Article

Some Excluded Minors for the Spindle Surface

Thomas J. Savitsky ${ }^{1 *}$ and Steven A. Schluchter ${ }^{2, *}$
${ }^{1}$ Unaffiliated, Reading, PA 19606.
${ }^{2}$ Department of Mathematical Sciences, George Mason University, 4400 University Drive MS 3F2, Fairfax, VA.
* Correspondence: steven.schluchter@gmail.com.

Abstract

We identified, via a computer search, 143 excluded minors of the spindle surface, the space formed by the identification of two points of the sphere. Per our search, any additional excluded minors must have at least 12 vertices and 28 edges. We also identified 847 topological obstructions for the spindle surface. We conjecture that our lists of excluded minors and topological obstructions are complete.

Keywords: excluded minor, topological obstruction, spindle surface, pseudosurface

1. Introduction

We say a surface is a compact, connected 2-manifold without boundary, and a pseudosurface is the result after performing a finite number of point identifications (of finitely many points) of one or more surfaces if the resulting space is also connected. The points that have been identified with other points we call the pinchpoints of the pseudosurface. The spindle surface, or pinched sphere, is the pseudosurface, with one pinchpoint, obtained from identifying two points on a sphere. Every surface is also a pseudosurface (with zero pinchpoints).

We say that a graph G can be embedded in a pseudosurface P if G can be drawn in P such that, if we think of G as a 1 -complex, no two points in G occupy the same point in P. We say a graph is pinched-planar if it can be embedded in the spindle surface.

We assume basic familiarity with graph theory terminology as found in [1]. If a graph H can be obtained from G by deleting edges or vertices, or by suppressing vertices of degree two, we say that H is a topological minor of G. We say H is a minor of G if H can be obtained from G by deleting edges or vertices, or by contracting edges. Hence, topological minors are also minors.

If G embeds in a pseudosurface P, then so does every topological minor of G. We say a pseudosurface P is minor-closed if for every graph G that embeds in P, it follows that every minor of G also embeds in P. It's easy to see that the spindle surface is minor-closed, but not all pseudosurfaces are. In particular the bananas surface B_{2}, the pseudosurface created by identifying two spheres at their respective north and south poles, is not minor-closed [2].

We call a graph G a topological obstruction of a pseudosurface P if G does not embed in P but every proper topological minor of G does. We say G is an excluded minor of a minor-closed pseudosurface P if G does not embed in P but every proper minor of G does. Note that every excluded minor
is also a topological obstruction. In fact, each topological obstruction of a minor-closed pseudosurface can be contracted to an excluded minor.

The collection of excluded minors for any minor-closed pseudosurface must be finite by the Robertson-Seymour Theorem [3]. However, the complete collection of excluded minors is known only for two surfaces, the sphere and the projective plane. The set $\left\{K_{5}, K_{3,3}\right\}$ is the complete collection of both topological obstructions [4] and excluded minors [5] for the sphere. A list of 35 excluded minors and 103 topological obstructions for the projective plane was identified by Glover, Huneke, and Wang [6], and Archdeacon proved their list was complete in [7]. The collection of excluded minors for the torus is not known, but Myrvold and Woodcock have identified 17,535 excluded minors and 250,815 topological obstructions [8]. Mohar and S̆koda have investigated the excluded minors of the torus and Klein bottle of low connectivity $[9,10]$. Note that the spindle surface can also be obtained by identifying all points on a given meridian of a torus, from which it follows that any graph that can be embedded on the spindle surface can also be embedded on the torus [11]. Similarly, it can be shown that if a graph embeds in the spindle surface, then it can be embedded in the Klein bottle. (While the spindle surface is a pseudosurface, these manners of constructing it are not done with a finite number of point identifications.)

Research on excluded minors and topological obstructions for pseudosurfaces that are not surfaces has also been conducted. Archdeacon and Bonnington in [12] found the complete list of the 21 cubic topological obstructions of the spindle surface. S̆irán and Gvozdiak showed that B_{2} has infinitely many topological obstructions [13], and with Bodendiek, Gvozdjak and Širáň they identified the 82 which have connectivity at most two [14]. In [15], Boza, Dávila, Fedriani, and Moyano demonstrated an infinite family of pseudosurfaces, each with infinitely many topological obstructions. A graph G is outer-embeddable in a pseudosurface P if there is an embedding of G in P with all vertices on the boundary of a single face. Boza, Fedriani, and Núñez in [16] showed that, in general, the problem of a graph's outer-embeddability in a pseudosurface is NP-complete. In [17], they showed that the set of outer-embeddable graphs in B_{2} is minor-closed, and they produced a complete list of the 38 minorminimal graphs that are not outer embeddable in B_{2}. In [18], the same authors explore a weakened notion of outer-embeddabilty in pseudosurfaces arising from three spheres.

Types of embeddings and embeddability of graphs in pseudosurfaces from algebraic perspectives have also received interest [19-21].

A graph G is apex if deleting some vertex makes it planar, or if G is itself planar. If a graph is embedded in the spindle surface, then deleting the vertex (if any) at the pinchpoint gives a plane graph. So pinched-planar graphs are apex. Apex graphs have received considerable attention, for example [22,23], but their list of excluded minors is still unknown. We find pinched-planar graphs to be an interesting minor-closed subclass of apex graphs that are embeddable in both the torus and the Klein bottle for which the problem of finding the excluded minors appears tractable.

Our contribution is the following: through a computer search, we have identified 143 excluded minors and 847 topological obstructions for the spindle surface. We conjecture that the list of excluded minors is complete.* If correct, our conjecture would answer a question of Archdeacon [24, Problem 6.5]. Our results may be of interest to researchers interested in excluded minors for classes of graphs that are close to being planar [25,26].

2. Additional Background

From now on, we will work exclusively with the following reformulation of embeddability in the spindle surface.

[^0]Proposition 1. Any planar graph is pinched-planar. A non-planar graph is pinched-planar if and only if it can be obtained by identifying two vertices of a planar graph.

Sketch of Proof: The vertex created by the identification of the two selected vertices of a graph embedded in the sphere is embedded at the pinchpoint of the spindle surface.

We make essential use of [11, Theorem 2], which we rephrase for our purposes.
Theorem 1. [11, Theorem 2] A graph is a topological obstruction of the spindle surface if and only if the following three conditions hold:

1. G is not pinched-planar,
2. the minimum degree of G is at least three, and
3. the graph $G-e$ is pinched-planar for each edge e of G.

We call a graph Kuratowski if it is a subdivision of K_{5} or $K_{3,3}$. We denote the disjoint union of graphs G and H by $G \dot{\cup} H$. Identifying a vertex of G with that of H gives a 1-sum of G and H. If G and H are vertex-transitive, they have a unique 1 -sum, up to isomorphism, which we denote by $G \bigoplus_{1} H$.

It is easy to give a complete description of topological obstructions and excluded minors of connectivity less than two. In fact, these are the same as for the torus [8, Figure 7].

Theorem 2. There are three disconnected excluded minors for the spindle surface: $K_{5} \dot{\cup} K_{5}, K_{5} \dot{\cup} K_{3,3}$, and $K_{3,3} \dot{\cup} K_{3,3}$.

Proof. That these three graphs are excluded minors is easily checked. Let G be a disconnected excluded minor for the spindle surface. If some component of G were planar, then deleting it would give a pinched-planar graph with an embedding in the spindle surface containing a face in which the planar component could itself be embedded. So every component of G is nonplanar and hence has either a K_{5} - or $K_{3,3}$-minor. By minimality in the minor order, G must have exactly two components and must be either $K_{5} \dot{\cup} K_{5}, K_{5} \dot{\cup} K_{3,3}$, or $K_{3,3} \dot{\cup} K_{3,3}$.

By considering blocks and vertex identifications instead of components and disjoint unions, one can show the following result.

