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Abstract: In order to determine the optimal scale for urban ride-hailing services and taxis while
promoting their sustainable growth, we have developed a Lotka-Volterra evolutionary model that
accounts for the competitive, cooperative, and mixed dynamics between these two entities. This
model is rooted in the theory of synergistic evolution and is supported by data simulation and analysis.
By employing this model, we can identify the appropriate size for urban ride-hailing services and taxis
when they reach equilibrium under different environmental conditions. The study’s findings reveal
that the evolutionary outcomes of online ride-hailing services and traditional taxis are closely linked
to the competitive impact coefficient and the cooperative effect coefficient. In highly competitive
environments, intense rivalry can lead to the elimination of the less competitive party, while the
dominant player ultimately attains a specific size threshold. As competition moderates, both entities
can achieve a balanced and stable coexistence in the market. In cooperative environments, both
online ride-hailing services and traditional taxis have more room for development, which facilitates
the integration of existing and innovative business models. In environments marked by competition,
the development trends of both entities mirror those in competitive settings, but cooperation can slow
down the decline of the less competitive party. In conclusion, we propose strategies to foster fair
competition between online ride-hailing services and traditional taxis, consider the coexistence of old
and new business models, and promote their integrated development.
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1. Introduction

As integral components of urban public transportation, taxis play a pivotal role in fulfilling the
commuting needs of the populace. They offer passengers a convenient, comfortable, and flexible
means of personalized transportation, effectively complementing urban public transit systems [1]. The
evolution of the taxi industry has, however, given rise to monopolistic tendencies, resulting in issues
such as subpar service quality, refusals of service, circuitous routes, and arbitrary fare quotations by
select taxi drivers [2].

Simultaneously, the rapid emergence of the net-contracted vehicle sector, driven by developments
in mobile internet, big data, and the sharing economy, has significantly transformed the urban trans-
portation landscape. Despite public concerns regarding passenger safety, the legal framework govern-
ing online taxis has gradually solidified through the introduction of pertinent regulations by the Min-
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istry of Transport. Leading platforms such as Drip, Shenzhou, and Cao Travel have rapidly gained
prominence in this domain [3]. The ascendancy of online taxis has caused a substantial decline in
traditional taxi ridership, thereby adversely impacting the conventional taxi industry and inciting a
series of driver strikes.

Moreover, recent concerns include the substantial commissions levied by online taxi platforms,
the non-transparent allocation mechanism, and arbitrary fare rule adjustments, which have prompted
community apprehensions [4]. To forestall long-term platform dominance and the infringement of
driver and passenger interests, and to stimulate the healthy co-development of online taxis and tradi-
tional taxis, it is imperative to investigate their scale of development within an environment marked
by competition, cooperation, and rivalry.

Numerous scholars have conducted extensive research on the dynamics of online taxis and tradi-
tional taxis. Some have devised game models to analyze the market dynamics and equilibrium con-
ditions, subsequently estimating the appropriate scale for taxi deployment [5]. Others have proposed
government regulatory measures to oversee online taxi platforms, framed within a two-dimensional
game model involving the government and online taxi providers [6]. Additional studies have inves-
tigated the coexistence of online taxis and traditional taxis within competitive markets, probing their
future trajectories and service adaptations [7]. Furthermore, research models have explored the game
between online taxis and traditional taxis, considering platform subsidies, with results suggesting that
traditional taxis are unlikely to exit the market due to rapid internet development and substantial sub-
sidies from online taxi platforms [8]. Studies on the impact of online taxis on traditional taxis also
argue that traditional taxis will continue to persist in the market [9]. Some scholars advocate a syner-
gistic developmental approach for online taxis and traditional taxis within a competitive framework,
emphasizing passenger travel perspectives and suggesting the implementation of a dual-track system
to foster industry reform, upgrade, and long-term stability [10].

