On the set edge-reconstruction conjecture
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ABSTRACT. We prove that the set edge-reconstruction conjec-
ture is true for graphs with at most two graphs in the set of
edge-deleted subgraphs.

The conjecture that every graph with at least three vertices can be recon-
structed from its deck (i.e., multiset) of vertex-deleted subgraphs is due to
Kelly and Ulam (see [4] and [7]). There are now several variations on this
theme, and the following version should probably be attributed to Harary
[2]:

The set edge-reconstruction conjecture. Every graph with at least
four edges can be reconstructed from its set of edge-deleted subgraphs.

This is equivalent to the conjecture that all line graphs are set (vertex-)
reconstructible, see Hemminger [3] and Manvel [6].

What distinguishes set reconstruction from ordinary reconstruction is
that you are only given one graph from each isomorphism class represented
in the collection of edge-deleted (or vertex-deleted) subgraphs. Thus you
are given a set, not a multi-set, of graphs, and you do not know how many
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times each of the graphs in the set occurs as an edge-deleted (vertex-deleted)
subgraph.

The purpose of this note is to show that the set edge-reconstruction
conjecture holds for a graph G, if the set contains at most two graphs, i.e.,
if G has at most two non-isomorphic edge-deleted subgraphs. Using some
results by Manvel [6], this comes out easily as a by-product of recent work
the authors have done with G. Sabidussi [1).

Theorem 1. If a graph G with at least four edges has at most two non-
isomorphic edge-deleted subgraphs, then G is set edge-reconstructible.

Proof: Let G be as stated. Manvel [6] observed that graphs with at least
two non-trivial components are set edge-reconstructible, so we may assume
that G has only one non-trivial component (rivial components are isolated
vertices). Furthermore, the degree sequence of G can be derived from the
set of edge-deleted subgraphs ([6], although the proof there has a flaw; we
give a proof repairing the flaw after this proof); so the number of isolated
vertices of G can be found, and as many isolated vertices deleted from each
graph of the set. This leaves us with the task of reconstructing a connected
graph G’ whose degree sequence we know. Manvel [5] proved that trees are
set edge-reconstructible, so we assume that G’ is not a tree.

Suppose first that all edge-deleted subgraphs of G’ are isomorphic; then
all edges of G’ have the same pair of degrees at their end-vertices. Hence
G’ is either regular, in which case it is clearly set edge-reconstructible, or
it is biregular and bipartite with each edge joining, say, a vertex of degree
a to a vertex of degree §, where we assume a < 8. In the last case, let
e be any edge of G’. Then G’ — e has a unique vertex u of degree a — 1.
Since G’ is not a tree, G’ — e is connected, and G’ is obtained by adding an
edge joining u to the unique vertex of degree § — 1 at odd distance from u
(possibly 8 —1 = a). So G’ is set edge-reconstructible in this case.

Suppose next that G’ has exactly two isomorphism classes of edge-deleted
subgraphs, say represented by graphs Gy and G,. By Lemmas 1-3 of ],
G’ is of one of the following types:

1. ¢’ is regular.
2. G is biregular with distinct degrees a and 8, and letting
A={veV(G)|de(v)=a}, B={veV(Q)|de(v)=4},

each edge is either an (A, B)-edge or a (B, B)-edge. Further, there
exists an integer §, 0 < § < B, so that each vertex of B has either 0
or & neighbours in A.

Let By be the set of vertices of B with 0 A-neighbours, B; the set of
B-vertices with § A-neighbours. If By # @ then all (B, B)-edges are
(Bo, Bs)-edges, and so G’ is bipartite with bipartition (AU By, By).
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Note also that if § = § then Bo = @ and G’ is bipartite with bipartition
(4, B).

3. G’ has exactly three distinct degrees a, 8 and «, and letting
A={veV(G)|dg:(v)=0a}, B={veV(G)|de(v)=5},
C={veV(G)|da()=7}

each edge is either an (A, B)-edge or a (B, C)-edge. Further, there
exists an integer 6, 0 < § < B, such that each vertex in B has §
neighbours in A and 8 — § neighbours in C.

Note that in this case G’ is bipartite with bipartition (A U C, B).

We now consider these three cases one by one.
1. G’ is regular.

Then G’ is obviously reconstructible from any one of G; and Ga.
2. G’ is biregular.

We can tell from a comparison of the degree sequences of G’, G; and G2
whether or not G’ has (B, B)-edges. If not, that is if § = 3, then since at
least one of G; and G is connected (as G’ is not a tree), we may assume
that G, is, and we can reconstruct G’ from G; by joining the unique vertex
u of minimum degree, say a — 1, to the sole vertex of degree § —1 at odd
distance from u.

