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Abstract: A mapping l : E(G)→ A, where A is an abelian group written additively, is called an edge
labeling of the graph G. For every positive integer h ⩾ 2, a graph G is said to be zero-sum h-magic
if there is an edge labeling l from E(G) to Zh\{0} such that s(v) =

∑
uv∈E(G) l(uv) = 0 for every vertex

v ∈ V(G). In 2014, Saieed Akbari, Farhad Rahmati and Sanaz Zare proved that if r (r , 5) is odd
and G is a 2-edge connected r-regular graph, G admits a zero-sum 3-magic labeling, and they also
conjectured that every 5-regular graph admits a zero-sum 3-magic. In this paper, we first prove that
every 5-regular graph with every edge contained in a triangle must have a perfect matching, and then
we denote the edge set of the perfect maching by EM, and we make a labeling l : E(EM) → 2, and
E(E(G) − EM) → 1. Thus we can easily see this labeling is a zero-sum 3-magic, confirming the
above conjecture with a moderate condition.
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1. Introduction and Basic Definitions

Graphs G considered here are all connected, finite and undirected with multiple-edges without
loops. Finding a matching in a bipartite graph can be treated as a network flow. The study of match-
ings in a bipartite graph can be traced back to the early of the 20th century. In 1935, P. Hall proved
a well-known result (Hall’s Theorem) which provided a necessary and sufficient condition for an
X,Y-bipartite graph to have a matching that saturates X [1, 3.1.11 Theorem]. When |X| = |Y |, Hall’s
Theorem is the Marriage Theorem, proved originally by Frobenius in 1917 [2]. Later in 1947,
Tutte [3] investigated the problem concerning the existence of a perfect matching in a general graph
and provided a necessary and sufficient condition (Tutte’s Condition) for such a graph to have a per-
fect matching [Lemma 1]. If every vertex in a graph has the same degree r then this graph is referred
to as a r-regular graph. In case of regular graphs, Peterson [4] proved that every 3-regular graph
without a bridge (an edge whose deletion disconnects the graph) has a perfect matching. In 1981,
Naddef and Pulleyblank considered K-regular graphs with specified edge connectivity and showed
some classical theorems and some new results concerning the existence of matchings can be proved
by using polyhedral characterization of Edmonds [5]. It is not hard to see that a 5-regular 4-edge
connected graph has a perfect matching (see [5] for detail). However very little is known about the
existence of a perfect matching in a general 5-regular graph. In this paper we provide a sufficient
condition for a 5-regular graph to have a perfect matching and our main result is as follows.
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Theorem 1. Every 5-regular graph in which each edge is contained in a triangle has a perfect match-
ing.

Our motivation for this work is towards resolving a conjecture of Saieed Akbari, Farhad Rahmati
and Sanaz Zare [6]. Before discussing this conjecture we require some more notation. A mapping
l : E(G) → A, where A is an abelian group written additively, is called an edge labeling of the graph
G. Given an edge labeling l of the graph G, the symbol s(v), which represents the sum of the labels
of edges incident with v, is defined to be s(v) =

∑
uv∈E(G) l(uv), where v ∈ V(G). For every positive

integer h ⩾ 2, a graph G is said to be zero-sum h-magic if there is an edge labeling from E(G) into
Zh\{0} such that s(v) = 0 for every vertex v ∈ V(G). The null set of a graph G, denoted by N(G), is
the set of all natural numbers h ∈ N such that G admits a zero-sum h-magic labeling.

Recently, Choi, Georges and Mauro [7] proved that if G is a 3-regular graph, then N(G) is N\{2}
or N\{2, 4}. Saieed Akbari, Farhad Rahmati and Sanaz Zare [6] extend this result by showing that if
G is an r-regular graph, then for even r (r > 2), N(G) = N and for odd r (r , 5), N\{2, 4} ⊆ N(G).
Moreover, they proved that if r (r , 5) is odd and G is a 2-edge connected r-regular graph, then
N(G) = N\{2}, implying G admits a zero-sum 3-magic labeling. Thus they proposed the following
conjecture.

Conjecture 1. Every 5-regular graph admits a zero-sum 3-magic labeling.

As a consequence of our main result, we obtain the following result, partially confirming Conjec-
ture 1.

Corollary 1. Every 5-regular graph in which each edge is contained in a triangle admits a zero-sum
3-magic labeling.