Theorem 3. There are three excluded minors of connectivity one for the spindle surface: $K_{5} \bigoplus_{1} K_{5}$, $K_{5} \bigoplus_{1} K_{3,3}$, and $K_{3,3} \bigoplus_{1} K_{3,3}$.

There are no more disconnected topological obstructions, but seven additional topological obstructions are obtained by performing 1 -sum operations on Kuratowski graphs.

3. Computer Search

We write $V(G)$ for the vertex-set of a graph G and $E(G)$ for the edge-set. For $v \in V(G)$, we write $d(v)$ for the degree of v, and $N(v)$ for the neighborhood of v. To facilitate our use of Proposition 1, we introduce a definition.

Definition 1. Given a simple graph G with vertex v and a subset S of $N(v)$, we define the split of G on v by S, denoted $G_{v \mid S}$, as the graph that results from the following steps:

1. add a new vertex, say w, to G, and
2. for each $x \in S$, delete edge $v x$ but add edge $w x$.

So a graph G is pinched-planar if and only if some split $G_{\nu \mid S}$ is planar. A naive algorithm for testing embeddability for the spindle surface is to test every split $G_{\nu \mid S}$ for planarity.

We optimized this naive algorithm somewhat although ours still has exponential running time. We give pseudocode for our algorithm in Algorithm 1. First note that if $|S|=0$, then $G_{\nu \mid S}$ is obtained from G by adding an isolated vertex. So in this case, G is planar if and only if $G_{v \mid S}$ is. Next, notice that if $|S|=1$, then $G_{v \mid S}$ is obtained from G by deleting an edge e incident to v, then adding a vertex of degree one adjacent to the other vertex incident to e. In this case, $G_{v \mid S}$ is planar if and only if $G-e$ is planar. Finally, notice that, by symmetry, a split $G_{\nu \mid S}$ is isomorphic to $G_{\nu \mid N(v)-S}$, so we need only test the splits corresponding to half the subsets S of $N(v)$ for planarity.

To test if a graph G is pinched-planar we first test G for planarity using the Boyer-Myrvold test [27], as implemented in nauty version 2.7 r 1 [28]. If G is planar, it is also pinched-planar. If G is nonplanar, then we request a Kuratowski subgraph, say K, of G. We need only test splits on vertices in $V(K)$ for planarity since K is a subgraph of any split $G_{x \mid S}$, where $x \notin V(K)$. Likewise, we need only test deletions $G-e$, where $e \in E(K)$, for planarity.

```
Algorithm 1 Testing a graph \(G\) for embeddability in the spindle surface
    if \(G\) is planar then
        return True
    else
        \(K \leftarrow\) a Kuratowski subgraph of \(G\)
        for each \(e \in E(K)\) do
            if \(G-e\) is planar then
                return True
            end if
        end for
        for each \(v \in V(K)\) do
            for each \(S \subseteq N(v)\) with \(2 \leq|S| \leq d(v)-2\), where \(G_{v \mid N(v)-S}\) has not been tested do
                    if \(G_{v \mid S}\) is planar then
                return True
                end if
            end for
        end for
        return False
    end if
```

The planarg program from nauty ${ }^{\dagger}$ either indicates that a graph is planar or, if not, produces a Kuratowsi subgraph. Using planarg as a starting point, we implemented our algorithm in the C programming language. Our source code is available at [29].

Testing whether a graph is a topological obstruction for the spindle surface is straightforward, and we optimized slightly by suppressing vertices of degree two after deleting an edge. Testing whether a graph is an excluded minor is also straightforward, but we did optimize slightly by deleting any multiple edges that arose from contracting an edge.

Given our observations above, to search exhaustively for topological obstructions on n vertices and m edges, we need search only the 2 -connected graphs with minimum degree at least three.

To search exhaustively for excluded minors on n vertices and m edges, we need only search the topological obstructions we previously found. Moreover, we can narrow the search space by considering that pinched-planar graphs are sparse in that the number of edges is linear in terms of the number of vertices. More specifically, since a simple planar graph on $n \geq 3$ vertices has at most $3 n-6$ edges, a simple pinched-planar graph on $n \geq 2$ vertices has at most $3 n-3$ edges. So any topological obstruction for the spindle surface on n vertices has at most $3 n-2$ edges. Since the minimum degree

[^1]| $n \backslash m$ | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 6 | 1 | | | | | | | | | | | | | 1 |
| 7 | 2 | | | | | | | | | | | | | 2 |
| 8 | 3 | | | | 1 | | 2 | 1 | | | | | | 7 |
| 9 | 1 | | 2 | 5 | 4 | 7 | 4 | 1 | | | | | | 24 |
| 10 | 1 | | 4 | 7 | 18 | 21 | 4 | 2 | | 1 | | | | 58 |
| 11 | | | | 5 | 17 | 5 | 8 | 1 | 1 | | | | | 37 |
| 12 | | | | 3 | 2 | 2 | 4 | 1 | 1 | | | | | ≥ 13 |
| 13 | | | | | | | 1 | | | | | | | ≥ 1 |
| total | 8 | 0 | 6 | 20 | 42 | 35 | 23 | 6 | 2 | 1 | 0 | 0 | 0 | ≥ 143 |

Table 1. The number of excluded minors for the spindle surface with N vertices and M edges. A blank entry in the table should be interpreted as a 0 . There are no excluded minors with fewer than 15 edges

$n \backslash m$	15	16	17	18	19	20	21	22	23	24	25	26	27	total
6	1													1
7	2													2
8	3	2			1		2	1						9
9	1	4	3	5	4	12	4	1						34
10	1	1	13	16	35	29	30	3		1				129
11			1	28	52	81	38	18	1		1			220
12				4	50	84	58	21	10	2		1		≥ 230
13						27	60	21	13	1	2		1	≥ 125
14							10	46	3	8		1		≥ 68
15									19	1	3			≥ 23
16										6				≥ 6
total	8	7	17	53	142	233	202	111	46	19	6	2	1	≥ 847

Table 2. The number of topological obstructions for the spindle surface with N vertices and M edges. A blank entry in the table should be interpreted as a 0 . There are no topological obstructions with fewer than 15 edges
of a topological obstruction must be at least three, a topological obstruction on n vertices must have between $\lceil 3 n / 2\rceil$ and $3 n-2$ edges. For example, any topological obstruction for the spindle surface on 11 vertices must have between 17 and 31 edges.

The geng program of nauty can be used to generate all non-isomorphic graphs on a small number of vertices and edges, perhaps subject to additional constraints such as connectivity or minimum degree. We used geng to generate all 2-connected graphs with minimum degree at least three on $n \leq 11$ vertices or with $m \leq 27$ edges. We also generated all such graphs with 12 vertices and 28 edges. (These totaled roughly 50 billion graphs.) We then used our algorithm to check whether each generated graph was a topological obstruction, and, finally, we checked which topological obstructions were excluded minors. We used GNU Parallel [31] to parallelize the search. Our computations took roughly two months using four multi-core computers.

We found 143 excluded minors and 847 topological obstructions. See Tables 1 and 2 and Appendices 1 and 2 . We summarize our results in the following theorems.

Theorem 4. The 143 graphs in Appendix 1 are excluded minors for the spindle surface. No excluded minor has fewer than 15 edges. Any additional excluded minors must have at least 12 vertices and at
least 28 edges.
Theorem 5. The 847 graphs in Appendix 2 are topological obstructions for the spindle surface. No topological obstruction has fewer than 15 edges. Any additional topological obstructions must have at least 12 vertices and 28 edges.

Recall that there are three disconnected excluded minors and three of connectivity one. Our computer search found six excluded minors of connectivity two, 117 of connectivity three, 12 of connectivity four, and two of connectivity five. That we found no excluded minors of higher connectivity is perhaps not surprising since Lipton et al. showed that an excluded minor for the class of apex graphs has connectivity at most five [32].

