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Abstract: A good set on k vertices is a vertex induced subgraph of the hypercube Qn that has the
maximum number of edges. The long-lasting problem of characterizing graphs that are cover graphs
of lattices is NP-complete. This paper constructs and studies lattice theoretic properties of a class of
lattices whose cover graphs are isomorphic to good sets.
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1. Introduction

The n-dimensional hypercube, Qn, is a graph in which a binary n-tuple is assigned to every vertex,
and any two vertices are adjacent if they differ in exactly one coordinate. Qn is an n-regular, n-
connected, bipartite, and vertex transitive graph on 2n vertices. Moreover, Qn can be viewed as a
lattice. It is the direct product of 2-element chain n times. Its cover graph is the same as Qn.

Hart [1] defined good set as the vertex induced subgraph of hypercube having the maximum num-
ber of edges on the given set of vertices. It is well known that hypercube is one of the most popular
topologies for the interconnection of computing nodes in multiprocessor systems. Nevertheless, as
the number of nodes in such systems must be a power of 2, there are significant gaps in the sizes of
the systems that can be built. To overcome this restriction, Katseff [2] proposed incomplete hyper-
cube that can be viewed as a hypercube that operates in a degraded manner after some nodes become
faulty. Interestingly, incomplete hypercubes are good sets only. Compact hypercubes [3], composite
hypercubes [4] are some more synonyms of good sets. Tzeng [5] studied some structural properties,
while Sen et al. [6] proved some topological properties of good sets. Tapadia and Waphare proved
graph theoretic properties like good sets are partial cubes, Hamiltonian, bipancyclic, etc. [7]. One can
refer for more properties of good sets in [8–12].

We look at the lattice theoretic aspect of a good set in view of the following classic problem in
lattice theory.
Open Problem: Which graphs are the cover graphs of finite posets/lattices?

This problem was first posed by Ore [13] for partially ordered sets and then restated by Rival [14]
for ordered sets. Cover graphs of finite posets have already been characterised. However, the problem
is NP-complete for lattices [15]. In this paper, we construct a lattice called upper good lattice in Qn,

whose underlying cover graph is isomorphic to the good set. We also study lattice theoretic properties
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of the upper good lattice.

2. Preliminaries

A partially ordered set(poset) (L;⪯) consists of a nonempty set L and a binary relation ⪯ on L,
which is reflexive, antisymmetric and transitive. If a covers b, then we use notation b ≺ a. A poset
(L;⪯) is a lattice if sup{a, b} and inf{a, b} exist for all a, b ∈ L. Also, if (L;⪯) is a lattice, so is its
dual (L;⪰). For a lattice (L;⪯) and M ⊆ L, (M;⪯) is a sublattice of (L;⪯) if a, b ∈ M implies that
sup{a, b} and inf{a, b} lies in M. A poset (L;⪯) is a join-semilattice if sup{a, b} exists for all a, b ∈ L.
If (L;⪯) is a poset and M ⊆ L such that a, b ∈ M implies that sup{a, b} ∈ M, then M is called a
join-subsemilattice. In the similar manner, we define meet-semilattice and meet-subsemilattice. Two
lattices (L1;⪯1) and (L2;⪯2) are said to be isomorphic if there exists a bijection ϕ : L1 → L2 such that
a ⪯1 b in L1 implies that ϕ(a) ⪯2 ϕ(b) in L2. A lattice that is isomorphic to its dual is called a self
dual lattice. For a, b ∈ L, we use notations a ∨ b = sup{a, b} and a ∧ b = inf{a, b} and we call ∨, the
join and ∧, the meet. In a bounded lattice (L;≤), a is a complement of b if and only if a ∧ b = 0 and
a ∨ b = 1.

If the vertices of Qn are denoted as 0, 1, · · · , 2n−1 in the usual way, that is, two vertices are adjacent
if and only if their corresponding numbers in the binary representation differ in exactly one digit, then
{0, 1, · · · , k−1} is a good set of k vertices, denoted by Gk. For every vertex i, the corresponding binary

n-tuple (in−1, in−2, . . . , i1, i0) is such that i =
n−1∑
j=0

i j 2 j, where 0 ≤ i ≤ 2n − 1.