By Theorem 1, every 5-regular graph in which each edge is contained in a triangle has a per-
fect matching. We denote the edge set of the perfect maching by EM, and we make a labeling
l : E(EM) → 2, and E(E(G) − EM) → 1. It is easily to see this labeling is a zero-sum 3-magic.
Thus every 5-regular graph in which each edge is contained in a triangle admits a zero-sum 3-magic
labeling, proving Corollary 1.

We next introduce some basic definitions which will be used in the proof of our main result. If X
and Y are disjoint vertex sets of G with x ∈ X and y ∈ Y , an edge{x, y} is usually written as xy (or
yx), and such an edge xy is also called an X − Y edge. The set of all X − Y edges in the edge set E is
denoted by E(X,Y). We denoted by G(X,Y) the subgraph of G with vertex set X

⋃
Y and the edge set

E(X,Y). An odd (or even) component of a graph is a connected component of odd (or even) number
of vertices, and an odd (or even) vertex is a vertex with odd (or even) degree.

Definition 1. For a graph G, for any vertex set S of G, and any odd component Q of G − S , consider
a connected component of G(S ,V(Q)) which has odd number of edges in E(S ,V(Q)). The vertices of
this component induce a subgraph P in G, and we call it an odd component induced subgraph.

Definition 2. Let S be any vertex set and v ∈ S . The vertex v is called removable from S if q(G−S ′) =
q(G − S ) − 1, where q(G − S ) denotes the number of odd components of G − S and S ′ = S − v.

Definition 3. Let S be any vertex set, and let v,w ∈ S . The vertex pair (v,w) is called removable from
S if q(G − S ′) = q(G − S ) − 2, where S ′ = S − v − w.

Definition 4. Let S be any vertex set, Q be one of the odd components of G − S , we call Q the first
type of odd component (with respect to S ) if there is an odd component induced subgraph P, such
that there exists a removable vertex or a removable vertex pair in S ∩ V(P). Otherwise, Q is called
the second type of odd component (with respect to S ).
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Figure 1. An example of an odd component induced subgraph P whose vertex set is
{v1, v2, v3, v4}, and the edge set is {v1v2, v1v3, v2v3, v2v4, v3v4}.

Definition 5. Let S be any vertex set, Q be an odd component of G − S and P be an odd component
induced subgraph. A connected subgraph K of P is called a 2-claw substructure, if the following
conditions hold:
1. V(K) ∩ S has 3 vertices {v, v1, v2}, and each vertex is connected to exactly 3 odd components of
G − S .
2. The degree of v in P is 3.
In this case the vertices {v, v1, v2} are called roots of K.

2. The Proof of Theorem 1

We begin with several important lemmas. The first one is well known as Tutte’s Theorem [3] and
is essential in the present paper.

Lemma 1. (Tutte’s Theorem) A graph G has a perfect matching if and only if q(G − S ) ⩽ |S | for all
S ⊆ V(G) , where q(G − S ) denotes the number of odd components of G − S .

If a graph G has no perfect matching, then there must exist S ⊆ V(G) with q(G − S ) > |S |. Such a
set S is called an anti f actor set of G.

From now on we always assume that G is a 5-regular graph in which each edge is contained in a
triangle.

Lemma 2. For any vertex set S , every odd component of G − S has at least one odd component
induced subgraph.

Proof. For any vertex set S , and any odd component Q of G − S , we assume that |E(S ,V(Q))| = d,
and the number of vertices in Q is p. Since Q is an odd component, we know that p is odd. Let q be
the sum of the degrees of each vertex contained in Q. Clearly q is even by the handshaking lemma.
Since G is a 5 - regular graph, we have

q = 5p − d.
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Figure 2. An example for 2-claw substructure whose the vertex set is {v1, v2, v3, v4, v}, and
the edge set is {v1v, v1v4, v2v, v2v3, v3v}.

Thus d is odd as q is even and p is odd. That is, the sum of the edges of all connected portions of
G(S ,V(Q)) is odd, so G(S ,V(Q)) has at least one connected subgraph having an odd number of edges.
The vertices of this connected subgraph induce a subgraph in G which is the desired odd component
induced subgraph. □

Lemma 3. For every vertex set S and every odd component induced subgraph P, there exists at least
one vertex v ∈ S ∩ V(P), such that dP(v) ⩾ 3.