Competitive evolutionary models have widespread applications in fields like ecology and business
competition. The Lotka-Volterra model, typically utilized in these contexts, has found relevance in
transportation studies. For instance, it was employed from a biomechanical viewpoint to evaluate
the stability and evolutionary trends of road and rail transport [11]. Other scholars have considered
various urban residential travel cohorts and built competition models between public and private trans-
portation systems grounded in the Lotka-Volterra framework, optimizing transport structures through
competition intensity adjustments [12].

Existing studies predominantly revolve around revenue competition between online taxis and tra-
ditional taxis, with relatively less exploration of evolutionary laws and optimal scales for their co-
existence [13]. Therefore, this paper embraces the theory of synergistic evolution, introduces the
cooperative effect coefficient, and establishes a Lotka-Volterra model for online taxis and traditional
taxis. Through data simulation and analysis, the study determines the suitable scale for their coexis-
tence, thereby fostering the stable and healthy development of the industry. The paper also presents
sensible recommendations for integrating old and new business models in the context of online taxis
and traditional taxis.

2. Analysis of the Evolution of Competitive Synergies

2.1. Modeling the Evolution of Competitive Synergy

As an important supplement to urban public transport, the development of online taxis and taxis has
a strong interaction with each other and the development of the social economy. They both rely on a
certain volume of passenger traffic as the basis for their growth. Therefore, the scale of development
for both types of transportation should be limited within the limits of the traffic environment and
resource capacity. The growth of their vehicle ownership is characterized by a logistic curve [14].
Since the logistic model can better reveal the development trend of urban transportation, this paper
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assumes that the development of online taxis and taxis conforms to the logistic model and expresses
their development scale in terms of vehicle ownership [15].

The evolution of competition between net cars and taxis can be analyzed using an improved logistic
model, i.e. the Lotka-Volterra model satisfying multiple systems, with a set of coevolution equations
as:  dX1(t)

dt = f (X1, X2) = γ1X1(t)
[
1 − X1(t)

N1
− α12

X2(t)
N2

]
dX2(t)

dt = g (X1, X2) = γ2X2(t)
[
1 − X2(t)

N2
− α21

X1(t)
N1

] , (1)

where dX1(t)
dt ,

dX2(t)
dt is the growth rate of net cars and taxis at time t respectively; X1(t), X2(t) is the

number of net cars and taxis respectively, which varies with time t and is a function of time t; f (X1, X2)
is the growth rate of net cars at time t when the number of taxis is X2; g (X1, X2) is the growth rate of
taxis at time t when the number of net cars is X1; γ1, γ2 is the fixed growth rate of net cars and taxis
respectively, which is assumed to be a constant greater than 0; N1,N2 is the size threshold of net cars
and taxis respectively under certain socio-economic conditions, which is assumed to be constant; α12

is the effect of competition of taxis on net cars, α21 is the effect of competition of net cars on taxis,
i.e. the degree of competition, α12, α21 ≥ 0.

Net cars and taxis compete with each other in a competitive environment and reach equi-
librium with each other when time t → ∞ satisfies dX1(t)

dt =
dX2(t)

dt = 0, when the num-
ber of net cars and taxis is X∗1, X

∗
2, respectively, and four local equilibrium points are obtained:

M0 (0, 0) ,M1 (0,N2) ,M2 (N1, 0) ,M3

(
N1(1−α12)
1−α12α21

, N2(1−α21)
1−α12α21

)
.

2.2. Competitive Coevolutionary Stability Analysis

The stability of the 4 equilibria can be judged by the Jacobian matrix if det (J) , 0, the balance
points to meet det (J) > 0 and also −tr (J) =

(
∂ f
∂X1
+
∂ f
∂X2

)
> 0, which is the stability point. The Jacobian

matrix is:

J =
[

fX1 fX2

gX1 gX2

]
µ1(X′1,X

′

2)
=

 γ1

(
1 − 2X1

N1
− α12

X2
N2

)
−γ1α12

X1
N2

−γ2α21
X2
N1

γ2

(
1 − 2X2

N2
− α21

X1
N1

)  (2)

where fX1 =
∂ f
∂X1
, fX2 =

∂ f
∂X2
, gX1 =

∂ f
∂X1
, gX2 =

∂ f
∂X2

.
Substituting the four equilibrium points M0,M1,M2,M3 into Eq. (2) and calculating det (J) and

−tr (J), the stability or stability conditions can be found, as shown in Table 1.