Qn can be viewed as a set of all binary n-tuples equipped with three operations meet (∧), join (∨)
and complement (c) as follows.

For two vertices a = (an−1, an−2, · · · , a0), b = (bn−1, bn−2, · · · , b0) of Qn we define
a ∧ b = (an−1 ∧ bn−1, an−2 ∧ bn−2, · · · , a0 ∧ b0), a ∨ b = (an−1 ∨ bn−1, an−2 ∨ bn−2, · · · , a0 ∨ b0),
and ac = (ac

n−1, a
c
n−2, · · · , a

c
0), where 0c = 1, 1c = 0 and meet-table, join-table are described as follows:

∧ 0 1
0 0 0
1 0 1

∨ 0 1
0 0 1
1 1 1

For an element a = (an−1, an−2, · · · , a0) ∈ Qn, we define support of a as supp(a) = { j : a j = 1}.
Then, a =

∑
j∈supp(a)

2 j. So for a, b ∈ V(Qn),

(i) a ⪯ b if and only if supp(a) ⊆ supp(b).
(ii) Similarly, a ⪯̸ b if and only if supp(a) ∩ supp(b) = ∅.

(iii) If supp(a) ∩ supp(b) , ∅, a ∧ b =
∑

j∈supp(a)∩supp(b)

2 j

(iv) a ∨ b =
∑

j∈supp(a)∪supp(b)

2 j for a, b ∈ V(Qn)

For 0 < m ≤ 2n, n ≥ 0, we denote by S m the subposet with m elements {0, 1, · · · ,m − 1} in Qn

and S c
m = {0

c, 1c, · · · , (m − 1)c}, the set of complements in Qn of the elements in S m. It can be easily
observed that S c

m is a subposet of Qn.

In the following figure, we have drawn S m in Q3.
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3. Properties of the poset S m, m ≤ 2n

Now, we give some useful lemmas.

Lemma 1. The underlying graph of S m is isomorphic to a good set Gm in Qn.

Proof. Let H be the underlying graph of an upper good lattice S m. Let a ∈ H. Define a map ϕ : H →
Gm which maps a ∈ H to ϕ(a) = a. Clearly, ϕ is a bijection. It is easy to observe that a is adjacent to
b in H if and only if ϕ(a) is adjacent to ϕ(b) in Gm. This completes the proof. □

Lemma 2. All lower bounds of every element of S m in Qn exist in S m.

Proof. If m = 2t for 1 ≤ t ≤ n, then S m = Qt which is a sublattice of Qn. Therefore, the result is true
when m is a power of 2. So, suppose that m is not a power of 2. Note that S m is a set of m consecutive
nonnegative integers. So, for any a ∈ S m, all previous nonnegative integers 0, 1, · · · , a − 1 lie in S m.
In other words, for any a ∈ S m, all elements b with supp(b) ⊆ supp(a) lie in S m. This proves the
result. □

In the similar manner, the following lemma can be proved.

Lemma 3. All upper bounds of every element of S c
m in Qn exist in S c

m.

Lemma 4. S m is a cover preserving meet subsemilattice of Qn.

Proof. Let a, b ∈ S m. Then, a ∧ b ⪯ a and a ∧ b ⪯ b. By using Lemma 2, all lower bounds of a and b
in Qn exist in S m also. So, a ∧ b ∈ S m. Therefore, S m is a meet subsemilattice.
Suppose b ≺ a in S m. Assume that there exists d ∈ Qn such that b ≺ d ≺ a. Then, d ∈ S m, by Lemma
2. It implies that b ⊀ a in S m, a contradiction. Therefore, S m is a cover preserving meet subsemilattice
of Qn. □

Corollary 1. S c
m is a cover preserving join subsemilattice of Qn.

