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1. Introduction

In this paper, we give values for the proper Ramsey number of K3 against C3 and C5. Let F and H
be graphs and χ′(H) the chromatic index of H. The proper Ramsey number, PR(F,H), of F and H is
defined to be the smallest positive integer n so that every χ′(H)-edge coloring of Kn contains either a
monochrome F or a properly colored H. Necessarily, if PR(F,H) = n, then there exists at least one
coloring of Kn−1 which contains neither. Such a coloring is called a critical coloring with respect to
PR(F,H).

English et al. [1] determined PR(F,H) for a variety of graph pairs in which χ′(H) = 2, including
for K3 against C4. Extending that work, Olejniczak [2] found the remaining values of PR(K3,Cn)
where n is even. The problem we address here concerns a pair of graphs for which χ′(H) = 3, namely
to determine PR(K3,C3) and PR(K3,C5).

Note that the proper Ramsey number is one of several variations on the ordinary Ramsey number. It
is closely related to the edge-chromatic Ramsey number introduced by Eroh [3]. The edge-chromatic
Ramsey number CR(F,H) is defined to be the the smallest positive integer n so that if the edges of
Kn are colored with any number of colors, then the colored graph contains either a monochrome F or
a properly colored H. Eroh [3] shows that this number exists only for certain classes of graph pairs.
The proper Ramsey number, on the other hand, is a restriction of edge-chromatic Ramsey number,
in the sense that we color Kn with a fixed number of colors. Olejniczak [2] shows that the proper
Ramsey number exists for all pairs of graphs F and H. Further variations on the Ramsey number are
discussed in Chartrand and Zhang [4].

In the following, graphs are assumed to be finite, simple, and undirected. We refer to Chartrand
and Zhang [5] for our graph-theoretic notation.
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2. Essential Preliminaries

At several points in this paper, we shall need to select a vertex of a graph so that it is incident to
the greatest number of edges of the same color. We therefore adopt the following definition.

Definition 1. Let G be a graph, and let {ci} be the indexed family of colors of edges in G. If v is a
vertex of G, then the color degree of v with respect to the color ci is the number of edges incident to v
that have the color ci. We denote the color degree by dci(v).

Note that there must be some i and some x for which dci(x) ≥ dc j(v) for all j and for every vertex
v in G. That is, there is some vertex incident to the greatest number of like-colored edges. The proof
is trivial. Let S = {dci(v) : v ∈ V(G)} be the set of all color degrees of all vertices in G. Then S is a
set of integers bounded above by ∆(G). It therefore has a greatest element. We denote this greatest
element ∆c(G) and call it the maximal color degree.

We shall also require the following facts about K4 and K5

Lemma 1. Every 2-edge-coloring of K4 that does not contain a monochrome K3 contains a properly
colored P4 beginning with each color.

Proof. Let G be a 2-edge-colored copy of K4 containing no monochrome K3. Consider an arbitrary
vertex x of K4. Without loss of generality, suppose that x is incident to more red edges than blue
edges. Then x is incident to either three or two red edges.

Suppose that x has three red edges. Then G must contain either a red or a blue K3. Let xa, xb,
and xc be the three red edges. Then ab and bc must be blue. But then ac produces a monochrome K3

regardless of whether it is red or blue. So x must not have three red edges.
Suppose that x has two red edges. Let xa and xb be red and xc blue. Then ab must be blue to

avoid a red K3. So (c, x, b, a) is a properly colored P4 beginning with a blue edge. On the other hand,
bc and ac cannot both be blue, since a blue K3 would result. So one is red. Thus one of (x, a, b, c) or
(b, x, c, a) is a properly colored P4 beginning with a red edge. □

Lemma 2. Any 2-edge-coloring of K5 not containing a monochrome K3 decomposes K5 into two
Hamiltonian cycles of different colors.

Proof. Let G be a 2-edge-colored copy of K5. We first show that dc(v) = 2 for every color and vertex
v in G. Suppose otherwise. Then dci(v j) ≥ 3 for some i and j. Without loss of generality, suppose that
this vertex is labeled a and the color is red. Then there are at least three vertices, label them b, c, and
d, adjacent to a through a red edge. If any of the edges bc, cd, or bd is red, a monochrome K3 results.
So none of them are red. But then they must all be blue, and again a monochrome K3 results. Thus
each monochrome subgraph of G is 2-regular.

Consider then, the red subgraph of G. This subgraph must be C5, since there is no other 2-regular
graph on 5 vertices. The same argument applies to the blue subgraph. Since these subgraphs have
disjoint edge sets and identical vertex sets, they decompose G into two Hamiltonian cycles of different
colors. □

3. Results

Theorem 1. PR(K3,C3) = 11.

