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Abstract: For any positive integer h, a graph G = (V, E) is said to be h-magic if there exists a labeling
l : E(G)→ Zh − {0} such that the induced vertex set labeling l+ : V(G)→ Zh defined by

l+(v) =
∑

uv∈E(G)

l(uv)

is a constant map. The integer-magic spectrum of a graph G, denoted by IM(G), is the set of all h ∈ N
for which G is h-magic. So far, only the integer-magic spectra of trees of diameter at most five have
been determined. In this paper, we determine the integer-magic spectra of trees of diameter six and
higher.
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1. Introduction

In this paper all graphs are connected, finite, simple, and undirected. For graph theory notations
and terminology not described in this paper, we refer the readers to [1]. Let G = (V, E) be a graph.
For an abelian group A, written additively, any mapping l : E(G) → A − {0} is called a labeling.
Given an edge labeling l, we can define a labeling of the vertices l+ : V(G)→ A such that

l+(v) =
∑

uv∈E(G)

l(uv);

that is, l+(v) is the sum of the labels of all the edges incident with v. If there is a labeling l such that l+

is constant, then we say G is an A-magic graph and we call l an A-magic labeling. If G is not A-magic
for every abelian group A, then we say G is non-magic. On the other hand, if G is A-magic for every
abelian group A, we say that G is fully magic.

For convenience and to follow convention, we will use the notation h-magic, where h > 1, to
indicate Zh-magic. Similarly, if l is a Zh-magic labeling, we say l is an h-magic labeling. It is
pertinent to mention that there is another definition of an h-magic graph [2]; this one is a different
generalization of magic graphs and so it does not relate to the topics covered in this paper.

Definition 1. For a graph G, let the integer-magic spectrum of G, denoted by IM(G), be the set of all
integers h for which G is h-magic.

The integer-magic spectra of trees of diameter at most five have already been determined [3,4]. In
this paper, we generalize these previous results and characterize the integer-magic spectra of trees of
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arbitrary diameter. For a compilation of results regarding the integer-magic spectra of other families
of graphs, we refer the reader to [5].

The term pendant vertex will refer to vertices with degree one. Similarly, the term pendant edge
will refer to edges which are incident to pendant vertices. Note that a pendant vertex will have the
same label as the pendant edge incident to it, so in order for l+ to be constant, all pendent edges must
have the same label. We will reserve the variable x for the label that every pendant edge must have.
Consequently, for l to be an h-magic labeling, we need l+(v) ≡ x mod h for every vertex v.

Figure 1. A Typical Tree of Diameter 6

2. Notation for Trees

To determine the integer-magic spectrum of any tree, we need to develop notation that applies to
trees of any diameter. To achieve this, we use the fact that trees of even diameter have as a center a
single vertex, and that trees of odd diameter have as a center the path P2. From now on, c will denote
the vertex at the center of a tree of even diameter; similarly, c1 and c2 will denote the vertices at the
center of a tree of odd diameter. Also, to simplify the statement of our theorems, we will use Tn to
refer to a tree of diameter n.

We start by describing vertices in terms of their distance from the center.

Definition 2. For a tree T2k and an integer i ≥ 0, let

Di := {v ∈ V(T2k) : d(v, c) = i}.

Trees of diameter 2k + 1 have the added complication of having two vertices at the center. For
the sake of having formal definitions, we need to distinguish those vertices that are closer to c1 from
those that are closer to c2. With this objective, we define the function δ : V(T2k+1) → N ∪ {0} where
δ(v) = min{d(v, c1), d(v, c2)}.

Definition 3. For a tree T2k+1 and an integer i ≥ 0, let

Di := {v ∈ V(T2k+1) : δ(v) = i}.

We are abusing notation by using Di for both even and odd diameter trees. However, for our
purposes, their definitions are equivalent. In both cases, Di is the collection of vertices at distance i
from the center. See Figure 2 for an example.