Mi det (J) −tr (J) Stable condition
M0 γ1γ2 − (γ1 + γ2) Instability
M1 −γ1γ2 (1 − a12) γ2 − γ1 (1 − a12) a12 > 1, a21 < 1
M2 −γ1γ2 (1 − a21) γ1 − γ2 (1 − a21) a21 > 1, a12 < 1
M3

γ1γ2(1−a12)(1−a21)
1−a12a21

γ1(1−a12)+γ2(1−a21)
1−a12a21

a12 < 1, a21 < 1

Table 1. Analysis of the stability of the evolution of competitive synergies

According to Table 1, M0 (0, 0) is the unstable point; det (J) > 0,−tr (J) > 0,M1 (0,N2) is the
stable point when a12 > 1; When a21 > 1, det (J) > 0,−tr (J) > 0,M2 (N1, 0) is the stability point;
When a12 < 1, a21 < 1, det (J) > 0,−tr (J) > 0,M3

(
N1(1−a12)
1−a12a21

, N2(1−a21)
1−a12a21

)
is the stability point.

As shown in Figure 1, the evolution of the competitive equilibrium between online taxis and taxis
is generated with X1 (t) as the horizontal axis and X2 (t) as the vertical axis. As shown in Figure 1(a),
when α12 > 1 and α21 < 1, the plane is divided into 3 regions: I for dX1(t)

dt > 0, dX2(t)
dt > 0; II for

dX1(t)
dt < 0, dX2(t)

dt > 0; and III for dX1(t)
dt < 0, dX2(t)

dt < 0
.

Journal of Combinatorial Mathematics and Combinatorial Computing Volume 117, 25–36



Yi Zeng and Beijun Chu 28

Figure 1. Evolution of the competitive equilibrium

According to the above regional characteristics, the evolutionary trajectory line converges to the
equilibrium point M1 when t → ∞, regardless of the region from which it starts, and the net car
will be eliminated [16]. When starting from I, the growth rates γ1, γ2 of both net cars and taxis are
positive, their size will expand over time and the trajectory line moves towards II; When starting from
II, the growth rate of net cars is negative and the growth rate of taxis is positive. Over time, the size of
net cars gradually decreases and the size of taxis gradually expands, eventually moving towards M1;
when starting from III, the growth rates of both net cars and taxis are negative, which in turn move
towards II and eventually also tend to M1.

As shown in Figure 1(b), the analysis of the competition evolution trend is similar to Figure 1(a)
when a21 > 1, a12 < 1, which eventually tends to the equilibrium point M2. At this time, the compe-
tition impact brought by the online taxi to the taxi is much larger than the competition within the taxi
itself, and the taxi will be eliminated in the market competition [17]. As shown in Figure 1(c), when
a12 < 1, a21 < 1, the final competitive equilibrium point tends to be M3 according to the analysis in
Figure 1(a). At this point, the competition between online taxis and taxis is more moderate, and they
can co-exist with each other in the market, and eventually reach an equilibrium state.

As shown in Figure 1(d), when a12 > 1, a21 > 1, M3 is the saddle point and there are no stable
points of competition between each other.