Proof. We first show that PR(K3,C3) ≥ 11. Consider the following coloring of K10. Consider K10 as
K5 + K5. Decompose each K5 subgraph into two Hamiltonian cycles; in each K5 subgraph, color one
cycle red and the other blue. Color the remaining edges (those between the K5 sugraphs) green. This
coloring contains no monochrome K3. The red and blue subgraphs are each copies of C5, which do
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Figure 1. This coloring on K10 shows that PR(K3,C3) ≥ 11.

not contain K3. The green sugraph is K5,5, which contains no odd cycles by virtue of being bipartite.
Thus, the green subgraph contains no K3

Furthermore, this coloring contains no proper C3. Consider any 3-cycle in this graph. Either all of
the vertices lie in one K5 subgraph, or two lie in one K5 and the third lies in the other. In the first case,
all of the edges of the cycle are either red or blue, so it cannot be properly colored. In the other, two
adjacent edges are green, so it cannot be properly colored. This coloring is illustrated in Figure 1.

We now show that PR(K3,C3) ≤ 11. The proof is by contradiction. Let G be a 3-edge-colored
copy of K11 containing no monochrome K3 and no proper C3. We show that this assumption leads to
a contradiction. Let v be a vertex of maximal color degree, and X1, X2, and X3 the subgraphs of G − v
so that each Xi is joined to v entirely edges of a single color, say X1 by red edges, X2 by blue, and X3

by green. Since G contains no monochrome K3, the edges within Xi must each be of a color different
than that of the edges joining Xi to v. Since G contains no proper C3, the edges between Xi and X j

must each be one of two colors, specifically those of the edges joining Xi and X j to v. For instance,
the edges between X1 and X2 must all be either red or blue, since coloring any such edge green yields
a proper C3.

We will suppose that |X1| ≥ |X2| ≥ |X3|, which can always be accomplished by a relabeling of
colors. Note that |X1| + |X2| + |X3| = |G − v| = 10. It follows that the possible orders of these
subgraphs correspond to the three-part integer partitions of 10. We consider these possibilities in
order of decreasing |X1|.

Case 1. Suppose that |X1| ≥ 6. Then X1 contains a 2-edge-colored K6. It follows that G must contain
a monochrome K3, since R(K3,K3) = 6. But we assumed otherwise, so this is a contradiction.

Case 2. Suppose that |X1| = 5. Then either |X2| ≥ 3 or |X3| ≥ 3. Without loss of generality, suppose
that |X2| ≥ 3. Since X1 is a 2-edge-colored copy of K5 containing no monochrome K3, it can only
be colored in one way. By Lemma 2, X1 has one blue Hamiltonian cycle and one green Hamiltonian
cycle. Similarly, X2 must contain a proper P3, and so it has at least one red edge adjacent to a green
edge. From the discussion above, all the edges between X1 and X2 are either red or blue.

Let V(X1) = {a, b, c, d, e} so that (a, b, c, d, e, a) is the blue Hamiltonian cycle and (a, c, e, b, d, a)
is the green Hamiltonian cycle, and let p, q, and r belong to V(X2) so that pq is red and qr green.
Consider the set of edges from X1 to p. If any three of them are blue, then a blue K3 results, for in any
set of three vertices in V(X2), two of them are adjacent through a blue edge. Thus, at least three of
the edges from X1 to p are red. For the same reason, at least three of the edges from X1 to q are red.
But this means that there exists at least one vertex of X1 with red edges to both p and q, yielding a red
K3, so this is impossible.

Case 3. Suppose that |X1| = 4. There are two possibilities.

Subcase 3.1. Suppose |X2| = |X3| = 3. By Lemma 1, X1 contains both a blue-green-blue and a green-
blue-green P4. We will first examine the subgraph X1 + X2. Let V(X1) = {a, b, c, d} so that ab and cd
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Figure 2. Coloring of X1 +X2 when |X1| = 4, |X2| = |X3| = 3 and edge cq is red. Solid edges
are red, dashed edges blue, and bold edges green. Note the number of edges of each color
in X1.

are green and bc is blue. Let V(X2) = {p, q, r} so that pq is red and qr is green. Recall that all the
edges between X1 and X2 are either red or blue. Consider the set of edges {bq, cq}. At least one of
these edges is red, otherwise G[{b, c, q}] is a blue K3. (Recall that G[X] is the subgraph of G induced
by the set of vertices X.) Without loss of generality, suppose that cq is red. Then we must have the
following:

1. cr must be red, otherwise (c, q, r, c) is a proper C3.
2. dq must be red, otherwise (d, q, c, d) is a proper C3.
3. dr must be red, otherwise (c, d, r, c) is a proper C3.
4. cp must be blue, otherwise G[{c, p, q}] is a red K3.
5. dp must be blue, otherwise (c, d, p, c) is a proper C3.
6. bp must be red, otherwise G[{b, c, p}] is a blue K3.
7. ap must be red, otherwise (a, b, p, a) is a proper C3.
8. bq must be blue, otherwise G[{b, p, q}] is a a red K3.
9. aq must be blue, otherwise (a, b, q, a) is a proper C3.

10. br must be blue, otherwise (b, q, r, b) is a proper C3.
11. ar must be blue, otherwise (a, b, r, a) is a proper C3.

It then follows that the remaining edges of X1 must all be blue to avoid proper 3-cycles in (a, d, p, a),
(a, c, q, a), and (b, d, p, b). The resulting graph is shown in Figure 2. Thus, X1 has four blue edges
and two green edges.

Next consider the subgraph X1 + X3. Relabel the vertices of X1 so that V(X1) = {a, b, c, d}, ab
and cd are blue, and bc is green. (We are guaranteed the existence of such a path by Lemma 1.) Let
V(X3) = {x, y, z} so that xy is red and yz is blue. Note that the starting conditions here are isomorphic
to those in the case of X1 + X2 through the permutation of the colors blue and green. It follows that
X1 + X3 must be colored in the same way as X1 + X2 with the colors blue and green swapped. Hence,
X1 must have four green edges and two blue edges.

But then X1 must have both four green edges and four blue edges, a contradiction since X1 has
only six edges.

Subcase 3.2. Suppose that |X2| = 4 and |X3| = 2. We may assume that every vertex has a similar
distribution of edges. That is, we may assume that the edges out of each vertex fall into color classes
of size 4, 4, and 2, since otherwise we could apply a previous case by making a different choice of v.

Let V(X1) = {a, b, c, d} so that ab and cd are green and bc blue. Let V(X2) = {p, q, r, s} so that pq
and rs are green and qr red. We are guaranteed the existence of these paths by Lemma 1. Lastly, let
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Figure 3. Coloring of X1 + X2 when |X1| = |X2| = 4 and edge bq is red. Solid edges are red,
dashed edges blue, and bold edges green.

V(X3) = {x, y}. As in the previous subcase, we will begin with one edge and show that the choice of
color for that edge fully determines the rest of the coloring.

Consider the set of edges {bq, br, cq, cr}. At least one of these edges must be red, since otherwise
a blue K3 results. This scenario is entirely symmetrical with respect to these edges, so we are free to
suppose that the edge bq is red. We must then have the following:

1. br must be blue, otherwise G[{b, q, r}] is a red K3.
2. bp must be red, otherwise (b, p, q, b) is a proper C3.
3. aq must be red, otherwise (a, b, q, a) is a proper C3.
4. ap must be red, otherwise (a, b, p, a) is a proper C3.
5. ar must be blue, otherwise G[{a, q, r}] is a red K3.
6. cr must be red, otherwise G[{b, c, r}] is a blue K3.
7. cq must be blue, otherwise G[{c, q, r}] is a red K3.
8. dr must be red, otherwise (c, d, r, c) is a proper C3.
9. cs must be red, otherwise (c, s, r, c) is a proper C3.

10. ds must be red, otherwise (c, d, s, c) is a proper C3.
11. bs must be blue, otherwise (b, r, s, b) is a proper C3.
12. cp must be blue, otherwise (c, p, q, c) is a proper C3.
13. dp must be blue, otherwise (c, d, p, c) is a proper C3.
14. dq must be blue, otherwise (c, d, q, c) is a proper C3.
15. as must be blue, otherwise (a, b, s, a) is a proper C3.

It then follows that the remaining edges within X1 are all blue to avoid proper 3-cycles in (a, d, q, a),
(a, c, p, a), and (b, d, s, b). Similarly, the remaining edges within X2 are all red to avoid proper 3-
cycles in (p, a, s, p), (p, c, r, p), and (q, d, s, q). Thus, X1 + X2 must be colored as shown in Figure 3 in
order to avoid both monochrome K3 and proper C3.