Note that for both 2k and 2k + 1 diameters, Dd = ∅ if d > k; otherwise, the diameter would be
bigger. Furthermore, if the tree has diameter 2k, then by definition there must be at least two pendant
vertices that are distance k away from c; similarly, for T2k+1, c1 and c2 each must have at least one
pendant vertex that is k away. Thus, for both odd and even diameters, if 1 ≤ i ≤ k, then |Di| ≥ 2.
Additionally, even diameters have D0 = {c}, and odd diameters have D0 = {c1, c2}. Finally, we note
that, for any n, if uv ∈ E(Tn) and u ∈ Dm, then either v ∈ Dm+1 or v ∈ Dm−1 because u and v are
adjacent, so the difference in their distance from the center is exactly one.

To discuss h-magic labelings for trees, we need a way to talk about the subgraph that “branches
out” of a vertex. With this objective in mind, we define the branches of Tn. To simplify the statement
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Figure 2. A Tree T6 with the Members of D2 Highlighted in Red

of these definitions, we will use the term P(u, v), where u, v ∈ V(Tn), to refer to the vertex set of the
unique path in Tn from u to v.

Definition 4. For a tree T2k and u ∈ V(T2k) \ {c}, let the branch of u, or Bu, be the induced subgraph
of T2k with vertex set:

{v ∈ V(T2k) : d(c, u) ≤ d(c, v) and ∀w ∈ P(u, v) d(c, u) ≤ d(c,w)}.

Furthermore, define Bc = T2k.

Informally, Bu is the subgraph of T2k that extends from u and outwards to the pendant vertices. We
now make an equivalent definition for trees of odd diameter.

Definition 5. For a tree of T2k+1 and u ∈ V(T2k+1) \ {c1, c2}, let the branch of u, or Bu, be the induced
subgraph of T2k+1 with vertex set:

{v ∈ V(T2k+1) : δ(u) ≤ δ(v) and ∀w ∈ P(u, v) δ(u) ≤ δ(w)}.

Furthermore, let Bc1 be the induced subgraph with vertex set:

{v ∈ V(T2k+1) : δ(c1) ≤ δ(v) and c2 < P(v, c1)}.

The definition of Bc2 follows similarly.

Figure 3. A Tree T7 with Bv Highlighted in Red

If v ∈ V(Bu) and v , u, then we say v extends from u. An important observation to make about
these branches is that if uv ∈ E(Tn), with u ∈ Dm and v ∈ Dm+1, then Bv is a subgraph of Bu since all
the vertices that extend from v also extend from u. In general, the branch of any vertex that extends
from u is a subgraph of Bu. We now create a term that combines the objectives behind Dm and Bu.

Definition 6. For a tree Tn, a vertex u ∈ V(Tn) and an integer m ≥ 0, let

Du
m := Dm ∩ V(Bu).
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Informally, Du
m is the collection of vertices at distance i from the center that also extend from u.

An important observation is that if u ∈ Dm and u is not a pendant vertex, then all the vertices in Du
m+1

are adjacent to u because they extend from u and are distance one away. On the other hand, if u is
a pendant vertex, then it must be that Du

m+1 = ∅ because nothing would be able to extend from u.
Finally, if u ∈ Dm, then Du

m = {u} because all other vertices in V(Bu) must be further away from the
center than u.

Having the same notation for both even and odd diameter trees allows us to make reference to
trees in general without having to specify the parity of its diameter; when the parity of the diameter
of the tree is important, we will separate the cases. We now prove a result that makes no reference to
h-magic labelings; it is a general fact about trees. A special case of the result will be extensively used
in the next section.

Theorem 1. Let Tn be a tree, let p and m be integers where p > m, and let u be a vertex in Dm such
that the set Du

p is nonempty. If Du
p = {w1,w2, ...,wα}, then, for every integer d such that d > p,

α∑
i=1

|Dwi
d | = |D

u
d|. (1)

Proof. Set k = f loor n
2 . If d > k, the result is trivial since all the sets in (1) are empty. Thus, assume

that d ≤ k.
Observe that the sets Dw1

d ,D
w2
d , ..., and Dwα

d are all pairwise disjoint since their corresponding
branches in Tn do not overlap. Thus,

|
⋃

1≤i≤α

Dwi
d | =

α∑
i=1

|Dwi
d |.