3. Analysis of Cooperative Co-evolution

3.1. Cooperative Evolutionary Model Construction

If the net car and taxis seek cooperation to achieve the high-end travel of net cars and taxi service
standards, price unification, and other complementary advantages, mutual benefit and symbiosis, the
domestic has been constantly exploring the cooperation between net cars and taxis, such as taxis
joining the net car platform, the taxi vehicle net upgrading to achieve service standardization, and taxis
can also join the net car platform to accept the platform’s allocation of orders, the two sides jointly
develop market plans of the cooperation model [18]. Therefore, the introduction of the influence
effect under the cooperation condition βi j, and its synergistic evolution equation system is:
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dt = γ1X1(t)

[
1 − X1(t)

N1
+ β12

X2(t)
N2

]
dX2(t)

dt = γ2X2(t)
[
1 − X2(t)

N2
+ β21

X1(t)
N1

] , (3)

where β12, β21 is the cooperative influence effect of taxis on net cars, net cars on taxis, and βi j ≥ 0
respectively.

Similarly, 4 local equilibrium points can be obtained: M0 (0, 0) ,M1 (0,N2) ,M2 (N1, 0),
M3

(
N1(1+β12)
1−β12β21

, N2(1+β21)
1−β12β21

)
.

3.2. Analysis of Cooperative Synergistic Evolutionary Stability

According to the analysis idea of the evolutionary stability of competitive synergy, the stability or
stability conditions of four local equilibrium points in the cooperative environment between online
taxis and taxis can be obtained, as shown in Table 2.

Mi det (J) −tr (J) Stable condition
M0 γ1γ2 − (γ1 + γ2) Instability
M1 −γ1γ2 (1 + β12) γ2 − γ1 (1 + a21) Instability
M2 −γ1γ2 (1 + β21) γ1 − γ2 (1 + β21) Instability
M3

γ1γ2(1+β12)(1+β21)
1−β12β21

γ1(1+β12)+γ2(1+β21)
1−β12β21

β12β21 < 1

Table 2. Analysis of the stability of cooperative synergistic evolution

According to Table 2, the equilibrium point M3

(
N1(1+β12)
1−β12β21

, N2(1+β21)
1−β12β21

)
is the stable point when

β12, β21 < 1 is satisfied. Combining with the characteristics of the region depicted in Figure 1(a),
the equilibrium evolution diagram of cooperation between online taxis and taxis can be obtained, as
shown in Figure 2.

When β12, β21 < 1, regardless of the initial state, the trajectory line of cooperative evolution con-
verges to the equilibrium point M3, M3 over time as a stable solution for the symbiotic evolution of net
cars and taxis. Under such conditions, they complement each other’s strengths through cooperation
and expand their own development scale.

4. Analysis of the Evolution of Competitive Synergy

4.1. Competitive Synergy Evolutionary Model Construction

The essence of the competition between online cars and taxis is the competition and occupation
of passenger flow. The party that cannot adapt to the fierce competition in the market will be elimi-
nated or reform and upgrade itself to improve its competitiveness and achieve the separation of market
positioning, and finally achieve the state of mutual competition and symbiosis [19]. Therefore, in-
troducing both the competitive influence effect coefficient ai j and the cooperative influence effect
coefficient βi j , the set of synergistic evolution equations is dX1(t)

dt = γ1X1(t)
[
1 − X1(t)

N1
− α12

X2(t)
N2
+ β12

X2(t)
N2

]
dX2(t)

dt = γ2X2(t)
[
1 − X2(t)

N2
− α21

X1(t)
N1
+ β21

X1(t)
N1

] (4)

The four equilibrium points in Eq. (4) are: M0 (0, 0) ,M1 (0,N2) ,M2 (N1, 0),
M3

(
N1(1+β12−α12)

1−(β12−α12)(β21−α21) ,
N2(1+β21−α21)

1−(β12−α12)(β21−α21)

)
, the evolution of which depends on the interrelationship

of α12, α21, β12, β21.