Since the remaining edges out of X1 can only be red or green, each vertex of X1 must have one red
edge and one green edge into X3, otherwise the color classes would not have the correct number of
edges. Similarly, each vertex of X2 must have one blue edge and one green edge into X3. (Recall, we
may assume that every vertex has two edges of one color, and four each of the two remaining colors.)
Specifically, exactly one of the edges in {dx, dy} must be red, and the other green. Similarly, exactly
one of the edges in {sx, sy} must be blue and the other green.

Finally, consider the edge xy in X3. This edge cannot be blue, for then (d, x, y, d) would be a proper
C3. Neither can it be red, for then (s, x, y, s) would be a proper C3. This is a contradiction.

We have shown that |X1| cannot take on any value between 4 and 10. But since it must take on one
of these values, we have arrived at a contradiction. Therefore PR(K3,C3) ≤ 11.

We conclude that PR(K3,C3) = 11. □
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Figure 4. This coloring on K6 shows that PR(K3,C5) ≥ 7.

We now move on to the result for C5.

Theorem 2. PR(K3,C5) = 7.

Proof. We first exhibit a critical coloring on K6 that contains neither a monochrome K3 nor a properly
colored C5. To construct this coloring, consider K6 as K5 + K1. Decompose the K5 subgraph into
two Hamiltonian cycles, and color one cycle red and the other blue. Color the remaining edges
(those between the K5 and K1 subgraphs) green. This coloring clearly contains no monochrome K3:
the red and blue subgraphs are each copies of C5, while the green subgraph is the star K1,5. On
the other hand, any 5-cycle in the graph either contains the K1 vertex or it does not. If it does,
then it must contain adjacent green edges. If it does not, then it contains only red and blue edges.
But C5 cannot be properly colored with only two colors, so the graph contains no proper C5. Thus
PR(K3,C5) ≥ 7. We next show that PR(K3,C5) ≤ 7. Let G be a 3-edge-colored copy of K7 containing
neither a monochrome K3 nor a properly colored C5. We show that this assumption produces a
contradiction. Let v be a vertex of G with maximal color degree, and let X1, X2, and X3 be the
subgraphs of G − v so that each Xi is joined to v entirely by edges of the same color. We will
assume that |X1| ≥ |X2| ≥ |X3| and that X1, X2, and X3 are joined to v by red, blue, and green edges,
respectively. These assumumptions can can always be satisfied by a relabeling of colors. Since
|X1|+ |X2|+ |X3| = |G−v| = 6, the possible orders of these subgraphs must correspond to the three-part
integer partitions of 6. We consider the possible cases in order of decreasing |X1|.

Case 1. Suppose that |X1| = 6. Then X1 contains a 2-edge-colored K6. It follows that G must contain
a monochrome K3, since R(K3,K3) = 6. This is a contradiction.

Case 2. Suppose that |X1| = 5. Then, without loss of generality, |X2| = 1. By Lemma 2 the sub-
graph X1 must be decomposed into Hamiltonian cycles of different colors (blue and green) to avoid a
monochrome K3. Let V(X1) = {a, b, c, d, e} so that the blue cycle is (a, b, c, d, e, a) and the green cycle
(a, c, e, b, d, a). Let V(X2) = {p}.

Note that for each vertex in X1, there is a proper P4 in G − p beginning at v and ending on that
vertex, whose final edge is blue. In alphabetical order of final vertex, (v, c, e, a), (v, d, a, b), (v, a, d, c),
(v, c, e, d), and (v, a, d, e) are proper such paths.

Then the edge ap must be blue to avoid a proper C5; choosing red or green yields a proper C5 in
(v, c, e, a, p, v). But the same consideration applies to every vertex of X1, so every edge out of X1 into
X2 must be blue. But this yields a monochrome K3, such as G[{a, b, p}], so this is impossible. This
case is illustrated in Figure 5.

Case 3. Suppose that |X1| = 4. Then there are two possibilities.
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Figure 5. The coloring that results if |X1| = 5 in the proof of Theorem 2. This clearly
contains a monchrome K3, contrary to our assumption.

Subcase 3.1. Suppose that |X2| = 2. By Lemma 1, X1 contains a proper P4 that begins and ends with
blue edges. Let V(X1) = {a, b, c, d}, so that (a, b, c, d) is the proper P4, and V(X2) = {p, q}. Note that
pq is not blue, for then G[{p, q, v}] is a blue K3.

Consider the edges in {ap, aq, dp, dq}. If any one of these edges is not blue, then a proper C5

results. Note that these are symmetrically situated, so we may consider just one. Suppose that dp
were not blue. Then (v, b, c, d, p, v) would be a proper C5. So indeed, each of the four edges indicated
must be blue. But then ad must be green to avoid a blue K3 in G[{a, d, q}]. But now a proper C5

cannot be avoided, since (v, a, d, p, q, v) is a proper C5. So this subcase is impossible.