We finish the proof by showing that
⋃

1≤i≤α Dwi
d = Du

d. Let v ∈ Dwi
d for some i where 1 ≤ i ≤ α. By

definition, v ∈ Dd and v ∈ V(Bwi). Since wi extends from u, Bwi is a subgraph of Bu. Thus, v ∈ V(Bu).
It follows that v ∈ Du

d. Now let v ∈ Du
d. Then v ∈ V(Bu). Since v is further away from the center than

any of the vertices in Du
p, the path from u to v must go through wi for some i. That is, v extends from

wi, and so v ∈ V(Bwi). Since v ∈ Dd, v ∈ Dwi
d . □

In the next section, we will use the special case of p = m + 1 since, as discussed before, Du
m+1

consists of vertices adjacent to u. For convenience and future reference, we state it explicitly.

Corollary 1. For a tree Tn, let u be a vertex in Dm such that u is not a pendant vertex. If Du
m+1 =

{w1,w2, ...,wα}, then, for every d such that d > m + 1,

α∑
i=1

|Dwi
d | = |D

u
d|.

3. The Forced Labeling f

In an h-magic labeling, every pendant edge is forced to have the same label. We will show that in
trees this notion of a “forced” labeling extends beyond pendant edges.

We start by showing a method for labeling edges that makes l+ constant with the exception of the
vertices at the center. The method will depend on the labeling assigned to the pendant edges, though
it will not guarantee that the edge labeling does not include 0 in its range.

In Figure 4, we see such method applied. We can label the edges closer to the center according to
the label of the edges further away in such a way that their common vertex gets the constant label.
For instance, for v, the sum of the labels of the edges further away is −3x. Thus, the label of the edge
closer to the center needs to be 4x so that l+(v) = −3x + 4x = x. By using the notation we developed
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Figure 4. Edges Labelled Such That L+ Is Constant

in the previous section, we can define a function that calculates the number that multiplies the x for
each edge.

Definition 7. For a tree T2k, define f : E(T2k) → Z such that if uv ∈ E(T2k), u ∈ Dm and v ∈ Dm−1,
then

f (uv) := (−1)k−m+1
k−m+1∑

i=1

(−1)i|Du
k−i+1|.

Furthermore, for a tree T2k+1, define f : E(T2k+1)→ Z such that if uv ∈ E(T2k+1) \ {c1c2}, u ∈ Dm and
v ∈ Dm−1, then

f (uv) := (−1)k−m+1
k−m+1∑

i=1

(−1)i|Du
k−i+1|.

As for c1c2, let

f (c1c2) := (−1)k+1
k+1∑
i=1

(−1)i|Dc1
k−i+1|.

The definition of f for odd diameter trees is more complicated because there is an extra edge at
the center to consider. For edges other than that one, f is the same for even and odd diameters.

Note that, for even diameters, f cannot guarantee that l+(c) = x. A similar problem happens for
odd diameters. Although there is an edge at the center, this edge can only guarantee the constant label
for c1 or c2, but not always both. We arbitrarily chose to secure the constant label for c1. Another
problem with this method is the possibility that f (e) = 0 for some edge e. If that happens, then this
method cannot be applied to construct an h-magic labeling since 0 cannot be assigned to an edge.
These problems, however, do not happen in h-magic graphs. The proof of this fact follows

Lemma 1. Let Tn be an h-magic tree where l is an h-magic labeling. If the pendant edges have label
x, then for every edge e,

l(e) ≡ x f (e) mod h.

Proof. We first prove the statement for n = 2k. Define

D̂m = {uv ∈ E(T2k) : u ∈ Dm and v ∈ Dm−1}

for m such that 1 ≤ m ≤ k. This partitions E(T2k) into k sets. We will prove the statement by using
the principle of backwards induction on m.

