Article

Perfect Matching and Zero-Sum 3-Magic Labeling

Yuanlin Li ${ }^{1}$ and Haobai Wang ${ }^{2 *}$
${ }^{1}$ Department of Mathematics and Statistics, Brock University, St. Catharines L2S 3A1, Canada

* Correspondence: goldenmath7@gmail.com

Abstract

A mapping $l: E(G) \rightarrow A$, where A is an abelian group written additively, is called an edge labeling of the graph G. For every positive integer $h \geqslant 2$, a graph G is said to be zero-sum h-magic if there is an edge labeling l from $E(G)$ to $\mathbb{Z}_{h} \backslash\{0\}$ such that $s(v)=\sum_{u v \in E(G)} l(u v)=0$ for every vertex $v \in V(G)$. In 2014, Saieed Akbari, Farhad Rahmati and Sanaz Zare proved that if $r(r \neq 5)$ is odd and G is a 2-edge connected r-regular graph, G admits a zero-sum 3-magic labeling, and they also conjectured that every 5 -regular graph admits a zero-sum 3-magic. In this paper, we first prove that every 5 -regular graph with every edge contained in a triangle must have a perfect matching, and then we denote the edge set of the perfect maching by $E M$, and we make a labeling $l: E(E M) \rightarrow 2$, and $E(E(G)-E M) \rightarrow 1$. Thus we can easily see this labeling is a zero-sum 3-magic, confirming the above conjecture with a moderate condition.

Keywords: 5-regular graph; zero-sum 3-magic; perfect matching; Tutte's Condition Mathematics Subject Classification: 05C78; 05C70.

1. Introduction and Basic Definitions

Graphs G considered here are all connected, finite and undirected with multiple-edges without loops. Finding a matching in a bipartite graph can be treated as a network flow. The study of matchings in a bipartite graph can be traced back to the early of the 20th century. In 1935, P. Hall proved a well-known result (Hall's Theorem) which provided a necessary and sufficient condition for an X, Y-bipartite graph to have a matching that saturates $X[1,3.1 .11$ Theorem $]$. When $|X|=|Y|$, Hall's Theorem is the Marriage Theorem, proved originally by Frobenius in 1917 [2]. Later in 1947, Tutte [3] investigated the problem concerning the existence of a perfect matching in a general graph and provided a necessary and sufficient condition (Tutte's Condition) for such a graph to have a perfect matching [Lemma 1]. If every vertex in a graph has the same degree r then this graph is referred to as a r-regular graph. In case of regular graphs, Peterson [4] proved that every 3-regular graph without a bridge (an edge whose deletion disconnects the graph) has a perfect matching. In 1981, Naddef and Pulleyblank considered K-regular graphs with specified edge connectivity and showed some classical theorems and some new results concerning the existence of matchings can be proved by using polyhedral characterization of Edmonds [5]. It is not hard to see that a 5-regular 4-edge connected graph has a perfect matching (see [5] for detail). However very little is known about the existence of a perfect matching in a general 5-regular graph. In this paper we provide a sufficient condition for a 5 -regular graph to have a perfect matching and our main result is as follows.

Theorem 1. Every 5-regular graph in which each edge is contained in a triangle has a perfect matching.

Our motivation for this work is towards resolving a conjecture of Saieed Akbari, Farhad Rahmati and Sanaz Zare [6]. Before discussing this conjecture we require some more notation. A mapping $l: E(G) \rightarrow A$, where A is an abelian group written additively, is called an edge labeling of the graph G. Given an edge labeling l of the graph G, the symbol $s(v)$, which represents the sum of the labels of edges incident with v, is defined to be $s(v)=\sum_{u v \in E(G)} l(u v)$, where $v \in V(G)$. For every positive integer $h \geqslant 2$, a graph G is said to be zero-sum h-magic if there is an edge labeling from $E(G)$ into $\mathbb{Z}_{h} \backslash\{0\}$ such that $s(v)=0$ for every vertex $v \in V(G)$. The null set of a graph G, denoted by $N(G)$, is the set of all natural numbers $h \in \mathbb{N}$ such that G admits a zero-sum h-magic labeling.

Recently, Choi, Georges and Mauro [7] proved that if G is a 3-regular graph, then $N(G)$ is $\mathbb{N} \backslash\{2\}$ or $\mathbb{N} \backslash\{2,4\}$. Saieed Akbari, Farhad Rahmati and Sanaz Zare [6] extend this result by showing that if G is an r-regular graph, then for even $r(r>2), N(G)=\mathbb{N}$ and for odd $r(r \neq 5), \mathbb{N} \backslash\{2,4\} \subseteq N(G)$. Moreover, they proved that if $r(r \neq 5)$ is odd and G is a 2-edge connected r-regular graph, then $N(G)=\mathbb{N} \backslash\{2\}$, implying G admits a zero-sum 3-magic labeling. Thus they proposed the following conjecture.