Proof. Since Qn is a bounded distributive lattice, an element in Qn can have only one complement.
Let a, b ∈ S c

m. Then, ac, bc lie in S m. By using Lemma 4, ac ∧ bc lies in S m. But, ac ∧ bc = (a ∨ b)c by
using De Morgan’s identities. Therefore, a ∨ b lies in S c

m.
Since ac ∧ bc in S m is same as ac ∧ bc in Qn, a ∨ b in S c

m is same as a ∨ b in Qn. Therefore, S c
m is join

subsemilattice of Qn.
S c

m is cover preserving by the similar arguments the proof of the above lemma. □
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Here, we give a necessary and sufficient condition for S m to be a lattice.

Lemma 5. S m is a lattice if and only if m = 2t for some 0 ≤ t ≤ n.

Proof. Let m = 2t for some 0 ≤ t ≤ n. Since, S m is cover preserving and S m = Qt, it is a lattice.
Conversely, assume that m is not a power of 2, that is, m = 2t + l for some 0 ≤ t ≤ n and 0 < l < 2t.
Consider the binary representation of l − 1, say (ln−1, ln−2, · · · , l0). Since, l − 1 < 2t − 1, li = 0
for all t ≤ i ≤ n − 1 and there is at least one 0 ≤ j ≤ t − 1 such that l j = 0. Let the binary
representation of m − 1 be (mn−1,mn−2, · · · ,m0). Since m − 1 = 2t + (l − 1), mt = 1 and mi = li

for all i , t, 0 ≤ i ≤ n − 1. Let p be an element with the binary representation (pn−1, pn−2, · · · , p0)
such that pi = li for all i , j, 0 ≤ i ≤ n − 1 and p j = 1. Since, p < 2t, p lies in S m. Clearly,
p = 2 j + (l − 1). Now, (m − 1) ∨ p = (mn−1 ∨ pn−1,mn−2 ∨ pn−2, · · · ,m0 ∨ p0), where mi ∨ pi = 0 for
all t + 1 ≤ i ≤ n − 1, mt ∨ pt = 1, m j ∨ p j = 1 and mi ∨ pi = li for all i , j, 0 ≤ i ≤ t − 1. Thus,
(m − 1) ∨ p = 2t + 2 j + (l − 1) ≻ m − 1. It implies that for m − 1, p ∈ S m, (m − 1) ∨ p doesnot lie in
S m. Thus, if m is not a power of 2, then S m is not a lattice. □

4. An upper good lattice and its properties

Now, we define an upper good lattice in Qn.

Definition 1. The set Uk with k elements is an upper good lattice if (i) k = 1 or
(ii) Suppose that 2n−1 < k ≤ 2n, n > 0. Then, consider the hypercube Qn as union of two copies of
n− 1 dimensional cubes Q0

n−1,Q
1
n−1, such that V(Q0

n−1) = {0} ⊕ V(Qn−1) and V(Q1
n−1) = {1} ⊕ V(Qn−1).

Then, Uk is a subposet of Qn consisting of elements in Q0
n−1
⋃

S c
k−2n−1 .

Observation 1. For 2n−1 < k ≤ 2n, n > 0, Uk = Uk−1
⋃

(k−2n−1−1)c. Then, the binary representation
of (k − 2n−1 − 1)c has the form (1, dn−2, · · · , d0). It implies that (k − 2n−1 − 1)c covers exactly one
element (0, dn−2, · · · , d0) of Q0

n−1. Moreover, at least one element of Uk−1 which is not in Q0
n−1 covers

(k − 2n−1 − 1)c.

Dually, a lower good lattice Lk can be defined.
In the following figure, we have drawn upper good lattices in Q3. Corresponding binary represen-

tations of the elements are given in the round brackets.