As a sanity check, we also searched all cubic graphs on $n \leq 24$ vertices and found precisely the topological obstructions in [12]. We point out that 125 of the 143 excluded minors and 701 of the 847 topological obstructions we found are apex graphs. We note that K_{6}, the Petersen graph, and the five other members of the Petersen family are excluded minors for the spindle surface.

Based on the fact that there are no excluded minors with 25,26 , or 27 edges, we conjecture that our list of excluded minors is complete.

Finally, we performed an additional computation that shows that if our list of excluded minors is complete, then our list of topological obstructions must also be complete. Given an excluded minor G of the spindle surface, we describe how to find the set of topological obstructions that contract to G. Note that if H is a topological obstruction with a set of edges, say E, that contracts to G, then contracting any subset of E from H also yields a topological obstruction. Let us call a graph G^{\prime} an inverse-contraction of G if contracting some single edge of G^{\prime} gives G. Note that, using the terminology of our Definition 1, any inverse-contraction of G may be obtained by adding edge $v w$ to some split $G_{v \mid S}$. (Contracting $v w$ gives G.) The set of all topological obstructions that contract to G can be found by finding all inverse-contractions of G, discarding any graphs which are not topological obstructions, then finding all inverse-contractions of the remaining graphs, again discarding any graphs which are not themselves topological obstructions, and repeating this process. Since the minimum degree of a topological obstruction is at least three, this procedure must eventually terminate. Performing this procedure on each of our 143 excluded minors resulted precisely in our set of 847 topological obstructions.

Acknowledgments

We thank the anonymous referees for their helpful comments.

References

1. Diestel, R. (2017). Graph Theory (5th ed.). Springer.
2. Knor, M., 1996. Characterization of minor-closed pseudosurfaces. Ars Combinatoria, 43, pp. 246-256.
3. Robertson, N., and Seymour, P. D., 2004. Graph minors. XX. Wagner's conjecture. Journal of Combinatorial Theory. Series B, 92(2), pp.325-357.
4. Kuratowski, C., 1930. Sur le problème des courbes gauches en Topologie. Fundamenta Mathematicae, 15(1), pp.271-283.
5. Wagner, K., 1937. Über eine Eigenschaft der ebenen Komplexe. Mathematische Annalen, 114, pp.570-590.
6. Glover, H. H., Huneke, J. P., and Wang, C. S., 1979. 103 graphs that are irreducible for the projective plane. Journal of Combinatorial Theory. Series B, 27(3), pp.332-370.
7. Archdeacon, D., 1981. A Kuratowski theorem for the projective plane. Journal of Graph Theory, 5(3), pp.243-246.
8. Myrvold, W. and Woodcock, J., 2018. A large set of torus obstructions and how they were discovered. The Electronic Journal of Combinatorics, pp.P1-16.
9. Mohar, B. and Škoda, P., 2020. Excluded minors for the Klein Bottle I. Low connectivity case. ArXiv preprint arXiv:2002.00258.
10. Mohar, B., and Škoda, P., 2014. Obstructions of connectivity two for embedding graphs into the torus. Canadian Journal of Mathematics. Journal Canadien de Mathématiques, 66(6), pp.1327-1357.
11. Bodendiek, R., and Wagner, K., 1989. The fascination of minimal graphs. In Graph Theory in Memory of G. A. Dirac (Sandbjerg, 1985) (pp. 39-51). North-Holland.
12. Archdeacon, D., and Bonnington, C. P., 2004. Obstructions for embedding cubic graphs on the spindle surface. Journal of Combinatorial Theory. Series B, 91(2), pp. 229-252.
13. Širáň, J., and Gvozdjak, P., 1992. Kuratowski-type theorems do not extend to pseudosurfaces. Journal of Combinatorial Theory. Series B, 54(2), pp.209-212.
14. Bodendiek, R., Gvozdjak, P., and Širáň, J., 1990. Minimal graphs for 2-amalgamations of spheres. In Contemporary Methods in Graph Theory (pp. 8-25). BI-Wissenschaftsverlag, Mannheim-Zürich-Wien.
15. Boza, L., Davila, M.T., Fedriani, E.M. and Moyano, R., 2004. On Infinite Kuratowski Theorems. Ars Combinatoria, 72, pp.141-148.
16. Boza, L., Fedriani, E.M. and Nunez, J., 2004. The problem of outer-embeddings in pseudosurfaces. Ars Combinatoria, 71, pp.79-91.
17. Boza, L., Fedriani, E.M. and Nunez, J., 2004. Obstruction sets for outer-bananas-surface graphs. Ars Combinatoria, 73, pp.65-77.
18. Boza, L., Fedriani, E.M. and Núñez, J., 2010. Outer-embeddability in certain pseudosurfaces arising from three spheres. Discrete Mathematics, 310(23), pp.3359-3367.
19. Abrams, L., snd Slilaty, D. C., 2006. Algebraic characterizations of graph imbeddability in surfaces and pseudosurfaces. Journal of Knot Theory and Its Ramifications, 15(06), pp. 681-693.
20. Rarity, E., Schluchter, S., and Schroeder, J. Z., 2018. The smallest self-dual embeddable graphs in a pseudosurface. Missouri Journal of Mathematical Sciences, 30(1), pp.85-92.
21. Schluchter, S., and Schroeder, J. Z., 2017. Self-dual embeddings of in different orientable and nonorientable pseudosurfaces with the same Euler characteristic. Electronic Journal of Graph Theory and Applications, 5(2), pp.247-263.
22. Robertson, N., Seymour, P., and Thomas, R., 1993. Hadwiger's conjecture for -free graphs. Combinatorica, 13(3), pp.279-361.
23. Jobson, A. S., and Kézdy, A. E., 2021. All minor-minimal apex obstructions with connectivity two. Electronic Journal of Combinatorics, 28(1), pp.P1.23, 58.
24. Archdeacon, D., 2005. Variations on a theme of Kuratowski. Discrete Mathematics, 302(1-3), pp.22-31.
25. Ding, G., and Dziobiak, S., 2016. Excluded-minor characterization of apex-outerplanar graphs. Graphs and Combinatorics, 32(2), pp.583-627.
26. Ding, G., Fallon, J., and Marshall, E., 2018. On almost-planar graphs. Electronic Journal of Combinatorics, 25(1), pp.P1.55-14.
27. Boyer, J. M., and Myrvold, W. J., 2004. On the cutting edge: simplified $O(n)$ planarity by edge addition. Journal of Graph Algorithms and Applications, 8(3), pp.241-273.
28. McKay, B. D., and Piperno, A., 2014. Practical graph isomorphism, II. Journal of Symbolic Computation, 60, pp.94-112.
29. Savitsky, T.J. and Schluchter, S., https://github.com/tjsavitsky/spindle
30. Bosma, W., Cannon, J., and Playoust, C., 1997. The Magma algebra system. I. The user language. Journal of Symbolic Computation, 24(3-4), pp.235-265.
31. Tange, O., 2011. Gnu parallel-the command-line power tool. Usenix Mag, 36(1), p.42.
32. Lipton, M., Mackall, E., Mattman, T.W., Pierce, M., Robinson, S., Thomas, J. and Weinschelbaum, I., 2017. Six variations on a theme: almost planar graphs. Involve, a Journal of Mathematics, 11(3), pp.413-448.
33. McKay, B. D., http://users.cecs.anu.edu.au/~bdm/data/formats.txt

4. Appendix 1

Here is a list of the 143 known excluded minors for the spindle surface organized by connectivity. Each graph is given as a graph6 string ${ }^{\ddagger}$, a comma, and an indication of whether the graph is apex. This list may be downloaded from [29].