Conjecture 1. Every 5-regular graph admits a zero-sum 3-magic labeling.
As a consequence of our main result, we obtain the following result, partially confirming Conjecture 1.

Corollary 1. Every 5-regular graph in which each edge is contained in a triangle admits a zero-sum 3-magic labeling.

By Theorem 1, every 5-regular graph in which each edge is contained in a triangle has a perfect matching. We denote the edge set of the perfect maching by $E M$, and we make a labeling $l: E(E M) \rightarrow 2$, and $E(E(G)-E M) \rightarrow 1$. It is easily to see this labeling is a zero-sum 3-magic. Thus every 5 -regular graph in which each edge is contained in a triangle admits a zero-sum 3-magic labeling, proving Corollary 1.

We next introduce some basic definitions which will be used in the proof of our main result. If X and Y are disjoint vertex sets of G with $x \in X$ and $y \in Y$, an edge $\{x, y\}$ is usually written as $x y$ (or $y x$), and such an edge $x y$ is also called an $X-Y$ edge. The set of all $X-Y$ edges in the edge set E is denoted by $E(X, Y)$. We denoted by $G(X, Y)$ the subgraph of G with vertex set $X \cup Y$ and the edge set $E(X, Y)$. An odd (or even) component of a graph is a connected component of odd (or even) number of vertices, and an odd (or even) vertex is a vertex with odd (or even) degree.

Definition 1. For a graph G, for any vertex set S of G, and any odd component Q of $G-S$, consider a connected component of $G(S, V(Q))$ which has odd number of edges in $E(S, V(Q))$. The vertices of this component induce a subgraph P in G, and we call it an odd component induced subgraph.

Definition 2. Let S be any vertex set and $v \in S$. The vertex v is called removable from S if $q\left(G-S^{\prime}\right)=$ $q(G-S)-1$, where $q(G-S)$ denotes the number of odd components of $G-S$ and $S^{\prime}=S-v$.

Definition 3. Let S be any vertex set, and let $v, w \in S$. The vertex pair (v, w) is called removable from S if $q\left(G-S^{\prime}\right)=q(G-S)-2$, where $S^{\prime}=S-v-w$.

Definition 4. Let S be any vertex set, Q be one of the odd components of $G-S$, we call Q the first type of odd component (with respect to S) if there is an odd component induced subgraph P, such that there exists a removable vertex or a removable vertex pair in $S \cap V(P)$. Otherwise, Q is called the second type of odd component (with respect to S).

Figure 1. An example of an odd component induced subgraph P whose vertex set is $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$, and the edge set is $\left\{v_{1} v_{2}, v_{1} v_{3}, v_{2} v_{3}, v_{2} v_{4}, v_{3} v_{4}\right\}$.

Definition 5. Let S be any vertex set, Q be an odd component of $G-S$ and P be an odd component induced subgraph. A connected subgraph K of P is called a 2 -claw substructure, if the following conditions hold:

1. $V(K) \cap S$ has 3 vertices $\left\{v, v_{1}, v_{2}\right\}$, and each vertex is connected to exactly 3 odd components of $G-S$.
2. The degree of v in P is 3 .

In this case the vertices $\left\{v, v_{1}, v_{2}\right\}$ are called roots of K.

2. The Proof of Theorem 1

We begin with several important lemmas. The first one is well known as Tutte's Theorem [3] and is essential in the present paper.

Lemma 1. (Tutte's Theorem) A graph G has a perfect matching if and only if $q(G-S) \leqslant|S|$ for all $S \subseteq V(G)$, where $q(G-S)$ denotes the number of odd components of $G-S$.

If a graph G has no perfect matching, then there must exist $S \subseteq V(G)$ with $q(G-S)>|S|$. Such a set S is called an antifactor set of G.

From now on we always assume that G is a 5-regular graph in which each edge is contained in a triangle.

Lemma 2. For any vertex set S, every odd component of $G-S$ has at least one odd component induced subgraph.