4.2. Stability Analysis of Competing Synergistic Evolution

As before, the stability and stability conditions of the four local equilibrium points under the
competing relationship between online taxis and taxis can be obtained according to the criteria of the
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Figure 2. Evolution of cooperative equilibrium
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Jacobi matrix for stability judgment, as shown in Table 3.
According to Table 3, M0 (0, 0) is not a stable point; when α12 − β12 > 1 and α21 − β21 < 1, the

det (J) > 0,−tr (J) > 0,M1 (0,N2) is the stability point; when α21 − β21 > 1 and α12 − β12 < 1,
det (J) > 0,−tr (J) > 0,M2 (N1, 0) is the stability point; when α12 − β12 < 1 and α21 − β21 < 1,
det (J) > 0,−tr (J) > 0,M3

(
N1(1+β12−α12)

1−(β12−α12)(β21−α21) ,
N2(1+β21−α21)

1−(β12−α12)(β21−α21)

)
is the stability point.

Mi det (J) −tr (J) Stable condition
M0 γ1γ2 − (γ1 + γ2) Instability

M1 −γ1γ2 (1 + β12 − a12) γ2 − γ1 (1 + β12 − a12)
a12 − β12 > 1,
a21 − β21 < 1

M2 −γ1γ2 (1 + β21 − a21) γ1 − γ2 (1 + β21 − a21)
a21 − β21 > 1,
a12 − β12 < 1

M3
γ1γ2(1+β12−a12)(1+β21−a21)

1−(β12−a12)(β21−a21)
γ1(1+β12−a12)γ2(1+β21−a21)

1−(β12−a12)(β21−a21)
a12 − β12 < 1,
a21 − β21 > 1

Table 3. Analysis of the stability of the evolution of competing synergies

The evolutionary trend of competition and cooperation between net cars and taxis is shown in
Figure 3, with different competition and cooperation impact effect coefficients, and the evolutionary
dynamics of competition and cooperation between net cars and taxis tending to different equilibrium
points [20]. As shown in Figure 3(a), when α12 − β12 > 1 and α21 − β21 < 1, Region I is dX1(t)

dt >

0, dX2(t)
dt > 0; Region II is dX1(t)

dt < 0, dX2(t)
dt > 0; and Region III is dX1(t)

dt < 0, dX2(t)
dt < 0. Over time, the

evolutionary trajectory lines eventually converge to the equilibrium point M1. If the initial state is in
I, both net cars and taxis have a growth rate greater than zero, the evolutionary trajectory will move
towards II; if the initial state is in II, the growth rate of taxis is positive, the growth rate of net cars is
negative, the scale of net cars gradually shrinks and the scale of taxis gradually expands, eventually
moving towards M1; if the initial state is in III, the growth rate of both net cars and taxis is negative,
first moving towards II and eventually reaching the equilibrium point M1 .

As shown in Figure 3(b), when α21 − β21 > 1 and α12 − β12 < 1, the regional characteristics are
similar to Figure 3(a), and the competing evolutionary trend eventually tends to the equilibrium point
M2 . At this point the competitive impact of mutual cooperation and taxis on the market is less than
the competitive impact of net taxis on the market, and net taxis will gradually dominate the whole
market.

As shown in Figure 3(c), whenα12−β12 < 1 and α21−β21 < 1, similarly, the competing evolutionary
trends eventually converge towards the equilibrium point M3 . At this point, the competition between
online taxis and taxis is more moderate, which, together with the cooperative relationship between
them, can lead to an equilibrium state in the market.

As shown in Figure 3(d), when α12 − β12 > 1 and α21 − β21 > 1, M3 is the saddle point and there is
no stable point of competition between them [21–23].

5. Co-evolutionary simulation analysis

5.1. Simulation analysis of competitive co-evolution

In order to visualize the development trend of urban online taxis and taxis under different re-
lationships, data simulation analysis was carried out using Matlab simulation software, and the
model parameters were used to determine the initial scale with the number of online taxis and
taxis in Xi’an in 2020. respectively X10 = 2.5 , X20 = 1.5 Other parameters are assumed to be
γ1 = 0.3, γ2 = 0.2,N1 = 3.5,N2 = 2.5 [21]. With these parameters set constant, the evolution of the
competitive synergy between net cars and taxis varies with the change of the competitive influence
coefficient. Assuming that the two sets of competitive influence coefficients are a12 = 0.5, a21 = 1.5,
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Figure 3. Diagram of the evolution of competing equilibria

a12 = 1.5, a21 = 0.5, a12 = 0.3, a21 = 0.4, a12 = 0.6, a21 = 1.3, a12 = 1.3, a21 = 0.6, a12 = 0.6,
a21 = 0.7 respectively, the competitive synergy evolution curve obtained using Matlab simulation
software is shown in Figure 4.