Proof. Assume that for every vertex v in S ∩ V(P), we have dP(v) ⩽ 2. Since v has an edge in P and
this edge is also in a triangle, the fact that the triangle is a connected graph implys that it is in P, so
we must have dP(v) , 1, and thus dP(v) = 2 for every vertex v in S ∩ V(P). Suppose that there are k
vertices in S ∩V(P), and s edges in E(S )∩ E(P). Then |E(S ,V(Q))∩ E(P)| = 2k− 2s, which is even,
a contradiction. Thus the lemma holds. □

Lemma 4. If a vertex v in S is connected to d odd components (where d ⩽ 2), then v is a removable
vertex .

Proof. If v ∈ S is connected to only one odd component Q, then we remove v out of S , and denote
the new vertex set by S 1 = S − v. Since Q is an odd component, after adding a vertex v to Q, it
becomes an even component. Note that there is no change in parity for all other odd components.
Thus q(G − S 1) = q(G − S ) − 1, so v is a removable vertex.

If v is connected to 2 odd components Qi and Q j, then we also remove v out of S , and denote the
new vertex set by S 1 = S − v. Since v is connected to Q j and Qi, at this time, Qi, Q j and v become a
new connected component, and the number of its vertices is |Qi|+ |Q j|+ 1 which is odd. Note that the
number of odd components is reduced by one, that is, q(G − S 1) = q(G − S ) − 1, so v is a removable
vertex. □

We remark that Lemma 4 does not hold when d ⩾ 3. However, we may obtain a similar result for
a vertex pair when d = 3.

Lemma 5. If a vertex pair (v,w) in S is connected to exactly 3 odd components, then (v,w) is a
removable vertex pair.

Proof. Assume that the vertex pair (v1, v2) is connected to 3 odd components Qi, Q j and Qk. We
move (v1, v2) out of S , and denote the new vertex set by S 1. Clearly |S 1| = |S | − 2. As before, there
is no change in parity for all odd components except Qi, Q j and Qk. Since the vertex pair (v1, v2) is
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connected to Qi, Q j and Qk, the components Qi, Q j and Qk and the vertex pair (v1, v2) become a new
connected component, and the number of its vertices |Qi|+ |Q j|+ |Qk|+2 is odd. So the number of odd
components is reduced by two, and we have q(G − S 1) = q(G − S ) − 2. Thus the vertex pair (v1, v2)
is a removable vertex pair. □

Lemma 6. Let Q be a second type of odd component in G − S and P j be the jth odd component
induced subgraph of Q. Then for all j, P j has a 2-claw substructure.

Proof. According to Lemma 2, Q has an odd component induced subgraph P j. Let v be a vertex of
V(P j) ∩ S such that dP j(v) is maximum among all vertices in V(P j) ∩ S . By Lemma 3, we have

3 ⩽ dP j(v) ⩽ 5.

We now divide the rest of the proof into 3 cases.

Case 1. dP j(v) = 5.

In this case, since G is a 5-regular graph, all the edges connected to v are in P j, so there is only
one odd component adjacent to v. By Lemma 4, v is a removable vertex, and thus Q is a first type of
odd component, yielding a contradiction.

Case 2. dP j(v) = 4.

In this case, since G is a 5-regular graph, only one of the edges of v is not in P j, so there are at
most 2 odd components adjacent to v. By Lemma 4, v is a removable vertex, and thus Q is a first type
of odd component, yielding a contradiction.

Case 3. dP j(v) = 3.

Since dp j(v) = 3 and G is 5-regular, we know that v is connected to at most two other odd com-
ponents. We may always assume that v is connected to two other odd components Qs and Qt. For
otherwise, by Lemma 4, v is removable, and thus Q is the first type, yielding a contradiction.

Subcase 3.1. v has 0 edge in E(S ) ∩ E(P j).

In this subcase, as mentioned before, v is connected to two other odd components Qt and Qs. We
assume that eQt(v) is connected to Qt, where eQt(v) denotes the neighbors of v in Qt, and eQs(v) is
connected to Qs. Let us consider eQt(v). By the assumption of G, eQt(v) must be an edge of a triangle,
so there must exist another edge et connected to v in this triangle. If et = eQs(v), then we deduce that
Qt is connected to Qs, yielding a contradiction, because Qt and Qs are different odd components. The
same argument shows that et < E(P j), so et is the 6th edge of v, yielding a contradiction.

Subcase 3.2. v has 1 edge in E(S ) ∩ E(P j).

In this subcase, v has 2 edges in E(V(Q), S ). Let v1, v2 ∈ Q be the 2 vertices, which are adjacent to
v. And v3 ∈ S be the vertex which is adjacent to v. Let v4 ∈ Qt and v5 ∈ Qs, which are adjacent to v.