Proof. For any vertex set S, and any odd component Q of $G-S$, we assume that $|E(S, V(Q))|=d$, and the number of vertices in Q is p. Since Q is an odd component, we know that p is odd. Let q be the sum of the degrees of each vertex contained in Q. Clearly q is even by the handshaking lemma. Since G is a 5 - regular graph, we have

$$
q=5 p-d
$$

Figure 2. An example for 2-claw substructure whose the vertex set is $\left\{v_{1}, v_{2}, v_{3}, v_{4}, v\right\}$, and the edge set is $\left\{v_{1} v, v_{1} v_{4}, v_{2} v, v_{2} v_{3}, v_{3} v\right\}$.

Thus d is odd as q is even and p is odd. That is, the sum of the edges of all connected portions of $G(S, V(Q))$ is odd, so $G(S, V(Q))$ has at least one connected subgraph having an odd number of edges. The vertices of this connected subgraph induce a subgraph in G which is the desired odd component induced subgraph.

Lemma 3. For every vertex set S and every odd component induced subgraph P, there exists at least one vertex $v \in S \cap V(P)$, such that $d_{P}(v) \geqslant 3$.

Proof. Assume that for every vertex v in $S \cap V(P)$, we have $d_{P}(v) \leqslant 2$. Since v has an edge in P and this edge is also in a triangle, the fact that the triangle is a connected graph implys that it is in P, so we must have $d_{P}(v) \neq 1$, and thus $d_{P}(v)=2$ for every vertex v in $S \cap V(P)$. Suppose that there are k vertices in $S \cap V(P)$, and s edges in $E(S) \cap E(P)$. Then $|E(S, V(Q)) \cap E(P)|=2 k-2 s$, which is even, a contradiction. Thus the lemma holds.

Lemma 4. If a vertex v in S is connected to d odd components (where $d \leqslant 2$), then v is a removable vertex.

Proof. If $v \in S$ is connected to only one odd component Q, then we remove v out of S, and denote the new vertex set by $S_{1}=S-v$. Since Q is an odd component, after adding a vertex v to Q, it becomes an even component. Note that there is no change in parity for all other odd components. Thus $q\left(G-S_{1}\right)=q(G-S)-1$, so v is a removable vertex.

If v is connected to 2 odd components Q_{i} and Q_{j}, then we also remove v out of S, and denote the new vertex set by $S_{1}=S-v$. Since v is connected to Q_{j} and Q_{i}, at this time, Q_{i}, Q_{j} and v become a new connected component, and the number of its vertices is $\left|Q_{i}\right|+\left|Q_{j}\right|+1$ which is odd. Note that the number of odd components is reduced by one, that is, $q\left(G-S_{1}\right)=q(G-S)-1$, so v is a removable vertex.

We remark that Lemma 4 does not hold when $d \geqslant 3$. However, we may obtain a similar result for a vertex pair when $d=3$.

Lemma 5. If a vertex pair (v, w) in S is connected to exactly 3 odd components, then (v, w) is a removable vertex pair.

Proof. Assume that the vertex pair (v_{1}, v_{2}) is connected to 3 odd components Q_{i}, Q_{j} and Q_{k}. We move $\left(v_{1}, v_{2}\right)$ out of S, and denote the new vertex set by S_{1}. Clearly $\left|S_{1}\right|=|S|-2$. As before, there is no change in parity for all odd components except Q_{i}, Q_{j} and Q_{k}. Since the vertex pair $\left(v_{1}, v_{2}\right)$ is
connected to Q_{i}, Q_{j} and Q_{k}, the components Q_{i}, Q_{j} and Q_{k} and the vertex pair $\left(v_{1}, v_{2}\right)$ become a new connected component, and the number of its vertices $\left|Q_{i}\right|+\left|Q_{j}\right|+\left|Q_{k}\right|+2$ is odd. So the number of odd components is reduced by two, and we have $q\left(G-S_{1}\right)=q(G-S)-2$. Thus the vertex pair (v_{1}, v_{2}) is a removable vertex pair.

Lemma 6. Let Q be a second type of odd component in $G-S$ and P_{j} be the jth odd component induced subgraph of Q. Then for all j, P_{j} has a 2-claw substructure.

Proof. According to Lemma 2, Q has an odd component induced subgraph P_{j}. Let v be a vertex of $V\left(P_{j}\right) \cap S$ such that $d_{P_{j}}(v)$ is maximum among all vertices in $V\left(P_{j}\right) \cap S$. By Lemma 3, we have

$$
3 \leqslant d_{P_{j}}(v) \leqslant 5 .
$$

We now divide the rest of the proof into 3 cases.
Case 1. $d_{P_{j}}(v)=5$.
In this case, since G is a 5 -regular graph, all the edges connected to v are in P_{j}, so there is only one odd component adjacent to v. By Lemma $4, v$ is a removable vertex, and thus Q is a first type of odd component, yielding a contradiction.