It can be seen from the simulation curves: in Figure 4(a) and (b), a21 > 1 , indicating that the net
car has a stronger ability to compete for and occupy the market, which inevitably causes taxis at a
disadvantage to gradually lose space for development, leading to the gradual elimination of taxis in
the process of competitive co-evolution; On the contrary in Figure 4(c) and (d), a12 > 1, net taxis will
be eliminated in the market competition [24]. Online taxis and taxis have their own advantages, and
both maintain a reasonable number structure and development scale can better meet the travel needs
of urban residents [25]. If the intensity of competition between the two in the market is mitigated,
as in Figure 4(e) and (f), the competition impact coefficients a12 and a21 are both less than 1. The
competition between the two is more moderate and reaches a symbiotic state after some development
in the market.

5.2. Simulation analysis of cooperative co-evolution

In the cooperative environment, the other parameters of the model remain unchanged, and it is
assumed that the coefficients of the cooperative effect of the two groups of net cars and taxis areβ12 =

0.3,β21 = 0.3,β12 = 0.1,β21 = 0.1 respectively, i.e. the stability condition of β12β21 < 1 is satisfied.
The data simulation using Matlab software is used to obtain the cooperative evolution curve under
the cooperative environment, as shown in Figure 5. From the simulation results, it can be seen that
both online taxis and taxis are able to get a larger development space beyond their scale thresholds,
but under the cooperation model of a large number of taxis joining the online platform, the part of
taxis undergoing online upgrading is included in the development scale of both online taxis and taxis,
so their actual development scale is smaller than the development scale of the simulation results,
however both still have a larger development space in general [26]. In a collaborative environment,
it is possible to reduce losses due to excessive competition, while at the same time making full use
of each other’s strengths to serve different travel groups and improve the travel experience of city
dwellers.
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Figure 4. Evolutionary curve of competitive synergy

Figure 5. Collaborative synergy evolutionary curve

Journal of Combinatorial Mathematics and Combinatorial Computing Volume 117, 25–36



Yi Zeng and Beijun Chu 34

Figure 6. Competitive synergy evolutionary curve

5.3. Simulation analysis of the evolution of competition and cooperation synergy

In the competing environment, the coefficients of the competitive and cooperative effects are the
same as before, and the Matlab software is used to simulate and analyze the evolution law under
different model parameters, as shown in Figure 6.

In Figure 6(a) to Figure 6(d), when one party is more competitive, it is sufficient to dominate
the whole market and eliminate the other party. Although this law of evolution is also satisfied in a
competitive environment, the demise of the inferior party is greatly delayed because there is some
cooperation between them [27]. In Figure 6(e) and (f), compared with the competition simulation
results, when the competition between online taxis and taxis is more moderate, together with their
cooperative relationship, there is more room for both to grow, but not beyond the size threshold of
urban online taxis and taxis, and the time for both to reach a steady state is delayed; compared with
the cooperative simulation results, the size of online taxis and taxis is somewhat constrained.
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6. Conclusion

By constructing a Lotka-Volterra evolutionary model of online taxis and taxis in a competitive, co-
operative and competitive environment, and using the qualitative discriminant method of differential
equations to analyze their stability conditions, there is more room for both to develop in a cooperative
environment, and the number of taxis upgraded online belongs to the overlapping part of online taxis
and taxis, and the actual development scale is smaller than the simulated development scale. There-
fore, the cooperation between net taxis and taxis should be promoted to complement each other’s
strengths and reduce the losses caused by excessive competition.
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