So assume that G’ has (B, B)-edges. We may assume that G is obtained
by deleting an (A, B)-edge, G2 by deleting a (B, B)-edge. If #—1 # « then
G’ is clearly reconstructible from G2, so we assume a = —1. fa=1
then G’ is a path with 4 edges, so we also assume a > 2. Now consider
G; = G’ — e. One end-vertex of e must be the unique vertex u of degree
a —1in G;. Let the other be z. G’ is not an odd cycle, so it contains
an odd cycle if and only if G; or G2 does. So we can tell whether G’ is
bipartite. If it is, then G, is clearly connected (if all (A, B)-edges of G’
were bridges, then, as a > 1, any end block of G’ would be contained in
the graph spanned by B, contradicting that all vertices of Bs would be cut-
vertices of G’). Thus, if G’ is bipartite we can identify = as the sole vertex
of degree a of odd distance from u in Gy, and G’ can be reconstructed from
G, by adding an edge joining u to z.

So we may assume that G’ is not bipartite; in particular, Bo = 0. Let
F be the subgraph of G, induced by the vertices of degree a; all edges of
F must be incident with z. If some vertex v has degree at least 2 in F,
then z = v and G’ is obtained from G; by adding an edge joining u to v.
Otherwise, F has at most one edge.

If F has exactly one edge, say with end-vertices v, and vz, then § = 2,
and z is the vertex of {v1, v2} belonging to B; let the other be y. If v; and v2



have exactly the same neighbour set in G; — v v, then the graphs obtained
by joining u to one of v; and v, are clearly isomorphic and isomorphic to
G'. So assume that v; and v2 have different neighbour sets in G; — vyvs.
Then each neighbour of = in Gy — viv2 has exactly three neighbours of
degree at most «, and y cannot have this property under the assumption
of different neighbour sets, so we can indeed distinguish z, and obtain G’
by adding the edge zu to G.

Suppose finally that F has no edges. Then § = 1, = has the property
that each of its neighbours in G has exactly two neighbours of degree at
most a, and any other vertex of degree a with this property must have the
same neighbour set as z; hence x can be identified up to isomorphism, and
G’ is reconstructible.

8. G’ has exactly three distinct degrees.

Let G1 be obtained from G’ by deleting an (A, B)-edge, G2 by deleting a
(B, C)-edge. As G’ is not a tree, we may assume that G is connected. Let
G = G’ — e, where e has end-vertices a of degree a in G’ and b of degree
BinG'.

Case (i). a —1 ¢ {B,7}. Then a is the unique vertex of degree a — 1 in
G4, and b is the sole vertex of degree 8 — 1 in G, at odd distance from a.
So G’ can be reconstructed from G; by joining a and b.

Case (ii). a—1 = B. Then a > 3, and so b can be identified as the sole
vertex of degree S — 1 at even distance from at least two vertices of degree
B. And a is the unique vertex of degree 8 at odd distance from b. Again,
G’ can be reconstructed by joining these uniquely determined vertices.

Case (iii). a —1 = . Here b is the sole vertex of degree § — 1 at even
distance from the vertices of degree 8, and a has the property that each
of its neighbours in G; has degree 8 and has exactly 8 — § 4+ 1 neighbours
of degree <. If any other vertex in G; of degree v has the same property,
then it must have the same neighbour set as a. Therefore the same graph,
up to isomorphism, is obtained no matter which vertex with the property
is joined to b, and this graph is a reconstruction of G'.

In all cases, we have shown how to reconstruct G’, and so G’ is set edge-
reconstructible. This completes the proof of the theorem.

Manvel’s result on the degree sequence

We finally outline a new proof of the result of Manvel that the degree
sequence of a graph is set edge-reconstructible. The proof in [6] fails where
it claims that exactly one graph in the set of edge-deleted subgraphs of a
graph G has maximum degree less than A(G) (the maximum degree of G)
if and only if G has exactly two vertices of maximum degree, and these are
neighbours; a wheel with at least 5 vertices is a counterexample to this. It



contains a similar flaw where it states that if every edge-deleted subgraph
of G has either n or n+1 vertices of degree A(G), and if no edge of G joins
two vertices of degree A(G), then there will be at least two such graphs
with n vertices of degree A(G); a graph obtained from Koy 42,041 by adding
n + 1 independent edges joining vertices of the class with 2n + 2 vertices is
" a counterexample.

The proof below contains basically no new ideas; we have chosen to refer
to Manvel’s proof for several details.

Theorem 2. The degree sequence of a graph with at least 4 edges is set
edge-reconstructible.