Disconnected

Connectivity One

Connectivity Two

Io?WrAF]G, apex
IS`AA? No, apex

[^2]Connectivity Three

Fs $\backslash z w$, non-apex
G?B~vo, apex Gq0xs\{, non-apex GS`zro, non-apex H@Bmtpx, apex H?B\rrw, apex HCCR^Zk, apex H_hZtg \({ }^{\sim}\), apex Hj?L[x \({ }^{\sim}\), apex H@KemZ\{, apex \(H^{`}\) K\}UNr, apex HodXrL~, apex HoSsaKj, non-apex H@ou^jy, apex H? \{pnNU, apex HqSp[1\}, apex H@r@xzr, apex Hs`Hb|~, apex Hs[JIkv, apex H?zTb|\}, apex IAHbCyYf_, apex IaOpSKxf_, apex I@BLQvoNw, apex I?BvSpXMW, apex IC[V?LdbW, apex I`?CzYSYG, apex I??CzZw|?, apex IE?HXjgro, apex I?\{EMGvLo, non-apex IFaAPKmRO, apex IF??X^kro, apex IGBTSo|Uo, apex IgCXQMpn_, apex IGFcqWr\}?, apex I`GRQimf0, apex I?Gu]iw]G, apex I?hicdxl_, apex I?hlbaTUg, apex IIISPIM\}?, apex

I`K|ATEcW, apex I@?Kyzgx?, apex IMK?G]fr_, apex I`?N ${ }^{\text {rbLNW, apex }}$ IoCGZhqbw, apex IoDb?wZf_, apex IoDPhPHfw, apex IoDPPXRf_, apex I?oHhjB|?, apex I]o? HKVBw , apex Io[?Ikubw, apex IoP@pi[Fo, apex IOP_sxqfg, apex IOWQkpdfg, apex IQGPGvLr_, apex IQGP_^Lr_, apex IQ?gprFpo, apex IqHPSpVJo, apex IQMR?MJRW, apex IQ?p0vKro, apex Iq??Xy]Zg, apex I?rE@wy IRQM@cNNW, apex IsGZACN^G, apex IsP@OkWHG, non-apex IW?\{OtZt0, apex I??wVFQ\}?, apex IX?G\}_Nv?, apex I??xuNgu?, non-apex I]??XyMRg, apex J?Ab?wYuFB?, apex J@?BCZ_Fmw?, apex JB?G\}Qcw? ^_, apex JB?K]QcCzW_, apex J?BLQow@~__, apex JB??yIhbVK?, apex J?C \backslash RJ_C\}w?, apex J@Dc?SMsVB?, apex JDZE?KaCWR_, apex

Connectivity Four

Fs \backslash vw, non-apex
GE1~~w, apex
GJz
~\{, apex
H^{\sim} AIX[^, apex

H`iZQn ${ }^{\text {n }}$, apex
HoSsZf\{, apex
HqAztXZ, apex
H\{_yqgj, non-apex

J??EdPKLFw?, apex JE?GV?XhjL?, apex JEr@@?J@p`_, apex J@?e?[[uFB?, apex JFaAPSCPG^_, apex JFO@OWFxCN?, apex J]?GGRBI_i_, apex J?GU_X`bNa?, apex J?`H]ao[?^_, apex JkGPcPDAgM_, apex J_?@|`L[CW_, non-apex
Jl`@ogH@gF_, apex JoC?Jpef_~?, apex J?ox_E`S]M?, apex Jo??ygl]CN_, apex JpG? IhIFcN_{-}, apex J?_PIRocrW_, apex J_?@|pSRD@, apex JQAKQXIL`b?, apex JqC_iIIGWU_, apex JQ?EXW[WKa_, apex JQ`@GodEmE?, apex JqQ@`_MBOF_, apex JR?GSddba[_, apex JRQKACg@Wd_, apex JsO_oghP_F_, apex K"`@?aEQWkDH, apex K``@?aEQWsCh, apex KB@HSb?g?M@F, apex K??CrJSjBo?^, apex K?df_?@B[bKL, apex K??FMo\{o@GbB, non-apex K_hSb?OG?R_u, apex KoCO?\IHb_ON, apex K??@pATRUI^?, apex KPHAC?TAo\{WF, apex Ks?APKSEAGdC, apex Ks?GOoUP@CkG, apex LF`@@@?_?X`Y@w, apex

Connectivity Five

IrQH_YrRo, apex
IscQXXb \backslash ?, non-apex
ISPDtlkVG, apex
IukAHLLL_, apex

5. Appendix 2

Here is a list of the 847 known topological obstructions for the spindle surface organized by connectivity. Each graph is given as a graph6 string, a comma, and an indication of whether the graph is apex. This list may be downloaded from [29].

Disconnected

Connectivity One

H^{\sim} ? GW^{\wedge} ~, apex
IFw?GKFxw, apex
I~??W[N"?, apex
]??FF?[FFw?, apex

JFw??KF@~K?, apex
JS\o?CB?\}F-, apex Jv\{??KF@zK?, apex

K?ACALEM@o^?, apex
Krd_WCA?WB_N, apex L?aAA?bGowB_\{?, apex

Connectivity Two

GwC^~ ${ }^{\text {a }}$, apex
Hr?G[\|n, apex
Hs?GZ\|\}, apex
HwC^? ${ }^{\sim}$ I, apex
Hw?W~r\}, apex
IF?GW ${ }^{\text {² }} z_{-}$, apex
IFw?GKfpw, apex
IFW?GMNxo, apex
I ${ }^{\sim}$?G]?nFo, apex
I ? ${ }^{\text {a }}$ (W]pRg, apex
I ? ${ }^{\text {GWXXbo, apex }}$
I]? ${ }^{\text {dX_Nro, apex }}$
IIMCC@NLo, apex
IJa?W^o^o, apex
IJ?G^aM ${ }_{\text {_ }}$, apex
I\}k? GLNLo, apex
Io?WrAF]G, apex
IS ${ }^{\text {AA }}{ }^{\sim}$ No, apex
Inw? ${ }^{\text {n }}$ (${ }^{\text {a }}$
I]??W[\{ro, apex
J?Bb? ${ }^{\text {d/ }}$-o?, apex
J?BMP_oA ${ }^{\wedge}$ __, apex
J?B_ooBwNo?, apex
JC^_?CBC ${ }^{\sim}$?, apex

J?C^FA[Wrw?, apex
K`K?GMw]AMOw, apex K_KsAE?OG[eK, apex KoDj0_0?WBoN, apex Ko?Wr@_?q_u, apex KPTSW?@?XBwM, apex K?r@`b?K?P_x, apex KRr?x?@?WB_V, apex KrY?oGC?wF?N, apex KrY?oKC?gB_N, apex KrY?wG@?WB_V, apex K]??WZ?K?F@b, apex L??CATIb@gE_\{?, apex L??CCXKR@cEO\{?, apex L??GOkUaB?\{?\{?, apex L??H?cdDe0X?\{?, apex L]ooOGB?OC_F?N, apex L]ooOG@?OD_U?N, apex L]ooOK@?_@_F?N, apex Lr`HGo@?_@_F?N, apex LrY?gWA?O@_F?N, apex Ms???[_CHCaSR?R??, apex Ms???KEA_RH_KC[??, apex Ms???@KR@WAWCoGo?, apex

