∆(6) = 0 or else (4, 4, 6) is a red solution to 2x + y = 2z. Since ∆(6) = 0
and ∆(2) = 0, we must have ∆(q+6) = 1, otherwise (6, 2, q+6) is a blue solution to 2x+qy = 2z.
If ∆(2q + 4) = 1, then (4, 2q + 4, q + 6) is a red solution to 2x + y = 2z, so we may assume that
∆(2q+4) = 0. If ∆(q+4) = 0, then (q+4, 2, 2q+4) is a blue solution to 2x+qy = 2z, so we may
assume that ∆(q+ 4) = 1. If ∆(q+ 2) = 1, then (q+ 2, 4, q+ 4) is a red solution to 2x+ y = 2z, so
we have ∆(q+ 2) = 0. Now we have ∆(2) = 0 and ∆(q+ 2) = 0, so (2, 2, q+ 2) is a blue solution
to 2x + qy = 2z, which is a contradiction.
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Case 3: ∆(2) = ∆(4) = 0.
∆(2) = 0 implies that ∆(q + 2) = 1, otherwise (2, 2, q + 2) is a blue solution to 2x + qy = 2z.
If ∆(2q + 2) = 0, then (2, 4, 2q + 2) is a blue solution to 2x + qy = 2z, so we may assume that
∆(2q + 2) = 1. Since ∆(q + 2) = 1 and ∆(2q + 2) = 1, we must have ∆(1) = 0, otherwise
(1, 2q + 2, q + 2) is a red solution to 2x + y = 2z. ∆(1) = 0 and ∆(2) = 0 imply that ∆(q + 1) = 1,
otherwise (1, 2, q + 1) is a blue solution to 2x + qy = 2z. Now we have ∆(2q + 2) = 1 and
∆(q + 1) = 1, so (q + 1, 2q + 2, 2q + 2) is a red solution to 2x + y = 2z, which is a contradiction
and this completes the proof.
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