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ABSTRACT. In this paper we introduce some concepts relating
to idempotent ordered orthogonal quasigroup (I00Q), ordered
orthogonal Steiner triple systems (ordered OSTS) and ordered
orthogonal group divisible designs (ordered OGDD), and use
them to obtain some construction methods for OGDD.

1 Introduction

A Steiner triple system of order n, (or STS(n)), can be defined to be an
(n, 3)-PBD. The necessary and sufficient condition for the existence of an
STS(n) is that n = 1 or 3 (mod 6). Two STS(n) on the same point set,
say (X,A) and (X,B), are said to be orthogonal provided the following
properties are satisfied:

a) ANB=¢
b) if {u,v,w} and {z,y,w} € A and {u,v, s} and {z,y,t} € B, then
s#t.

Orthogonal STS(n) will be denoted by OSTS(n).
Let (X, G, A) and (X, G,B) be two 3-GDDs having the same groups.
We say that they are orthogonal if the following properties are satisfied:

a’) if {u,v,s} € A and {u,v,t} € B, then s and ¢ belong to different
groups.

b’) if {u,v,w} and {z,y,w} € A, and {u,v,s} and {z,y,t} € B, then
s#t.

We shall use the abbreviation OGDD to denote orthogonal 3-GDDs. It
is easy to see that OSTS(n) are equivalent to OGDD of type 1%, since
condition a’) implies that AN B = ¢.
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A quasigroup of order v is a pair (Q, ®), where Q is a set of cardinality
v,and ®: Q x Q — Q is a binary operation such that ¢® r = ¢® s if and
only if r = s, and r ® ¢ = s ® q if and only if r = . The quasigroup (Q, ®)
is said to be idempotent if g@ q = q for all ¢ € Q. Two quasigroups of order
v, (Q,®) and (Q,®), are said to be orthogonal if, for every ordered pair
(8,t) € Q x Q, there is a unique ordered pair (g, r) such that ¢®r = s and
q@r=Lt.

The problem of existence of orthogonal Steiner triple systems bas been
given quite a lot of attention by various authors since it was posed by
O’Shaughnessy in 1968. The problem was completely settled by the joint
work of C.J. Colbourn, P.B. Gibbons, R. Mathon, R.C. Mullin and A. Rosa
(see [6]). That is, if v=1,3 (mod 6), v > 7 and v # 9 a pair of orthogonal
Stenier triple systems of order v exist.

In this paper, we introduce some concepts relating to idempotent ordered
orthogonal quasigroups (I0OOQ), ordered orthogonal Steiner triple systems
(ordered OSTS( and ordered orthogonal group divisible designs (ordered
OGDD), and use them to obtain some construction methods for OGDD.
To some extent, the techniques improve the construction methods in [5).

2 Idempotent ordered orthogonal quasigroups

Let (Q, ®) be any quasigroup. We define on the set Q, six binary operations,
D123, D231, ©312, D132, D321 and D213, as follows: ¢ ® r = s if and only if

991237 =38, q®1528=71, rd3q9=3,
r®318=¢q, 8O3129=T, 8D32r=4q.

Two idempotent quasigroups of order v (Q, ®) and (Q, ®) are defined to be
ordered orthogonal quasigroups (briefly IOOQ(v)) if @;jx is orthogonal to
®;ki and ®x;; for (ijk) = (123), (231), (312). If each operation of (Q, ®) is
orthogonal to that of (Q, ®), we say they are conjugate orthogonal (briefly
1COQ(Y)) (see [3)).

Theorem 2.1. There exists [00Q(v) for v =4, 5,8.

Proof: For each case of v =4, 5,8, we let Q = GF(v) and 0 be a primitive
root of GF(v) and define (Q,®) and (Q,®). It is easy to see that (Q, ®)
and (Q, ®) are IOOQ(v).

For v = 4, define q®@r =g+ (g+7)0 and g®r = r + (g + )8 for
q,7 € GF(4) where 62 = 0 +1. For v = 5, define g® r = 2r — q and
q®r=2r —gqfor q,r € GF(5). For v=38, define g®r =g+ (¢+ )0 and
g®r=r+(q+7r)0 for q,r € GF(8) where 3 =04 1.
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Let

ICOQ = {v: there exist ICOQ(v)}
100Q = {v: there exist IOOQ(v)}

Theorem 2.2. If v is a prime power, v # 2,3,4,5 or 8, then there exist
1COQ(v) (see [5]).
It ie easy to see that ICOQ C I00OQ and it is not difficult to see that the

set IOOQ is PBD-closed. This proof is similar to that of ICOQ (see [5]).
From Theorem 2.1 and Theorem 2.2, we have

Theorem 2.3. There exist I0OOQ(v) for v € B(P;) where Py = {v: v 2 4,
v is a prime power}.