Case 2. $d_{P_{j}}(v)=4$.
In this case, since G is a 5-regular graph, only one of the edges of v is not in P_{j}, so there are at most 2 odd components adjacent to v. By Lemma $4, v$ is a removable vertex, and thus Q is a first type of odd component, yielding a contradiction.

Case 3. $d_{P_{j}}(v)=3$.
Since $d_{p_{j}}(v)=3$ and G is 5-regular, we know that v is connected to at most two other odd components. We may always assume that v is connected to two other odd components Q_{s} and Q_{t}. For otherwise, by Lemma $4, v$ is removable, and thus Q is the first type, yielding a contradiction.

Subcase 3.1. v has 0 edge in $E(S) \cap E\left(P_{j}\right)$.
In this subcase, as mentioned before, v is connected to two other odd components Q_{t} and Q_{s}. We assume that $e_{Q_{t}}(v)$ is connected to Q_{t}, where $e_{Q_{t}}(v)$ denotes the neighbors of v in Q_{t}, and $e_{Q_{s}}(v)$ is connected to Q_{s}. Let us consider $e_{Q_{t}}(v)$. By the assumption of $G, e_{Q_{t}}(v)$ must be an edge of a triangle, so there must exist another edge e_{t} connected to v in this triangle. If $e_{t}=e_{Q_{s}}(v)$, then we deduce that Q_{t} is connected to Q_{s}, yielding a contradiction, because Q_{t} and Q_{s} are different odd components. The same argument shows that $e_{t} \notin E\left(P_{j}\right)$, so e_{t} is the 6th edge of v, yielding a contradiction.
Subcase 3.2.v has 1 edge in $E(S) \cap E\left(P_{j}\right)$.
In this subcase, v has 2 edges in $E(V(Q), S)$. Let $v_{1}, v_{2} \in Q$ be the 2 vertices, which are adjacent to v. And $v_{3} \in S$ be the vertex which is adjacent to v. Let $v_{4} \in Q_{t}$ and $v_{5} \in Q_{s}$, which are adjacent to v.

Since the edge $e\left(v_{4}, v\right)$ is in a triangle, we may let v_{q} be such that $v v_{4} v_{q}$ is a triangle. Thus v_{q} is a neighbor of v, and so $v_{q} \in\left\{v_{i} \mid i=1,2,3,4,5\right\}$. As proved before $v_{q} \notin\left\{v_{i} \mid i=1,2,4,5\right\}$ (as Q, Q_{t}, Q_{s} are different odd components, so any two of Q, Q_{t}, Q_{s} are not connected), so $v_{q}=v_{3}$. For the same reason, v_{3} is connected to v_{5} in Q_{t}. Since $v_{3} \in V\left(P_{j}\right)$, there exists a vertex $v_{6} \in Q$ adjacent to v_{3}. If $\left(v, v_{3}\right)$ is connected to 3 different components, by Lemma 5, $\left(v, v_{3}\right)$ is a removable vertex pair, yielding a contradiction.

Otherwise, the last neighbor v_{p} of v_{3} is in another odd component. Since the edge $e\left(v_{3}, v_{p}\right)$ is in a triangle, v_{3} must have another neighbor v_{q} which is adjacency to v_{p}. As before $v_{q} \notin\left\{v_{i} \mid i=p, 4,5,6\right\}$. Thus $v_{q}=v$, which implies that v has 6 neighbors, yielding a contradiction.
Subcase 3.3. v has 2 edge in $E(S) \cap E\left(P_{j}\right)$.

Figure 3. $d_{P_{j}}(v)=3$ and v has 0 edge in $E(S) \cap E\left(P_{j}\right)$

Figure 4. $d_{P_{j}}(v)=3$ and v has 1 edge in $E(S) \cap E\left(P_{j}\right)$

Figure 5. $d_{P_{j}}(v)=3$ and v has 2 edge in $E(S) \cap E\left(P_{j}\right)$

In this subcase, we assume that 2 vertices v_{1} and v_{2} are the neighbors of v and in $S \cap V\left(P_{j}\right)$. If one of the vertex in $\left\{v, v_{1}, v_{2}\right\}$ is connected to at most 1 other odd component, then according to Lemma 4, then this vertex is removable, so Q is a first type of odd component, yielding a contradiction.