Subcase 3.2. Suppose that |X2| = |X3| = 1. Again, by Lemma 1, X1 contains a proper P4 that
begins and ends with blue edges. Let V(X1) = {a, b, c, d}, so that (a, b, c, d) is the proper P4, and let
V(X2) = {p} and V(X3) = {x}. Consider the edges bx and cx. If either of these edges is not green,
then a proper C5 results, namely either of (v, a, b, c, x, v) or (v, d, c, b, x, v). But they also cannot both
be green, since then G[{b, c, x}] is a green K3. So this subcase is also impossible.

Case 4. Suppose that |X1| = 3. There are two possibilites. Either |X2| = 3 or |X2| = 2 and |X3| = 1.

Subcase 4.1. Suppose |X2| = 3. Let V(X1) = {a, b, c} and V(X2) = {p, q, r}. Note that X1 and X2 are
2-edge-colored copies of K3 not containing a monochrome K3, so each contains a proper P3. We may
assume that ab is green and bc blue. Then cr must be blue, otherwise (v, a, b, c, r, v) is a proper C5.
But note that (r, q, p) is a proper P3 with no blue edges. It follows that (v, c, r, q, p, v) is a proper C5.
So cr cannot be blue. Hence, cr must be both blue and not blue, a contradiction.

Subcase 4.2. Suppose that |X2| = 2 and |X3| = 1. Let V(X2) = {p, q} and V(X3) = {x}. Note that X1

must contain a proper P3 since it does not contain a monochrome K3. We may assume that ab is blue
and bc green. But then,

1. cx must be green, otherwise (v, a, b, c, x, v) is a proper C5.
2. bx is red or blue, otherwise G[{b, c, x}] would be a green K3.
3. ap must be blue, otherwise (v, c, b, a, p, v) is a proper C5.
4. bp is red or green, otherwise G[{a, b, p}] is a blue K3.

Now consider ac. This edge cannot be blue, for then (v, a, c, b, x, v) is a proper C5. But neither can
this edge be green, for then (v, c, a, b, p, v) is a proper C5. Since this edge must be either blue or green,
this is a contradiction.
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Case 5. Suppose that |X1| = |X2| = |X3| = 2. Let V(X1) = {a, b}, V(X2) = {p, q}, and V(X3) = {x, y}.
Since we assumed that v has maximal color degree, it follows that every vertex of G has the same
number of edges of each color, namely 2. There are two subcases.

Subcase 5.1. Suppose that two of the edges in {ab, pq, xy} share a color. Without loss of generality,
suppose that ab and xy are both blue. In that case, ax must be blue, since otherwise (v, b, a, x, y, v) is
a proper C5. Since ay, bx, and by are symmetrically situated, they must all be blue as well. But then
G[{a, b, x}] is a blue K3, a contradiction.

Subcase 5.2. Suppose that each of ab, pq, and xy are different colors. Without loss of generality,
suppose ab is blue. Then pq must be green and xy must be red. Note that each of vertices a and b
must be incident to two green edges, as we established at the beginning of this case. The vertices of
X2 and X3 each have one green edge already. Since every vertex must be incident to two green edges,
it follows that there is a green edge out of X1 to each vertex in X2 and X3. But this always produces a
proper C5. Since this configuration is symmetric, it suffices to check one case. Indeed, if ax is green,
then (v, b, a, x, y, v) is a proper C5. This is a contradiction.

We have shown that |X1| cannot take on any of its possible values, and thus arrived at a contra-
diction. It follows that a 3-edge-colored K7 must contain either a monochrome K3 or a properly
colored C5, so PR(K3,C5) ≤ 7. Since we already showed that PR(K3,C5) ≥ 7, we conclude that
PR(K3,C5) = 7. □

4. Concluding Remarks

These two theorems further the determination of the proper Ramsey number of K3 against Cn. We
add the small odd cycles C3 and C5 to the even cycles treated by Olejniczak in [2]. There are only five
remaining cases: C7, C9, C11, C13, and C15. Since the three color Ramsey number R(K3,K3,K3) = 17
(see [6]), any 3-edge-colored copy of K17 necessarily contains a monochrome K3, so any 3-edge-
colored graph large enough to contain a proper C17 necessarily contains a monochrome K3 already.
We may therefore stop at C15. Thus, finding these last five values would complete the determination
of PR(K3,Cn).
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