8 Ordered orthogonal Steiner triple systems

Let A and B be two_collections of ordered subsets of X with size 3, A =
{{a,b,¢c}: (a,b,c) € A} and B = {{a,b,¢c}: (a,b, c) € B}. For A = (a,b,c)
we say that the three ordered pairs of points (a, ), (b, ), (c, a) are in A and
the seat of (a,b) is a, the seat of (b, c) is 8 and the seat of (¢, a) is 7.

We say (X, A) and (X,B) are ordered-OSTS(v) provided that (X, A)
and (X, B) are OSTS(v) and that the following property is satisfied:

¢) If (a,b) is in a block of A then (a, b) is also in a block of B and two
seats of (a, b) are different.

Similarly, we can define ordered-OGDD.

In this section we will show the OSTS(v) which was established by Mullin
and Nemeth [2] can be arranged into an ordered-OSTS(v) For v € Pi¢
where P, ¢ = {v: v is a prime power and v =1 (mod 6)}.

Lemma 8.1. If 6k + 1 is a prime power then 1 4 2% 4 §4* = 0 where 0 is
a primitive root.

Proof: Since 1 = 65% = (1 + %% + ¢%%)(1 — 6%¢) = 0. Let v = 6k +1
be a prime power and X = GF(v). Let z = 2%, A(i) = {0,1,2 + z*},
B(i) = {0,2*,1 + z*} where i =1 or 2. A;(i) = {#7A(i) +g: g € X} and
B;(i)={0’B(i)+g: g€ X} where 0 < j < k-1.
From Lemma 3.1 we have
Lemma 3.2. (X,A(:)) and (X,B(i)) are OSTS(v) for i = 1,2 where
A(i) = Uogj<k-14;(i) and B(i) = Uog;j<k-1B;(3).
_ Now, we want to arrange A(i) into A(i) and B(i) into B(i) such that
A(i) and B(i) satisfy the condition c¢). It is not difficult to see that if we
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can arrange A;(i) and B;(i) with j = 0 then we also can arrange A(¢) and
B(3). Let
Ao()) ={(0,1,2+2") +g: g€ G1}
u{(1,1+2'0)+g: g € Ga}
u{(1+2%0,1)+g: g € Gs}
Bo(d) = {(z*,1+2',0) + g: g € G}}
U{(+2,0,z°) +g: g€ G3}
u{(0,z',1+2') +g: g € Gs}.
where {G1, G2,G3} and {G}, G3,G3} are two partitions of X.
It is easy to see that
Lemma 8.3. If (G{+2)NC; = ¢, G{;,N(Gi+1) = ¢ and GiNGiy1 = ¢
for i=1,2,3 and i+1 is taken modulo 3, then Ay(i) and By(t) satisfy the
condition c).

Theorem 38.4. There exist ordered-OSTS(v) for v = 6k+1 is prime power.
Further, there exist ordered OSTS(v) for v € B(P ).

Proof: For p =6k + 1 is a prime, if 2 # 35,1 <35 <p—1. Let

G1=G;={0,3,6,...,p—1}
Gz =G’2={2,5,8,...,p—2}
Gs =Gy ={1,4,7,...,p -3}

It is easily checked that if 625 = 24-35 (1 < 2+3s < p—2) then {G), G2, Gs}
and {G}, %} satisfy the condition of Lemma 3.3. Since 146248 =

and 6%¢ #38 1< 3s<p-—1wehave 62 =2 4 35 or 6% = 2+3swhere
1<2433<p-2.1f0% =35 1<3s<p—1,let

G =1{0,3,6,...,p—4)

G2 =1{2,5,8,...,p—2)

Gs ={1,4,7,...,p—3,p—1}
={1,4,...,p-3—-z,p+2-2z,p+2—-2+3,...,p -1}
»=1{0,3,6,...,p—1—2z,p+1-z,p+1-2+3,...,p-2}

G;=1{25,....p—2—-z,p—z,p—2z+3,...,p -3}

where z = 62*,
It is easily checked that {G,G2,G3} and {G}, G), G3} satisfy the con-
dition of Lemma 3.3 with 1 = 1.

For p? = 6k +1 is a prime power where p is a prime and p= 5 (mod 6).
Let %% = af + b, where a,b € GF(p) since a # 0 and 1+ 6% + 6% =0
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without loss of generality we can supposea =3sora=3s+1 and a # 1.
Let

= {0,3,6,...,p— 2}
H; ={2,5,8,...,p—3}
H3 = {1,4,7,...,p—1}

Ifa=3:3<3s<p—-2 Let H{=H3, H£=H1, H§=H2. Ifa=1+4+3s
4<1+4+3s<p-1. Let

Hi={1,4,7,....p-3-a,p+2—-a,p+5—a,...,p—2}
Hé= {0,3,5,...,p—1—a,p+l—a,p+4—a,..,,p—3}
H;={2,5,8,....0—2—-a,p—a,p+3—a,...,p—1}

Let

Gi = {ci0 + di: ¢; € H;,d; € GF(p)}
G ={ci0 + d;: c; € H},d; € GF(p)}

for 1 < i < 3. Since {H), Ha, H3} and {H}, Hj, H3} satisfy (H{+a)NH; =
¢, H{ ;N (H; +1) = ¢ and H{ N Hy;; = ¢ then it is easy to see that
{G1,G2,Gs} and {G}, G5, G5} satisfy the condition of Lemma 3.3. Hence
we have that if 6k + 1 = p, a prime of 6k + 1 = p? where p =5 (mod 6), a
prime, then there exist ordered-OSTS(6k + 1).