For the base case, let uv ∈ D̂k where u ∈ Dk and v ∈ Dk−1. Since u ∈ Dk, then uv is a pendant edge.
By definition, l(uv) = x, and so

x f (uv) = x(−1)k−k+1
k−k+1∑

i=1

(−1)i|Du
k−i+1|

= x|Du
k |
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= x

= l(uv) mod h.

We used the fact that for all u ∈ Di, |Du
i | = 1.

Now assume that the statement is true for all edges in D̂m. Let uv ∈ D̂m−1, where u ∈ Dm−1, so
v ∈ Dm−2. Assume u is a pendant vertex. By definition, l(uv) = x, and so

x f (uv) = x(−1)k−m+1+1
k−m+1+1∑

i=1

(−1)i|Du
k−i+1|

= x(−1)k−m(−|Du
k | + ... + (−1)k−m+2|Du

m−1|)
= x(−1)k−m(0 + (−1)k−m)
= x

= l(uv) mod h.

We used the fact that, since u is a pendant vertex, |Du
i | = 0 for all i > m − 1.

Assume then that u is not a pendant vertex. Let Du
m = {w1,w2, ...,wα}. Since l is an h-magic

labeling,

l+(u) = l(uv) +
α∑

i=1

l(uwi) ≡ x mod h.

But uwi ∈ D̂m for each 1 ≤ i ≤ α, so we can apply the induction hypothesis and obtain

α∑
i=1

l(uwi) ≡
α∑

i=1

x f (uwi)

=

α∑
i=1

x(−1)k−m+1
k−m+1∑

j=1

(−1) j|Dwi
k− j+1|

= x(−1)k−m+1
α∑

i=1

k−m+1∑
j=1

(−1) j|Dwi
k− j+1|

= x(−1)k−m+1
k−m+1∑

j=1

(−1) j|Du
k− j+1| mod h.

Note that we used Corollary (1) in the last step. In the future, we will use it without reference. From
the above fact it follows that

l(uv) ≡ x −
α∑

i=1

l(uwi)

≡ x − x(−1)k−m+1
k−m+1∑

j=1

(−1) j|Du
k− j+1|

= x(1 + (−1)k−m+2
k−m+1∑

j=1

(−1) j|Du
k− j+1|)

= x((−1)2(k−m+2)|Du
m−1| + (−1)k−m+2

k−m+1∑
j=1

(−1) j|Du
k− j+1|)

= x(−1)k−m+2((−1)k−m+2|Du
m−1| +

k−m+1∑
j=1

(−1) j|Du
k− j+1|)
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= x(−1)k−m+2
k−m+2∑

j=1

(−1) j|Du
k− j+1|)

= x f (uv) mod h.

Thus, by the principal of backwards induction, the statement is true for all m such that 1 ≤ m ≤ k.
And so, the statement is true for all edges in trees of even diameter.

Note that this proof does not depend on the fact that the edges and vertices are in a tree of even
diameter. Since f is the same for both odd and even diameters with the exception of c1c2, the same
proof suffices for all edges in an odd diameter tree except for c1c2, which we now prove separately.

Let Dc1
1 = {w1,w2, ...,wα}. Since l is an h-magic labeling,

l+(c1) = l(c1c2) +
α∑

i=1

l(c1wi) ≡ x mod h,

and since c1wi ∈ D̂1 for every 1 ≤ i ≤ α, then l(c1wi) ≡ x f (c1wi) mod h. Thus,

α∑
i=1

l(c1wi) ≡
α∑

i=1

x f (c1wi)

=

α∑
i=1

x(−1)k
k∑

j=1

(−1) j|Dwi
k− j+1|

= x(−1)k
k∑

j=1

(−1) j|Dc1
k− j+1| mod h.