0
U1

0

0c = 1 in Q1

U2 = Q1

0 = (0, 0)

1 = (0, 1)

0c = (1, 1) in Q2

U3

0 = (0, 0)

1 = (0, 1)

0c = (1, 1) in Q2

1c = (1, 0) in Q2

U4 = Q2

0 = (0, 0, 0)

1 = (0, 0, 1)

3 = (0, 1, 1)

2 = (0, 1, 0)

0c = (1, 1, 1) in Q3

U5

0 = (0, 0, 0)

1 = (0, 0, 1)

3 = (0, 1, 1)

2 = (0, 2, 0)

0c = (1, 1, 1) in Q3

1c = (1, 1, 0) in Q3

U6
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U8 = Q3

Here after, unless we mention specifically, Uk is an upper good lattice on k elements, where 2n−1 <

k ≤ 2n, for some n > 0.

Proposition 1. The underlying graph of an upper good lattice Uk is isomorphic to a good set Gk.

Proof. Let H be the underlying graph of an upper good lattice Uk. Let a ∈ H with a =
(an−1, an−2, · · · , a0). Define a map ϕ : H → Gk which maps a ∈ H to ϕ(a) = (an−1, ac

n−2, · · · , a
c
0).

Clearly, ϕ is a bijection. It is easy to observe that a is adjacent to b in H if and only if ϕ(a) is adjacent
to ϕ(b) in Gk. This completes the proof. □

Lemma 6. An upper good lattice Uk is cover preserving.

Proof. Let a, b ∈ Uk with the binary representations (an, an−1, · · · , a0), (bn, bn−1, · · · , b0), respectively.
If both a and b lie in either Q0

n−1 or S c
k−2n−1 , then a is covered by b in Uk if and only if a is covered by

b in Qn. So, let a ∈ Q0
n−1 and b ∈ S c

k−2n−1 . Then, an = 0 and bn = 1. Suppose that a is covered by b in
Qn. Since a is covered by b in Qn, ai = bi for 0 ≤ i ≤ n − 1. Thus, a is covered by b in Uk also.
Conversely, suppose that a is covered by b in Uk and not in Qn means there exists d ∈ Qn − Uk such
that a ≺ d ≺ b. Now, consider b′ whose binary representation is (0, bn−1, · · · , b0). Then, supp(b′) ⊆
supp(b) and |supp(b′)| + 1 = |supp(b)|. Since a ∈ Q0

n−1 and a ≺ b in Uk, supp(a) ⊆ supp(b′).
Because of our assumption a = b′. It implies that b′ is not covered by b in Qn, a contradiction. Thus,
a is covered by b in Qn also. □

Lemma 7. An upper good lattice Uk is a join subsemilattice of Qn.

Proof. Let a, b, c ∈ Uk such that a ⪯ c and b ⪯ c. To prove that a ∨ b ⪯ c.
Case 1: If a, b ∈ S c

k−2n−1 , then by using Lemma 1, a ∨ b ⪯ c.
Case 2: If a, b ∈ Q0

n−1, then a ∨ b ⪯ c.
Case 3: Let a ∈ Q0

n−1 and b ∈ S c
k−2n−1 . By using Lemma 2, a ∨ b ⪯ c. This completes the proof. □

Proposition 2. An upper good lattice Uk is a lattice.

Proof. By using Lemma 7, Uk is a join semilattice. Moreover, the zero element lies in Uk. Thus, it is
a lattice. □

Corollary 2. An upper good lattice Uk is an upper semimodular lattice.

Proof. Since Qn is modular, it satisfies the Upper and the Lower Covering Conditions. By using
Lemma 6 and Lemma 7, Uk is a cover preserving join subsemilattice of Qn. Therefore, Uk satisfies
the Upper Covering Condition. This proves the result. □

We know that U2t = Qt for t < n is a sublattice of Qn. Now, we give values of k other than power
two, for which Uk is a sublattice of Qn.