Connectivity Three
$\mathrm{Fs} \backslash \mathrm{zw}$, non-apex
G?B~vo, apex
Gq0xs\{, non-apex GRr@x\{, non-apex GS`zro, non-apex H?aFbx\{, apex HBGc\}ZK, non-apex H`BHvr\}, apex H@Bmtpx, apex H?B\rrw, apex $H C C R^{\wedge} \mathrm{Zk}$, apex HCS~F? ${ }^{\wedge}$, non-apex HeGn?~ |, apex HFGcY^K, non-apex H_hZtg , apex Hj?L[x~, apex H@KemZ\{, apex H`K\}UNr, apex HodXrL \({ }^{\sim}\), apex HoSsaKj, non-apex H@ou^jy, apex H? \{pnNU, apex HQoHhjF, non-apex HqS`K| ${ }^{\sim}$, apex HqSp[1\}, apex H@r@xzr, apex Hs`Hb|~, apex Hs [JIkv, apex H?zTb|\}, apex IAHbCyYf_, apex IAKGeMex_, apex IAM?gZbwo, apex IaOpSKxf_, apex I@aqQVo^o, apex IB_GRMUx_, apex I@BLQvoNw, apex I?BvSpXMW, apex I@C^F?NvG, apex I]C?G[mro, apex ICOf?w[wW, non-apex IC[V?LdbW, apex I@?cyzKy?, apex I`?CZYSYG, apex I??CzZw|?, apex I?DcvHy ${ }^{\sim}$?, apex IE?HXjgro, apex I?\{EMGvLo, non-apex
IFaAPKmRO, apex
IFG@G^Kro, apex IF?GXNHz_, apex

IFo_GKjpw, apex IfrH@CfEw, apex IF??X^kro, apex IGBTSo|Uo, apex IGCxEfIf_, apex IgCXQMpn_, apex IgDbKyYMW, apex IGFcqWr\}?, apex IGFcrGZ\}G, apex I@GGuNSx_, apex I`GRQimf0, apex I`GR[yiTW, apex I?Gu]iw]G, apex I??gvFS\}?, apex I?GWuNox_, apex I?@HeUs\}?, apex I?hicdxl_, apex I?hicfoNw, apex I?hlbaTUg, apex I_hSb? ${ }^{\sim}$ Nw, apex I? 'HW~o\{?, non-apex IIISPIM\}?, apex I`@ItakNw, apex I@J]E?zMo, apex I`K|ATEcW, apex Ik__ghJIo, non-apex I@KpUfKp_, apex IkQ?Hs]Jg, apex I@KxEfIp_, apex I@?Kyzgx?, apex IL?OXVKro, apex IMK?G]fr_, apex I`?N"bLNW, apex IoCGZhqbw, apex IoCWbTef_, apex IOCZRIRv?, apex IoDb?wZf_, apex IoDcotd ${ }^{\text {^G, }}$, apex IoDPhPHfw, apex IoDPPXRf_, apex IoGictV^?, apex I@OGtNSx_, apex I? oHh jBl?, apex I]o?HKVBw, apex Io[?Ikubw, apex IoP@pi[Fo, apex IOP_sxqfg, apex IOWQkpdfg, apex I_PHduu^?, apex IpNE?pfFo, apex

I?qapjo^o, apex
IqGBGw[_w, non-apex
IqGh[pTSw, apex
IQGPGVLr_, apex
IQGP_^Lr_, apex IQ?gprFpo, apex IqHPSpVJo, apex Iq?kqcl^G, apex IQMR?MJRW, apex IQ?p0vKro, apex IqQ@`_NBo, non-apex I`@qSUwNw, apex
Iq??Xy]Zg, apex IRaAQGbFG, non-apex I?rE@wyL_, non-apex IR?M@[]rW, apex IRQM@cNNW, apex IsCRRGNBw, apex
IsGZAcN^G, apex IsP@OkWHG, non-apex
ItPH_Xrbo, apex
I@Uee_mJW, apex I?U\F@qNw, apex IWC_WZRso, apex IWFE?\{]MW, apex I@w? GnUxo, apex IW?mow $\backslash \mathrm{sW}$, apex IW?\{0tZt0, apex I??wVFQ\}?, apex I??WvJa\}?, apex I] ? ?WWbCw, non-apex
IXaAA? ${ }^{\wedge}$ Fo, apex
IX?G\}_Nv?, apex I??xuNgu?, non-apex
I]??XyMRg, apex J?Ab?wYuFB?, apex JAc_GMqYUM?, apex JAf ${ }^{\prime}$ P?P?\}F_, apex JAI@iX_c[T?, apex JAJ_?cJefF?, apex JAKaKqEW[\{?, apex JAk? HDFdVK ?, apex JAw?_MsHuM_, apex J?AZS`_A^__, apex J@AZS``aiY_, apex
JBc_GN_A\}M_, apex J@?BCZ_Fmw?, apex JBf@GCHG]F_, apex JB__G \backslash gcmM?, apex JB?GkZaJUS_, apex

JB?G\}QCw?^_, apex JB?G[]QXNO?, apex JBg?WL`dMM?, apex JB?K^B_BW\{_, apex JB?K]QcCzW-, apex J?BLQow@~__, apex JBOk?SEc^B?, apex JBo?pGFhMM?, apex JB? [QTIhTH?, apex JBWK?KEc^B?, apex JB??yIhbVK?, apex Jc_`A@wDo]?, apex J_CbLLWFLo_, apex J??CjQK[Nw?, apex JCOpOKXwMM?, apex JcO_yIGKXF?, apex J?C \backslash RJ_C $\} w$?, apex JCW?WloxCN?, apex J?d\B?RwG\}?, apex J@Dc?SMsVB?, apex Jdh???VBrE?, apex J_?DjqKR@`, non-apex J@@DOW[sVB?, apex JDS_GL`amM?, apex JdWcA?F@op_, non-apex JdWW?Cb yN?, apex JDZE?KaCWR_, apex J?EdAqX $\backslash \mathrm{b}[$?, apex J??EdPKLFw?, apex JE?GV?XhjL?, apex J@?eOW[sVB?, apex J??EPgK\{Nw?, apex JEr@@?J@p`_, apex J@?e?[[uFB?, apex JFaAPScPG^_, apex JFAKR@_Bw^?, apex JF?GW]EW^0?, apex JF?GX[aqMH?, apex JF?GXSeqMI?, apex JF?GYSehUP?, apex JF?HKSdRMS?, apex JFO@OWFxCN?, apex J??^F?\{u?\}?, apex JF??XKmrEQ?, apex JgCWTCeS[\{?, apex J]?GGRBI_i_, apex J@G?g^WxEM?, apex JG?hubCE[\{?, apex J]?GOBHHom?, apex J]`GOGBGwf_, apex

J ${ }^{\text {GpSpFPCo_, non-apex }}$ J@?GuNaVDW_, apex J?GU_X`bNa?, apex J]? GW [PHmP?, apex J?`H]ao[?^_, apex J@HCOK[sVB?, apex〕@HCWoSo^B?, apex J?HRTVOFLg_, apex Jh_?wWcS[F?, apex J??HWzo\{E]?, apex JiGO?SFelM?, apex JIgW?cbpcN?, apex JIg@_WTpcN?, apex JI?HaYLkd\{?, apex JI_H_gJhMM?, apex J@IIOgQo^B?, apex J?Ij[‘PE^__, apex JIk_GCBd]F?, apex JIk?GKp`mM?, apex JIk?H_F`mM?, apex JIk??Ku`uM?, apex J@IQOoEo^B?, apex J@IQOWQo^B?, apex Jj?DcWLBjw?, apex Jj?DkOLBZw?, apex J@JGOcQo^B?, apex JjKCKOF@zw?, apex JkCaC?NBPC_, apex JK_@GhJNEE_, apex JkGPcPDAgM_, apex J?K@gRDpVa?, apex J`KhchIOsH_, apex JKog?cFKmM?, apex Jk__x?BPWr_, apex Jk??xXKKKE_, non-apex J@?LbdKbNw?, apex J_?@|`L[CW_, non-apex JL?GW\{aqMH?, apex JL?GXSUpUP?, apex JL?GY[SolP?, apex JLog?CFC\}M?, apex Jl`@ogH@gF_, apex JLO?WKXhMM?, apex JLQ@W_DA]F_, apex JLS?GKJhMM?, apex J?N_?cJsfF?, apex JoC?Jpef_~?, apex J@ocoK[sVB?, apex Jo@c0sZ\Bw?, apex JoCQ@ARRP[?, apex