From this, it follows that

l(c1c2) ≡ x −
α∑

i=1

l(c1wi)

≡ x(1 + (−1)k+1
k∑

j=1

(−1) j|Dc1
k− j+1|)

= x((−1)2(k+1)|Dc1
0 | + (−1)k+1

k∑
j=1

(−1) j|Dc1
k− j+1|)

= x(−1)k+1((−1)k+1|Dc1
0 | +

k∑
j=1

(−1) j|Dc1
k− j+1|)

= x(−1)k+1
k+1∑
j=1

(−1) j|Dc1
k− j+1|

= x f (c1c2) mod h.

Thus, the lemma is true for all edges of an odd diameter tree, and so the proof is done. □

This result is significant because it allows us to describe any h-magic labeling of a tree Tn. In
particular, it tells us that any such labeling is dictated entirely by x, the label of the pendant edges.
Thus, determining if a tree Tn is h-magic becomes a matter of determining if we can find an x that
satisfies the two conditions that f itself does not guarantee. These conditions, again, are that no edge
has the label 0 and that l+ is also constant for the center vertices. It turns out that being able to find
such an x characterizes h-magic graphs.
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Theorem 2. Tn is h-magic if and only if there exists an integer x with the following two properties.

1. For every edge e ∈ E(Tn),
x f (e) . 0 mod h. (2)

2. (a) If n is even, then

x
k∑

i=1

(−1)k+i|Dk−i+1| ≡ x mod h (3)

(b) If n is odd, then

x
k∑

i=1

(−1)i|Dc1
k−i+1| ≡ x

k∑
i=1

(−1)i|Dc2
k−i+1| mod h. (4)

Before the proof, we note that the first property corresponds to not allowing the edges to have the
label 0, and that the second property corresponds to having the center vertices constant under l+. In
particular, the left hand side of (3) will correspond to l+(c). Similarly, the left hand side of (4) will
correspond to l+(c1) and the right side to l+(c2). Since f by definition guarantees that l+(c1) = x,
equation (4) will suffice to show that l+ is constant.

Proof. Assume Tn is h-magic and let l be an h-magic labeling. We will demonstrate that if x is the
label of the pendant edges under l, then x has both properties. We prove that property 1 holds by
contradiction. Assume there exists an edge e such that x f (e) ≡ 0 mod h. By Lemma 1, l(e) ≡ 0
mod h too, which contradicts the fact that l is an h-magic labeling. Thus, x has property 1.

For property 2, we start with even diameters. Assume n = 2k and set D1 = {w1,w2, ...,wα}. By
using Lemma 1, we get the result:

x ≡ l+(c)

=

α∑
i=1

l(cwi)

≡

α∑
i=1

x f (cwi)

= x
α∑

i=1

(−1)k
k∑

j=1

(−1) j|Dwi
k− j+1|

= x
k∑

j=1

(−1)k+ j|Dk− j+1| mod h.

To prove the odd case, we let n = 2k + 1 and set Dc2
1 = {w1,w2, ...,wα}. As before, Lemma 1 gives

us the result:

x ≡ l+(c2)

= l(c1c2) +
α∑

i=1

l(c2wi)

≡ x(−1)k+1
k+1∑
i=1

(−1)i|Dc1
k−i+1| +

α∑
i=1

x(−1)k
k∑

j=1

(−1) j|Dwi
k− j+1|

= x(−1)k(−
k+1∑
i=1

(−1)i|Dc1
k−i+1| +

k∑
j=1

(−1) j|Dc2
k− j+1|)
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= x(−1)k(−
k∑

i=1

(−1)i|Dc1
k−i+1| +

k∑
j=1

(−1) j|Dc2
k− j+1| + (−1)k)

= x(−1)k(−
k∑

i=1

(−1)i|Dc1
k−i+1| +

k∑
j=1

(−1) j|Dc2
k− j+1|) + x mod h.

This is equivalent to (4), so x has property 2, and so the forward direction is done.
For the other direction, we first deal with trees of even diameter. Assume that n = 2k and that there

exists an integer x such that (2) and (3) are true. Define l(e) = x f (e). We claim that l is an h-magic
labeling, i.e. that l+(u) ≡ x mod h for every u ∈ V(Tn), so let u ∈ V(Tn). We split the proof into three
cases.