Proposition 3. Let 2n−1 < k < 2n, for some n > 0. An upper good lattice Uk is a sublattice of Qn if
and only if either k is a power of 2 or k = 2n−1 + 2m for some 0 ≤ m ≤ n − 1.
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Proof. If k is a power of 2, it can be proved easily proved that Uk is sublattice. Suppose that k =
2n−1 + 2m for some 0 ≤ m < n − 1. In this case, S c

k−2n−1 is Qc
m. By using Lemma 7, Uk is a join

subsemilattice of Qn. It is enough to prove that Uk is a meet subsemilattice of Qn. Let a, b ∈ Uk. If both
a and b lie in either Q0

n−1 or Qc
m, then a∧b exists in Uk which is same as a∧b in Qn. Now, suppose that

a ∈ Q0
n−1 and b ∈ Qc

m with their binary representations (0, an−1, · · · , a0), (1, bn−1, · · · , b0), respectively.
Let b′ ∈ Q0

n−1 be the corresponding element such that b′ ≺ b. Then, the binary representation of b′

is (0, bn−1, · · · , b0). Since a and b′ lie in Q0
n−1, a ∧ b′ exists in Q0

n−1 with the binary representation
(0, an−1 ∧ bn−1, · · · , a0 ∧ b0). Then, the binary representation of a ∧ b is (0 ∧ 1, an−1 ∧ bn−1, · · · , a0 ∧

b0) =(0, an−1∧bn−1, · · · , a0∧b0) which is an element of Q0
n−1. Therefore, a∧b exists in Uk and is same

as a ∧ b in Qn. Conversely, assume that k , 2n−1 + 2m for some 0 ≤ m < n − 1, that is, k = 2n−1 + l for
some l , 2m for 0 ≤ m ≤ n − 1. It means that k − 2n−1 is not a power of 2. By using Lemma 5, S k−2n−1

is not a sublattice of Qn. We can find two elements in S k−2n−1 , say p, q, such that p ∨ q doesnot exist
in S k−2n−1 . Since p, q ∈ S k−2n−1 , pc, qc lie in S c

k−2n−1 ⊆ Uk. But, pc ∧ qc = (p ∨ q)c. Since p ∨ q doesnot
exist in S k−2n−1 , (p∨ q)c doesnot exist in S c

k−2n−1 . Thus, Uk is not a sublattice of Qn if k , 2n−1 + 2m for
some 0 ≤ m < n − 1. □

Corollary 3. Let 2n−1 < k ≤ 2n, for some n > 0. An upper good lattice Uk is distributive if and only
if either k is a power of 2 or k = 2n−1 + 2m for some 0 ≤ m ≤ n − 1.

Proof. Note that Qn is distributive and a sublattice of a distributive lattice is distributive. By using
Proposition 3, if k is a power of 2 or k = 2n−1 + 2m for some 0 ≤ m ≤ n − 1, then Uk is a sublattice of
Qn and hence, distributive.
Conversely, assume that Uk is distributive. So, it is modular. Since Uk is a finite lattice, it is modular
if and only if it satisfies the upper covering condition (UCC) and the lower covering condition(LCC).
By using Corollary 2, Uk satisfies UCC. By using Proposition 3, Uk satisfies both UCC and LCC if
and only if k = 2n−1 + 2m for some 0 ≤ m ≤ n − 1. This completes the proof. □

By the similar arguments, one can easily prove the following corollary.

Corollary 4. An upper good lattice Uk is distributive if and only if it is modular.

We know that Qn is self dual for all values of n. Now, we find k different from power of 2, for
which Uk is self dual.

Proposition 4. Let 2n−1 < k < 2n, for some n > 1. An upper good lattice Uk is a selfdual lattice if and
only if either k is a power of 2 or k = 2n−1 + 2n−2.

Proof. If k is a power of 2, clearly Uk is self-dual. Let k = 2n−1 + 2n−2 for n ≥ 2. In this case,
S k−2n−1 = S 2n−2 = Qn−2. Let a ∈ Uk with a = (an−1, an−2, · · · , a0). Define a map ϕ : (Uk;⪯) →
(Uk;⪰) which maps a ∈ S 2n−2