Proof: Let G be the graph, and let S be its set of edge-deleted subgraphs.
Following [6], we note that we can assume that G is not a star and some
isolated vertices, and so we can find A(G) from S; further, we call a graph
in S deficient if its maximum degree is less than A(G), and we partition
the proof into three cases according to whether S contains none, one, or
more deficient graphs.

S contains no deficient graphs. Let n > 1 be the minimum number of
vertices of degree A(G) in a graph in S. If some graphin S hasn+2
vertices of degree A(G), or if all graphs in S have exactly n vertices
of degree A(G), we finish as in [6]. So suppose that all graphs in S
have n or n+1 vertices of degree A(G), with n+1 occurring for some
graph in S. As in [6], we check from S whether G has an edge joining
two vertices of degree A(G), and we finish if this is the case. So
assume now that G has no edge joining two vertices of degree A(G).
If there are two graphs in S with n vertices of degree A(G) with
distinct degree sequences, then writing these in nondecreasing order
one above the other, and taking the larger term in each position, and
then replacing one A(G) —1 by A(G) gives the degree sequence of G.
If S does not contain two such graphs (as is the case if S contains only
one graph with n vertices of degree A(G)), then all vertices adjacent
to a vertex of maximum degree in G have the same degree in G, and
we can find this degree d as the highest degree of a vertex adjacent
to a vertex of degree A(G) in a graph of S with n + 1 vertices of
degree A(G); we then get the degree sequence of G from the degree
sequence of a graph in S with n vertices of degree A(G) by replacing
one A(G) —1 by A(G) and one d —1 by d.

S contains exactly one deficient graph G4. Then G has a unique ver-
tex of maximum degree, or it has exactly two vertices of maximum
degree, these being adjacent. If S contains a graph with two vertices
of degree A(G), then clearly G has two such vertices, and the degree
sequence of G is obtained from that of G4 by replacing two degrees



A(G) — 1 by A(G). So now suppose that all graphs in S different
from G4 have exactly one vertex of degree A(G). Then, if G has two
vertices of degree A(G), each edge must be incident with at least one
of them; so any other vertex can have degree at most 2. It follows that
if S contains a graph with more than two vertices of degree at least 3,
then G has a unique vertex v of maximum degree, and as there is just
one deficient graph all neighbours of v must have the same degree.
This degree ¢ can be found as the highest degree of a neighbour to
v in a non-deficient graph from S. Then the degree sequence of G is
obtained from the degree sequence of G4 by replacing one A(G) — 1
by A(G) and one c— 1 by c.

So we can finally assume that each graph in S has at most two vertices
of degree at least 3. If A(G) 2 4, we look at G4: if it has just one
vertex of degree A(G) — 1, then G has a unique vertex of maximum
degree, and the degree c of its neighbours can be found as above, as
can the degree sequence of G. We therefore investigate the case where
G4 has exactly two vertices a and b of degree A(G) — 1. We claim
that we can easily tell from S whether G has one or two vertices of
maximum degree, because the following holds:

If both a and b have degree A(G) in G, then each non-deficient gmph
of S has an edge joining a vertez of degree A(G) to a vertez of degree
A(G) - 1.

If only one of a and b has degree A(G) in G then no graph of S has
such an edge.

For if a and b both have degree A(G) in G, then G4 = G — ab, and
as each edge is incident with a or b, the first statement above follows.
And suppose that, say, e has degree A(G) and b has degree A — 1 in
G. As S contains only one deficient graph, if a and b are neighbours
in some graph of S and therefore in G, all neighbours of a in G would
have degree A(G) —1 > 3, contradicting that no graph in S has more
than two vertices of degree at least 3.

Whichever of the situations above holds, we easily find the degree
sequence of G.

So we can now assume that A(G) < 3. If A(G) = 3, then for G to
have two vertices of maximum degree precisely 5 edges are required,
so if G does not have exactly 5 edges we know that it has a unique
vertex of maximum degree and can find the degree sequence as above;
if G has 5 edges, the three possibilities for G (not counting variations
in the number of isolated vertices) with two vertices of maximum
degree can be checked directly and are set edge-reconstructible — in
any other case G has a unique vertex of maximum degree, and the
degree sequence can be found in the usual way. If A(G) = 2, then



since G has at least four edges it cannot have two vertices of degree 2
(they would both have degree 2 in some non-deficient graph as well),
and so the degree sequence consists of one 2, some 1s, and possibly
some Os.

S contains more than one deficient graph. Then G has a unique ver-
tex of maximum degree, and the reconstruction of the degree sequence
is done as in [6].

This completes the proof of Theorem 2.
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