Joc@WXoTSN_, apex J]o???fDo]?, apex J?oGGJokre?, apex JoG?WlW $\backslash \mathrm{CN}_{-}$, apex JoG?Z_[TcN_, apex J?oH?kU\{FB?, apex Jo@HWpPK[\{?, apex
J?oi``o`sN?, apex J]?@0jKBo]_, apex Jo[?_KTXcN?, apex J?oPGSppNa?, apex J@OWpRDotK?, apex J?ox_E`S]M?, apex Jo??ygl]CN_, apex JpC?G\SYcN_, apex JpG?IhIFcN_, apex Jp?_GtWRcN_, apex J?_PIRocrW_, apex JpPC??lEom?, apex JpS?OKTXcN?, apex J_?@|pSRD@, apex JQAKQXIL`b?, apex JqC_iIIGWU_, apex Jq?CYWKKXd?, non-apex JQ?EXW[WKa_, apex JQ`@GodEmE?, apex
JqGOO?rRSM?, apex JqGPGoBP[T_, apex JqGWGOBW\{f_, apex JQ?HW\{oqMH?, apex JQo@GgJLMM?, apex JQo_`_M@\}M?, apex Jq_P??xBqM?, apex JqQ?@KeEwv?, non-apex JqQ@`_MBOF_, apex JQ_@WhHLME_, apex Jq? @wWKcZB?, apex JQ?@WzCMME_, apex J?_QXYOWN_?, non-apex
J@r_?CREvF?, apex Jr_GOdc@wN_, apex JR?GSddba[_, apex JR?GUN?Jg|?, apex Jr`???NHou?, apex J@r0?cbIeF_, apex J?ro0F@Kxf?, non-apex
JRQG?CfEuF_, apex
JRQKACg@Wd_, apex
JrWOGCBB[F_, apex
JrY?GGBCwV_, apex

Connectivity Three, continued

Js?BRG[F?F-, non-apex
J@s?GKfsVK?, apex
JsH@goKOWF_, apex JsO_goK0xF?, apex Js0@gWKKYF?, non-apex JsO_oghP_F_, apex JsO__@pBo]?, non-apex JSPB_WKK[F?, apex Js??wxaWOX_, non-apex Js?@Wx`S_X_, apex JSXP_OD?\}F-, apex J???thkpfo?, apex JtPG?C~kq]_, apex J???vG\{pfo?, apex JWCcIMWU?~_, apex J@?WfRaba[_, apex J`@WgWW[F?, apex J??wPbBovo?, apex J??wU?Rwfo?, apex J?@XOaBwVo?, apex J?xo?CRcvF?, apex J??^@?XpVo?, apex JXqA?_F@op_, non-apex J??XU?RxFo?, apex J??Y`QBxFo?, apex JYQ?WG`E[F-, apex J_?ZAyaMlw?, apex J@zP?_B?\}F_, apex J?zP`?P?\}F_, apex J??Z?qBxFo?, apex K?AAHGYEV?^?, apex K`aAQGbGoxBa, non-apex KAc`aI?AWL[B, apex K``AC?hEPKas, non-apex K` $A C ? k J ? f A Y$, apex K` ` ${ }^{\text {? aEQWkDH, apex }}$ K``?aEQWsCh, apex K?A?ghIIV? ${ }^{\wedge}$, apex KAH@ICceKqO\{, apex K? [AIIokCM?\}, apex KaMC@?FB_akD, non-apex K?AQhmGQHP ${ }^{\sim}$?, apex KBAKS`_W?Q_t, apex KB@HSb?g?M@F, apex K]???BKIom@w, apex K`CaC?Ngaa@b, apex Kc_`A@w@oMBB, apex K?CcJLeUCov?, apex KcD`ACg_?b`q, apex K_CdAIGS?[eL, apex

K??cGdHFF?^?, apex
KchAC?tAo[EB, apex K??CJG[Ef?^?, apex KcL_ACa_?b`q, apex KCLJ_? @@[B\{K, apex KCOb_ODFCB\{K, apex K?CPPJ??\}W]A, apex K??CrJSjBo?^, apex KcS`B?E_?b`q, apex KCS`CDCCW[[B, apex KCSq@E?@WT[B, apex KCTPW?@G\BWM, apex KCUJG?@GXbWM, apex KC` Xo?@oxB\{K, apex K`d_??BBsfK[, apex K?df_?@B[bKL, apex K?df_?H@[akL, non-apex KDhQP?@?WLwN, apex K?dPf?G@GD\{F, apex KdY?wG@?XBgV, apex KDZ???Z@pEWB, non-apex KEh@K@@GOTae, apex K?ERV?CAG`\{F, apex K]?EX?O?WZ m, non-apex KFGe?C@oGZ m , non-apex KF?HHR?o?T?j, apex KF?KQSj`AGcb, apex K??FMo\{o@GbB, non-apex
K?GaCNOF?s[B, apex
K?GacV?DGw[B, apex K?GcIJOE_q[B, apex K]?G?DKKs]@\}, apex K@G]G?PA^AWM, apex K?GOZAO?\}W]A, apex K?@g_QBcRC~?, apex KGQgo?BC $\backslash a W M$, apex K` G?sGdPYsRo, apex K_GSKHIQP`eW, apex K]?GS?w@oMGF, apex K_GTAHGc?[eL, apex K??GTHQcbG~?, apex K??GUJAK`g^?, apex K??hEbCE_s[B, apex Khe?hSCOGB_V, apex K?@H_?FqTa^?, apex K?HO?]QgaP\}G, apex KhOWsA?G?J_], apex K`hP?d?_?R_u, apex K_hSb?OG?R_u, apex K?hSb@?_?rcu, apex

Kh_XQ?O_?F_m, apex K??_iagAuW]A, apex KIa@yW_CK@_N, apex KiGSC?J@oocd, apex KIKqCE?_?J`U, apex KI?।_OG? [BwM, apex K_iPa?H@QDeE, apex KKa@A?JCqhDa, apex KKaA@?RCqWdc, non-apex KkC`AOE_?b`q, apex KkCcXd?@GP_N, apex KkC_?@FIoeP`, apex KkC_GPK_p__
, apex KkD@?Kg_?b`q, apex Kk__? @FEowCX, non-apex KKh0??rAoMWB, non-apex KK` @I_g_?Uae, apex Kk__??NEqIEP, apex KKo@`HC_?w_], apex KКо@нHO_?w_], apex KKoo`D?_?J`U, apex KkQ@??\AoMEB, apex K??KQSjtDgM_, apex KKSs@D?_?R_u, apex Kk__yoCGGB_V, apex K? \({ }^{\text {LA }}{ }^{\circ} 0 \mathrm{~g}\) ?kdK, apex K@?LbdoRCWpc, apex K??]L@_EOp[B, apex KL_gq@?_?F_m, apex KL?HOj?o?K`L, apex Kl?IC?FE_IdD, apex Kl?KA?iDOJ@R, apex KLQ?@?FAo\{WF, apex KlQ???Z@oMDB, apex KLr@G_I?WB_Z, apex KLr?XC0?gB_N, apex KMi@GsCOGB_V, apex KMi?oGC?YFc], apex K??MQgsiF_?^, apex KM_XQA?G?F_m, apex K]`??NAoMEB, non-apex KoCO? \({ }^{\prime}\) IHb_ON, apex KoDrO_G?WBoN, apex Ko??GkM]BoO\{, apex K??@OhceEE__, apex KoHJ_gOAGBoN, apex KoMA?_bR?Ead, apex K??\}00` C^_WM, apex Ko@PPPO_?XaY, apex Ko@rOoOAGBoN, apex