Next we may assume that v is connected to two odd components other than Q. and $v_{i} \in\left\{v_{1}, v_{2}\right\}$ is connected to three odd components other than Q. Let e_{1}, e_{2} and e_{3} be the edges joining v_{i}. Without loss of generality, we may assume there is an edge e_{j} connected to e_{1}. As we proved before, the third vertex of the triangle containing e_{1} must be v. So v has a neighbor in this component outside of P_{j}. Similar results hold for e_{2} and e_{3}. Thus we have 3 neighbors of v outside of P_{j}. This together with $d_{p_{j}}(v)=3$ shows that v has six neighbors, yielding a contradiction.

In conclusion, we have just shown that every vertex in $\left\{v, v_{1}, v_{2}\right\}$ is connected to Q and 2 other odd components. Therefore, P_{j} has a 2 -claw substructure.

Subcase 3.4. v has 3 edges in $E(S) \cap E\left(P_{j}\right)$.
In this subcase, v has no neighbour in Q, that is $E(v) \cap E(Q, S)=\varnothing$, contradicting the definition of P_{j}.

We are now ready to prove Theorem 1.

Proof of Theorem 1:

Assume that the vertex set S is a minimal counterexample to Tutte's condition, i.e., S is a minimal set such that $|S|<q(G-S)$. Then every odd component of $G-S$ is of the second type. For otherwise, if Q is the first type of odd component of $G-S$, then there exists an odd component induced subgraph P, which has a removable vertex v (or a removable vertex pair ($\left.v_{1}, v_{2}\right)$). Let S_{1} be the new vertex set after removing v (or $\left(v_{1}, v_{2}\right)$) from S. Then $S_{1}=S-v\left(\right.$ or $\left.S_{1}=S-v_{1}-v_{2}\right)$. So we may replace S by S_{1}. By the definitions 2 and 3, we have $q\left(G-S_{1}\right)=q(G-S)-1$ (or $q\left(G-S_{1}\right)=q(G-S)-2$). That is $q\left(G-S_{1}\right)-\left|S_{1}\right|=q(G-S)-|S|$. So $\left|S_{1}\right|<q\left(G-S_{1}\right)$, yielding a contradiction to the minimality of S.

Suppose that Q is a second type of odd component and P is an odd component induced subgraph. By Lemma 6, P has a 2-claw substructure which has a set of 3 roots. Let S_{p} be the set of all such roots corresponding to all odd components of $G-S$. Each vertex in S_{p} has 3 edges connecting itself to the odd components. Let $E\left(S_{p}\right)$ denote the set of all these edges. Then $\left|E\left(S_{p}\right)\right|=3\left|S_{p}\right|$. Since P has a 2-claw substructure, there are at least three edges form Q to S_{p}. So this gives at least $3 q(G-S)$ edges (from all odd components to S_{p}). Since each of these edges is in $E\left(S_{p}\right)$, we obtain $3 q(G-S) \leqslant 3\left|S_{p}\right|$. Since $|S| \geqslant\left|S_{p}\right|$, we have:

$$
3|S| \geqslant 3\left|S_{p}\right| \geqslant 3 q(G-S) .
$$

Then, $|S| \geqslant q(G-S)$, yielding a contradiction. Therefore, Tutte's condition holds, and thus by Lemma 1 (Tutte's Theorem), G has a perfect matching.

Acknowledgments

This research was supported in part by a Discovery Grant from the Natural Sciences and Engineering Research Council of Canada (Grant No. RGPIN 2017-03903).

References

1. West, D.B., 2001. Introduction to graph theory (Vol. 2). Upper Saddle River: Prentice hall.
2. Frobenius, G., 1917. Über zerlegbare determinanten. Sitzungsberichte der Koniglich Preussischen Akademie der Wissenschafte, XVIII, pp. 274-277. Jbuch. 46.144 [xv, 6].
3. Tutte, W.T., 1947. The factorization of linear graphs. Journal of the London Mathematical Society, l(2), pp.107-111.
4. Petersen, J., 1891. Die Theorie der regulären graphs. Acta Mathematica, 15, pp.193-220.
5. Naddef, D. and Pulleyblank, W.R., 1981. Matchings in regular graphs. Discrete Mathematics, 34(3), pp.283-291.
6. Akbari, S., Rahmati, F. and Zare, S., 2014. Zero-sum magic labelings and null sets of regular graphs. The Electronic Journal of Combinatorics, 21(2), pp.P2-17.
7. Choi, J.O., Georges, J.P. and Mauro, D., 2013. On zero-sum \mathbb{Z}_{k} - magic labelings of 3-regular graphs. Graphs and Combinatorics, 29(3), pp.387-398.