⋃
S c

2n−2 to ϕ(a) = (ac
n−1, a

c
n−2, · · · , a

c
0) and a ∈ Q0

n−1 − S 2n−2 to ϕ(a) =
(an−1, an−2, ac

n−3, · · · , a
c
0). Clearly, ϕ is a bijection. Now, we prove that ϕ is a homomorphism. Let

a = (an−1, an−2, · · · , a0), b = (bn−1, bn−2, · · · , b0) ∈ Uk. Clearly, ai ⪯ bi if and only if ac
i ⪰ bc

i for all
0 ≤ i ≤ n − 1.
Case 1: Let a, b ∈ Q0

n−1 − S 2n−2 . Since ai ⪯ bi if and only if ac
i ⪰ bc

i for all 0 ≤ i ≤ n − 3, a ⪯ b if and
only if ϕ(a) ⪰ ϕ(b).
Case 2: Let a, b ∈ S 2n−2

⋃
S c

2n−2 . Then, a ⪯ b if and only if ac ⪰ bc.
Case 3: Let a ∈ Q0

n−1 − S 2n−2 and b ∈ S 2n−2 be such that b ⪯ a. Then, ϕ(a) = (an−1, an−2, ac
n−3, · · · , a

c
0),

ϕ(b) = (bc
n−1, b

c
n−2, · · · , b

c
0) and bi ⪯ ai for all 0 ≤ i ≤ n− 1. Since a ∈ Q0

n−1 − S 2n−2 , 2n−2 ≤ a ≤ 2n−1 − 1
which implies that an−1 = 0 and an−2 = 1. In the similar manner, b ∈ S 2n−2 implies that bn−1 = 0 and
bn−2 = 0. Thus, ϕ(a) = (0, 1, ac

n−3, · · · , a
c
0), ϕ(b) = (1, 1, bc

n−3, · · · , b
c
0) and bc

i ⪰ ac
i for all 0 ≤ i ≤ n− 3.

Therefore, ϕ(b) ⪰ ϕ(a).
Case 4: Let a ∈ Q0

n−1 − S 2n−2 and b ∈ S c
2n−2 be such that a ⪯ b. Then, ϕ(a) = (an−1, an−2, ac

n−3, · · · , a
c
0),

ϕ(b) = (bc
n−1, b

c
n−2, · · · , b

c
0) and ai ⪯ bi for all 0 ≤ i ≤ n− 1. Since a ∈ Q0

n−1 − S 2n−2 , 2n−2 ≤ a ≤ 2n−1 − 1
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which implies that an−1 = 0 and an−2 = 1. In the similar manner, b ∈ S c
2n−2 implies that bn−1 = 1 and

bn−2 = 1. Thus, ϕ(a) = (0, 1, ac
n−3, · · · , a

c
0), ϕ(b) = (0, 0, bc

n−3, · · · , b
c
0) and ac

i ⪰ bc
i for all 0 ≤ i ≤ n− 3.

Therefore, ϕ(a) ⪰ ϕ(b).
This proves that if k = 2n−1 + 2n−2 for n ≥ 2, then Uk is a selfdual lattice. Conversely, assume that Uk

is a self-dual lattice. By Proposition 7, Uk is a join subsemilattice. Since Uk is self-dual, it is meet
subsemilattice also. So, Uk is a sublattice. By Proposition 3, k = 2n−1 + 2m for some 0 ≤ m ≤ n − 1.
Note that there are n − 1 atoms in Uk. In S 2m = Qm, there are m atoms and the complement in Qn of
an atom in S 2m is the dual atom in Uk. So, the dual atoms in Uk are 2n−1 − 1 = (0, 1, 1, · · · , 1) and
complements of m atoms in S 2m . Thus, there are m + 1 dual atoms in Uk if k = 2n−1 + 2m for some
0 ≤ m ≤ n − 1. Since Uk is self dual, the number of atoms in Uk is same as the number of dual atoms
in it. Therefore, n − 1 = m + 1 which implies that m = n − 2. This completes the proof. □

5. Concluding remarks

In this paper, we studied lattice theoretic properties of upper good lattices. These properties follow
dually for lower good lattices. We strongly feel that the upper and lower good lattices are the only
lattices whose cover graphs are good sets. However, the following problem is open.

Problem 1. How many lattices are there whose cover graphs are good sets?
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