Connectivity Three, continued

KoSsbCG@GB_V, apex KoTO_CBIPHO^, apex K??OUIaJAc^?, apex K??OUJAJ@c^?, apex Ko@@?wYBb_ON, apex Ko@@?wYJAcON, apex Ko_Xa?H?qHeE, apex KoXPc? $\mathrm{HCOH} _\mathrm{V}$, apex Ko?YoG ${ }^{\text {OXoON, }}$, apex K??@pATRUI^?, apex KPDCA?RBP[WF, apex KpG??LWBqk0\{, apex KpGWq@?_?J_], apex KPHAC?TAo\{WF, apex Kp0??AUIo]Ig, apex K?@P0?FqTa^?, apex K?pp_?BA \backslash aWM, apex K??]P?PWKI ~?, apex K`_PQIOW?Q_t, apex KpSAhWC_GD_N, apex KPTC??RBPMWF, apex KqC_GOT_r? \({ }^{\mathrm{T}}\), apex K??\{QCo?]0\}A, apex KqCPQG__?L`M, apex K?qc" '_S?P_x, apex KqGO?DEa`IbK, apex K]Q@gWG?gB_N, apex KqGWs@?G?J_], apex KQKsC@?O?V_\}, apex KqOc?? \({ }^{\text {GoMBB, non-apex }}\) K??q0cKkMQ[K, apex KQPCC?kK_Ya[, apex KQPCC?qIOZAq, apex KQPCC?wM?N?y, non-apex KQQ???fErIRO, apex KqQH?c_C?L`m, apex KQQ???jDrIRO, apex KqQ@0g_C?L`M, apex KQr@?_B?p``e, non-apex KqrH@COCHf` \}, apex K]Q?X_H@GE_V, apex Kr???AMFQUCw, apex KR`CA?XH_Q_t, apex KRr@?_G@?F_], non-apex KRr?X?O?wF?N, apex KrY?GGQAOF_^, apex KS`A@?\{@oUIB, apex Ks?APKSEAGdC, apex K?S_Cd_@k[]A, apex KsCQPG_O?L`M, apex K]`@_SEAGI_N, apex
Ks?G?@hX_uAw, non-apex
Ks?GOoUP@CkG, apex
Ks?HA?TEaTCi, apex
KsH???rBowGX, non-apex
KsH???ZHowGX, non-apex
KsL?XcCOGB_V, apex
Ks@@?O[E`Ig[, apex Ks0_??ZDpQGp, apex Ks0_z_G@GB_V, apex KSTcA?HGOLaU, apex KsWR_WC?gB_N, apex Ks???wYP`KL?, non-apex
KSXO??rAoMWB, non-apex
K?@@tBGF?i[B, apex
K[TCG?@CwZCN, apex
K`UC@?FH_QiD, non-apex KUHAC?XH_Q_t, non-apex KUIAA?[@oUCF, non-apex KUoa??F@oqCF, non-apex K??WAObkeK^?, apex KWC?GoFNeqWs, apex KW?cIKWeIpBw, apex KWECA?VIO[IB, apex KW?KYWocI`bw, apex
K]`?WOCCXF?], apex K]`?XcG@GB_V, apex
K??x?o@omD^?, apex
KXo?Wg@?ghwF, apex
K`XP?e?_?R_u, apex K???X[]rF_]?, apex K`XSC?B?pHbE, apex
K?XSW?`C\aWM, apex K?XT_?H@\aWM, apex K??@YaoBUW]A, apex KYc?GGJGogwD, apex KYCPIQ?_?J`U, apex
K?YX?_B?~_W], apex
L?aAA?bCpWB_\{?, apex
L?_aOiOWF_@I@h, apex
LAr@@?O_?F_]N?, apex
LB?SIKfaCOHBIE, apex
LbY@C?C??F_yEK, non-apex
L??CATEb@oE_\{?, apex
LChb?a?0?Rao?
, non-apex
L?@CHOYCPGx?\{?, apex
L?CidB?o?H`WKB, non-apex L??cIS_EGpW_\{?, apex L]CkA?F?_A`B?N, apex
L[CqAA?A?F_eAp, non-apex

Ks?GOoUP@CkG, apex Ks?HA?TEaTCi, apex KsH???rBowGX, non-apex KsH???ZHowGX, non-apex KsL?XcCOGB_V, apex , KsO_??ZDpQGp, apex KSTcA?HGOLaU, apex KsWR_WC?gB_N, apex Ks???WYP KL?, non-apex KSXO??rAoMWB, non-apex K?@@tBGF?i[B, apex K[TCG?@CwZCN, apex KUHAC?XH Qt, non-apex KUIAA?[@oUCF, non-apex KUoa??F@oqCF, non-apex K??WAObkeK^?, apex KWC?GoFNeqWs, apex KW?cIKWeIpBw, apex ?VIOLIB, apex K]`?WOCCXF?], apex K] ? ?XcG@GB_V, apex K??x?o@omD^?, apex KXo?Wg@?ghwF, apex K`XP?e?_?R_u, apex K???X[]rF_]?, apex K`XSC?B?pHbE, apex K?XT ?H@ \(\backslash\) aWM, apex K??@YaoBUW]A, apex KYc?GGJGogwD, apex KYCPIQ?_?J`U, apex K?YX?_B?~_W], apex L?aAA?bCpWB_\{?, apex LAr@@? ? F]N?, apex LB?SIKfaCOHBIE, apex LbY@C?C??F_yEK, non-apex L??CATEb@oE_\{?, apex LChb?a?0?Rao?
, non-apex L?@CHOYCPGx?\{?, apex L?CidB?o?H`WKB, non-apex L??cIS_EGpW_\{?, apex L[CqAA?A?F_eAp, non-apex

L??CQG[FBCSG\{?, apex LC`QU?_G?L_MM@, apex L??CSG[FBCKG\{?, apex L??C?STXF?Bo\}?, apex LCTdE????bdE@k, non-apex LC?ZBAGo? \({ }^{\text {` }}\) WKB, apex L??CZb?I?g?F~?, apex LDjAA?Z@@?_R?V, apex LDWcC@?0?F`wDK, non-apex LDxRC?B?OG_F?N, apex L@EcU@?0?d`gGL, non-apex L_eRB?RA?GcB?N, apex LFw?G?@P`B0\{@\}, apex LF`@@@?_?X` Y@w, apex L??g_aIQPEW_\{?, apex L??G`CiDUGX?\{?, apex LGed?`?O?F`IDH, apex LGfE?__G?R_wCL, non-apex L??G_geIeAX?\{?, apex L??goaGOXEW_\{?, apex L??go_g0[EW_\{?, apex L??go_h0cAw_\{?, apex L??goq?OXDW_\{?, apex L??GP?TCv?Wo\}?, apex LGQQdA_A?K_MEB, apex L??GT@OcbG?\{\}?, apex L]?GWC@?XBber_, apex L@GYtB??GA_boF, apex L???hGiFEAX?\{?, apex L@HIeA?_?h`WGL, non-apex L??H?kUIE?x?\{?, apex L??h0gQqE??L\{@, apex LHoPAA?_?]AM@k, non-apex LHoPAA?_?]?mCk, non-apex L@HQUA?_?LbGGL, non-apex L@HQUA?_?p_wGL, non-apex L@hUE???? \({ }^{\text {FbEHK, non-apex }}\) L?iaqg??H@aEoN, apex LiC`Oi?_?D_MBB, non-apex Li?G`ECa?T?iKB, apex LiGP_Y?_?B_UBB, non-apex L??IKSgDA`SA\{?, apex Li?p0q?_?D_MBB, non-apex L??ISMGP@`EA\{?, apex L@j?c@?0?]AMGk, apex L@`Kd@?O?h_MI`, apex L???kGiFBAX?\{?, apex LK_hc@?O?b`E@p, non-apex L?KHeFCG?__boF, apex LKHM?___?J_YEH, apex