Assume u ∈ Dk. If v is the unique vertex adjacent to u, then,

l+(u) = l(uv)
= x f (uv)
= −x(−|Du

k |)
= x.

Assume u ∈ D0, i.e. u = c. If we let Du
1 = {w1,w2, ...,wα}, then,

l+(u) =
α∑

i=1

l(uwi)

=

α∑
i=1

x f (uwi)

= x
α∑

i=1

(−1)k
k∑

j=1

(−1) j|Dwi
k− j+1|

= x
k∑

j=1

(−1)k+ j|Dk− j+1|

≡ x mod h.

Finally, assume u ∈ Dm where 0 < m < k. The proof of Lemma 1 demonstrates that f (e) = 1
for every pendant edge. Thus, if u is a pendant vertex, then l+(u) = x. So assume u is not a pendant
vertex. Set v ∈ Dm−1 such that uv ∈ E(T2k), and Du

m+1 = {w1,w2, ...,wα}. We obtain the result from the
following.

l+(u) = l(uv) +
α∑

i=1

l(uwi)

= x(−1)k−m+1
k−m+1∑

i=1

(−1)i|Du
k−i+1| + x

α∑
i=1

(−1)k−m
k−m∑
j=1

(−1) j|Dwi
k− j+1|

= x(−1)k−m(−
k−m+1∑

i=1

(−1)i|Du
k−i+1| +

k−m∑
j=1

(−1) j|Du
k− j+1|)

= x(−1)k−m(−(−1)k−m+1|Du
m|)

= x.

This shows that l is an h-magic labeling, thus completing the proof for even diameter trees. As for
trees with odd diameter, let n = 2k + 1 and assume there exists an x such that (2) and (4) hold. As
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with the even case, define l(e) = x f (e). The proof for u ∈ Di for i > 0 is the same as in the even case.
We deal with D0 = {c1, c2} separately. Set Dc1

1 = {w1,w2, ...,wα}. It follows that

l+(c1) = l(c1c2) +
α∑

i=1

l(c1wi)

= x(−1)k+1
k+1∑
i=1

(−1)i|Dc1
k−i+1| +

α∑
i=1

x(−1)k
k∑

j=1

(−1) j|Dwi
k− j+1|

= x(−1)k(−
k+1∑
i=1

(−1)i|Dc1
k−i+1| +

k∑
j=1

(−1) j|Dc1
k− j+1|)

= x(−1)k(−(−1)k+1|Dc1
0 |)

= x.

Similarly, if Dc2
1 = {w1,w2, ...,wα}, then

l+(c2) = l(c1c2) +
α∑

i=1

l(c2wi)

= x(−1)k+1
k+1∑
i=1

(−1)i|Dc1
k−i+1| +

α∑
i=1

x(−1)k
k∑

j=1

(−1) j|Dwi
k− j+1|

= x(−1)k(−
k+1∑
i=1

(−1)i|Dc1
k−i+1| +

k∑
j=1

(−1) j|Dc2
k− j+1|)

≡ x(−1)k(−
k+1∑
i=1

(−1)i|Dc1
k−i+1| +

k∑
j=1

(−1) j|Dc1
k− j+1|)

= x(−1)k(−(−1)k+1|Dc1
0 |)

= x.

Thus, l+ is constant for all vertices, and so Tn is h-magic. This completes the odd case, and so the
proof. □

Having a complete characterization of when Tn is h-magic allows us to find the integer-magic
spectrum rather easily. In fact, the proof of Salehi et al. for trees of diameter 5 in [3, 4] gives a
template for the proof of our final result. Before going on to the main result, we provide a small and
immediate corollary to Theorem 2 that will shed light on the conditions stated in the main result.

Corollary 2. For any h-magic tree of diameter 2k, if x is the label of the pendant edges, then

x
k+1∑
i=1

(−1)k+i|Dk−i+1| ≡ 0 mod h.