Since the edge e(v4, v) is in a triangle, we may let vq be such that vv4vq is a triangle. Thus vq is a
neighbor of v, and so vq ∈ {vi|i = 1, 2, 3, 4, 5}. As proved before vq < {vi|i = 1, 2, 4, 5} (as Q, Qt, Qs

are different odd components, so any two of Q, Qt, Qs are not connected), so vq = v3. For the same
reason, v3 is connected to v5 in Qt. Since v3 ∈ V(P j), there exists a vertex v6 ∈ Q adjacent to v3. If
(v, v3) is connected to 3 different components, by Lemma 5, (v, v3) is a removable vertex pair, yielding
a contradiction.

Otherwise, the last neighbor vp of v3 is in another odd component. Since the edge e(v3, vp) is in a
triangle, v3 must have another neighbor vq which is adjacency to vp. As before vq < {vi|i = p, 4, 5, 6}.
Thus vq = v, which implies that v has 6 neighbors, yielding a contradiction.

Subcase 3.3. v has 2 edge in E(S ) ∩ E(P j).
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Figure 3. dP j(v) = 3 and v has 0 edge in E(S ) ∩ E(P j)

Figure 4. dP j(v) = 3 and v has 1 edge in E(S ) ∩ E(P j)
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Figure 5. dP j(v) = 3 and v has 2 edge in E(S ) ∩ E(P j)

In this subcase, we assume that 2 vertices v1 and v2 are the neighbors of v and in S ∩ V(P j). If one
of the vertex in {v, v1, v2} is connected to at most 1 other odd component, then according to Lemma 4,
then this vertex is removable, so Q is a first type of odd component, yielding a contradiction.

Next we may assume that v is connected to two odd components other than Q. and vi ∈ {v1, v2} is
connected to three odd components other than Q. Let e1, e2 and e3 be the edges joining vi. Without
loss of generality, we may assume there is an edge e j connected to e1. As we proved before, the third
vertex of the triangle containing e1 must be v. So v has a neighbor in this component outside of P j.
Similar results hold for e2 and e3. Thus we have 3 neighbors of v outside of P j. This together with
dp j(v) = 3 shows that v has six neighbors, yielding a contradiction.

In conclusion, we have just shown that every vertex in {v, v1, v2} is connected to Q and 2 other odd
components. Therefore, P j has a 2-claw substructure.

Subcase 3.4. v has 3 edges in E(S ) ∩ E(P j).

In this subcase, v has no neighbour in Q, that is E(v) ∩ E(Q, S ) = ∅, contradicting the definition
of P j.

□

We are now ready to prove Theorem 1.
Proof of Theorem 1:
Assume that the vertex set S is a minimal counterexample to Tutte’s condition, i.e., S is a minimal

set such that |S | < q(G−S ). Then every odd component of G−S is of the second type. For otherwise,
if Q is the first type of odd component of G−S , then there exists an odd component induced subgraph
P, which has a removable vertex v (or a removable vertex pair (v1 ,v2)). Let S 1 be the new vertex set
after removing v (or (v1 ,v2)) from S . Then S 1 = S − v (or S 1 = S − v1 − v2). So we may replace S by
S 1. By the definitions 2 and 3, we have q(G − S 1) = q(G − S )− 1 (or q(G − S 1) = q(G − S )− 2). That
is q(G − S 1) − |S 1| = q(G − S ) − |S |. So |S 1| < q(G − S 1), yielding a contradiction to the minimality
of S .

Suppose that Q is a second type of odd component and P is an odd component induced subgraph.
By Lemma 6, P has a 2-claw substructure which has a set of 3 roots. Let S p be the set of all such roots
corresponding to all odd components of G − S . Each vertex in S p has 3 edges connecting itself to the
odd components. Let E(S p) denote the set of all these edges. Then |E(S p)| = 3|S p|. Since P has a
2-claw substructure, there are at least three edges form Q to S p. So this gives at least 3q(G− S ) edges
(from all odd components to S p). Since each of these edges is in E(S p), we obtain 3q(G− S ) ⩽ 3|S p|.
Since |S | ⩾ |S p|, we have:

3|S | ⩾ 3|S p| ⩾ 3q(G − S ).
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Then, |S | ⩾ q(G−S ), yielding a contradiction. Therefore, Tutte’s condition holds, and thus by Lemma
1 (Tutte’s Theorem), G has a perfect matching.

□
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