L???KH`S`SR_\}?, apex L]KIK?B?OG_F?N, apex L????kM[DOWo\}?, apex LK M?__G?R_wCL, non-apex L_KtA`?_?D_MBB, non-apex L?Ku??@AWN]?o[, apex L?Ku??H@0F\}?o[, non-apex L?LACAoHOe@ooF, apex L?LCLHQA?_cBoF, apex LL_gq@?_?B_M@b, apex L?lu????WfCMo[, apex L`?MECoBHd@i~?, apex LMG[C@?G?F_eAp, non-apex LoDa`a?A?D_MBB, apex L@O\DB?0?H_YEB, non-apex LoDca00G?B_UBB, apex L???OkUbBO[?\{?, apex L]o__OE@OC_L?N, apex L]o__OF@?C_J?N, apex L]o__0???L_m?\{, non-apex Lo?qW?@CWRN?_], apex LOsoGCA?Z_GM_], apex L???oyEHAO\{?\{?, apex LpG[A@???F_mEc, apex LpGYAA???MaUA[, apex L@PTDB?A?H_YEB, non-apex LQKsAE?0?B_UBB, non-apex LqOp0o@?G@_r_N, apex LqQ???fEpGB@?r, non-apex LqQ@Go??gBcdEL, non-apex LqQ@Go??GFceEL, apex LqYP?_???F_]BK, apex LRCkC@?O?F_eAp, non-apex LR`KAC??@P_mCk, non-apex LrWO[?@?OH_U?N, apex LrWOS?C?_B_M@b, non-apex LS`aa0w@?C_J?N, apex LsCRB?A?O@`fBM, non-apex LSXO?C@?`d@ioK, apex L_T_`A?_?FdSDS, apex L[TCH?@?O@aVBM, apex L@UeE?FC@?`B?N, apex L??w@Ca_yFZ?u?, apex LWCkc@?O?F`EDP, apex LWIK_`?0?J`WCL, apex L???[WqSF?@a\{@, apex L??@Wx_cEO?e\{@, apex L???wy?QHH[?\{?, apex L???WZ?gaaEc\}?, apex

L???_xIHcW[?\{?, apex
LXQM?_F?O_`B?N, apex L?YUE?_C?FcaEH, apex L?YW??BGwfWW\{?, apex M?aAQHOg@_E??\{BB?, non-apex M]_AGWKG?_?B?X?e_, non-apex M]_AHGSA?0?B?X?e_, apex M??C?gSAoTK_w?\}??, apex M?`CIQOW@_E??\{BB?, non-apex M`dcb?K?OC?F?M?F-, apex MDg?gWcoA?G??N?r?, apex Mdg?WgCGI?G??V?j?, non-apex MdWcA?Z@?G?J?e?F-, apex MDWEGG[?OA?BGFoF?, apex M_Ea@OgS?c0?@F?x?, non-apex ME?hON@???`BKEoF?, apex M_E?j@oI@00?@F?x?, non-apex M?FDA_gIA_0??r@L?, non-apex MF?KC@AOPGD?Aq@L?, apex MgA?i_WI@00?@F?x?, apex M???GGRAuGM?i?\}??, apex M` GQSGWHA?0??r?N?, apex M???GSIgIaQ_X?\}??, apex M??guB?WC_E?AF@w?, non-apex MhIAG?WCOQ0?@F?x?, apex MhS_WGO?[?0??f?Z?, non-apex M?iaa_No@?A@?F?F_, apex MiC_X_CAK?O??V?j?, non-apex MiGOpGG@K?0??V?j?, non-apex MiKoOGA?[?0??f?Z?, non-apex MK?CQICQ@_E?@dAY?, apex MkhP_OC?W?_P?J?R_, apex MM_e?WKC@??B?X?e_, apex M?ND?O`SA_0??N@p?, apex M]o?gG_A?G_K?b?[_, non-apex M@@?oggoE?S??xBE?, apex M[0?iGga?GA@?p?M_, apex Mo@Q`Wi???aBAE_F-, apex M`P@OgSIC?0??f?Z?, apex MpTPS?@?OG?O?N?N?, apex MQCkb?CAK?G??f?Z?, apex M`Q?gggW?00@?L?q_, non-apex M` Q?gh_a@?@@?p?M_, non-apex MqG?WWSKA?0??N?r?, non-apex MqG?WWSWC?A??N?r?, non-apex MQKsC@?O?F_W?LB@_, non-apex M`Q@OgSIA?O@?d?Y_, non-apex Mq_?WWSK@?G@?L?q_, non-apex Mq_?WWSW@?A@?L?q-, non-apex

M?r@`boA?C_I@B?F_, non-apex Mr_?gWKW??_P?R?J_, apex MrW?G?@@_BaqAY`w?, apex MrWOOGB_?G?O?N?V?, non-apex MrY?GGOA?B?Q?X?e_, apex Ms?B?oWP@G@_?F?w_, non-apex Ms???\?GGccSF?R??, apex Ms?GGGBEA@CBCoY??, apex Ms?GOCEE?aCDPOWC?, apex MsG?WWSKA?G??N?r?, non-apex MsG?XGSEA?G??N?r?, non-apex Ms???K_CgdHGR?J??, apex Ms???@KQ_eBGHOH_?, apex Ms???@kR@SCgCoCo?, apex Ms??OKEB?_aKY?WA?, apex MSP@OggDC?G??f?Z?, apex MSP@OgSIC?G??f?Z?, apex MsP@_W_AGGA@?X?e_, apex MWCU_WK?0@?BGFoF?, non-apex MWFE?gIA?_C??V?N?, non-apex N???`EC`APHAI_DO]??, apex N??GGOGCXDE_oOo_]??, non-apex N??G?GXGogCPq?o_]??, non-apex N??GOCDHOdX?S?g?\}??, apex N??GOCECHAw_oOM?]??, non-apex N??GOGSI?ccKo_o0]??, non-apex N??GOKCAMCWCKCKO]??, non-apex N??GOKEAC_kAcGWO]??, apex N??GOOSDAECWoCgG]??, non-apex N??GOPE`_aCGgAS@]??, non-apex N??GQA?HOdCcCoq?]??, apex N???GQBOogD@p?M?]??, apex N???GSGChBW_L?q?]??, non-apex N????[OFADCSb?w?]??, non-apex N???00BDHEW_q?L?]??, non-apex N@QEE?gD?gD??o?H_BW, non-apex NqQ@GocE?E?A?H?B_@w, apex NqQ@HGWE?C?G?J?F?@w, non-apex N????SECWwP_W_w?]??, apex N[TCGcKG??_A?J?R?@w, apex N???WWOC` @gKb?w?]??, apex N???WXBCCGCBM?oC]??, non-apex N???WXBC?gCBi?oC]??, non-apex Os?G??I@OI@OCHCEKGBC?, apex Os?G??I@OI@OCHGEIGBC?, non-apex Os?GOGA@?CAICIGQGEBO?, non-apex Os?GOKG?AKAIGKCCCCA?B, non-apex Os?GO?@?OIADOcGcAcBO?, apex Os?G????wEBCHADGGWBO?, non-apex

Connectivity Four

Fs $\backslash v w$, non-apex	H`iZQn~, apex	IscQXXb $\backslash ?$? non-apex
GE1~~w, apex	HoSsZf\{, apex	Is_JJd[N?, apex
GJz \sim \{, apex	HqAztXZ, apex	ISPDtlkVG, apex
G\}_xq[, non-apex	H\{_yqgj, non-apex	IukAHLLL_, apex
H~AIX[^, apex	IrQH_YrRo, apex	

Connectivity Five

[^0]: *Bodendiek and Wagner thought that the number of topological obstructions (which they called $<_{1}$-minimal graphs) for the spindle surface was "about 100 " in [11].

[^1]: ${ }^{\dagger}$ The planarg program was written by Brendan McKay and Paulette Lieby, and is itself based on code from the Magma Computational Algebra System [30].

[^2]: ${ }^{*}$ The graph6 format translates the adjacency matrix of a graph into a compact description in the ASCII character set. See [33] for more.