Furthermore, for any h-magic tree of diameter 2k + 1, if x is the label of the pendant edges, then

x
k∑

i=1

(−1)i(|Dc1
k−i+1| − |D

c2
k−i+1|) ≡ 0 mod h.

4. The Main Result

The integer-magic spectrum of an arbitrary tree is provided by the following general result.
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Theorem 3. Given a tree Tn, let k = f loor n
2 , and let

C := {m ∈ Z : m|r for some r ∈ Range( f )}.

When n is even, set

σ :=
k+1∑
i=1

(−1)k+i|Dk−i+1|,

and when n is odd, set

σ :=
k∑

i=1

(−1)i(|Dc1
k−i+1| − |D

c2
k−i+1|).

If D is the set of all positive divisors of σ that are not in C, then

IM(Tn) =


∅ if σ ∈ C;
N −C if σ = 0;⋃

d∈D dN otherwise.

Proof. We start by observing, from Corollary 2, that if x is the label of the pendant edges in an h-
magic labeling, then σx ≡ 0 mod h. Similarly, any integer x with the property that σx ≡ 0 mod h
also has property 2 in Theorem 2. We now proceed to the cases.

Assume σ ∈ C, and for a contradiction, assume there is an h such that Tn is h-magic. Let l be an
h-magic labeling and x be the label of the pendant edges. We then have that σx ≡ 0 mod h. Since
σ ∈ C, there exist an edge e such that σ| f (e), and so σx|x f (e). But then, x f (e) ≡ 0 mod h, so
l(e) ≡ 0 mod h by Lemma 1, which is a contradiction. We conclude IM(Tn) = ∅.

Assume then that σ = 0. Let h ∈ N − C. We will prove that Tn is h-magic by showing that x = 1
satisfies both properties in Theorem 2. From the definition of C, we have that h ∤ f (e) for any edge e.
In other words, f (e) . 0 mod h, so property 1 is satisfied. Furthermore, σ = 0 implies property 2.
Thus, Tn is h-magic, so h ∈ IM(Tn). For the other direction, assume h ∈ IM(Tn). Let l be an h-magic
labeling and x be the label of the pendant edges. Assume for a contradiction that h| f (e) for some edge
e. It follows that x f (e) ≡ 0 mod h, so l(e) ≡ 0 mod h by Lemma 1, which is a contradiction. We
conclude h ∤ f (e) for all edges, so h ∈ N −C. This proves that IM(Tn) = N −C.

Finally, assume that σ < C and σ , 0. We have to prove that IM(Tn) =
⋃

d∈D dN. Assume
first that h ∈ IM(Tn). Let l be an h-magic labeling and x be the label of the pendant edges. Set
d = gcd(σ, h). We claim that d ∈ D. By definition, d|σ, so we only need to prove that d < C. We
do so by contradiction, so assume d| f (e) for some e ∈ E(Tn). From σx ≡ 0 mod h, we know h|σx.
But since d = gcd(σ, h), then h|dx too, and since d|h, it follows that h

d |x. We combine this with d| f (e)
to get that h

d d|x f (e), or x f (e) ≡ 0 mod h, which is a contradiction with Lemma 1. Thus, d < C, so
d ∈ D. And since d|h, there exists a number p such that dp = h, i.e. h ∈

⋃
d∈D dN.

We prove the other direction. Let h ∈
⋃

d∈D dN. By definition, h is a multiple of d ∈ D so set
h = dq where q ∈ N. We will demonstrate that q = h

d is a choice of x that satisfies both properties in
Theorem 2. From the definition of D, d , 1, so h

d . 0 mod h. Since d < C, d ∤ f (e) for all edges
e, or ( h

d )d ∤ h
d f (e). We conclude that h

d f (e) . 0 mod h for all edges, so property 1 is satisfied. By
definition, d|σ, so σd h ≡ 0 mod h. Thus, property 2 is satisfied. By Theorem 2, Tn is h-magic, and so
h ∈ IM(Tn). In other words, IM(Tn) =

⋃
d∈D dN, and the proof is done. □
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