Since the set OSTS = {n: there exists OSTS(n)} is PBD-closed (see [5]),
it is easy to see that the set of ordered-OSTS is also PBD-closed. Therefore
we have completed the proof.

4 Construction methods for OGDD

Some constructions for OGDD have been given in [5]. In this section,
we give some improvements. Our main tools are ordered-OSTS, ordered- .
OGDD and 100Q.

Theorem 4.1. Suppose there exist ordered-OGDD of type T, and suppose
there exist IOOQ(m). Then there exist ordered-OGDD of type mT =
{mt: t € T}.

Proof: Suppose (Q,®) and (Q, ®) are I0OQ(m) and that (X, G, A,) and
(X, G, A,) are ordered-OGDD of type T. We will construct ordered-OGDD
on point set X x Q having groups H= {G x Q: G € G}.

For every block 4 = (z,y,2) € A;, construct the m? blocks B;(4) =
{((z, a), (,b), (2,6 ®b)): a,b € Q}. Define B, = UAGA,BI(A)
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For every block A = (z,y,2) € Ag, construct the m? blocks By(4) =
{((z,a), (3, ), (z,a® b)): a,b € Q} Define B, = Ujca, Bg(A) We will
show that (X,H,B;) and (X,H, B;) are ordered-OGDD.

First, since A; and A; satisfy the condition c) and (Q,®) and (Q,®)
are quasigroups, then it is clear that B; and B; satisfy the condition
c). Next, since A; and A, satisfy the condition a’), then it is easy to
see that B; and B satisfy the condition a’). Finally we prove that B,
and B; satisfy the condition b). Suppose that {(u,a), (v,b),(w,c)} and
{(z,d), (3,¢), (w,c)} € By are distinct blocks and that {(u,a), (v,b), (¢, f)}
and {(z,d), (y,e),(t,f)} € Bg are distinct blocks. Then {u,v,w} and
{z,y,w} € A, and {u,»,t} and {z,y,t} € A,. Since A; and A, sat-
isfy the condition b), then we have {u,v} = {z,y} and w # ¢. Without loss
of generality, suppose 4 = z, v = y and (u,v,w) € A, (t,u,v) € A,. Hence
((z,a), (v,b), (w, ¢)) and ((z,d), (v,€), (w,c)) € By and ((¢, f), (u,a), (v,b))
and ((t, f), (u, d), (v,€)) € Ba. Thatis, c = a®123b, f = a®231b, ¢ = dD123e
and f = d®23; e. Since ;23 0s orthogonal to ®23; then (a,b) = (d,¢e). But
then the blocks {(u, a), (v, b), (w,c)} and {(x, d), (v, ), (w, c)} are identical,
a contradiction. Therefore B, and B; satisfy the condition b). We have
completed the proof.

Corollary 4.2. Suppose there exist ordered-OSTS(u) and IOOQ(v). Then
there exist ordered-OGDD of type v*.

Proof: Ordered-OSTS(u) are equivalent to ordered-OGDD of type 1.
Apply Theorem 4.1.

Corollary 4.8. There exist ordered-OGDD of type v* for u € B(Py)
and v € B(Py).

If the condition c¢) in the definition of ordered-OSTS or ordered-OGDD
is replaced by

¢') If (a,b) is in a block of A then (a,b) is also in a block of B.

Then (X, A) and (X, B) are called cyclic-OSTS(v). Similarly we can define
cyclic-OGDD.

For two idempotent quasigroups of order v, (Q,®) and (Q,®), if Sijx
is orthogonal to ®jk, ®;ki and ®xi; for (ijk) = (123), (231), (312), we say
they are half conjugate orthogonal (briefly half-ICOQ(v)).

From the proof of Theorem 2.1, we have there exist half-ICOQ(v) for
v =4 and 8. Hence we have

Theorem 4.4. There exist half-ICOQ(v) for v € B(P4\ {5}).

Theorem 4.5. Suppose there exist cyclic-OGDD of type T and suppose
there exist half-ICOQ(m). Then there exist cyclic-OGDD of type mT =
{mt: teT}.
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Proof: The proof is similar to that of Theorem 4.1.

Remark: It is easy to see that we can arrange an OGDD into a cyclic-
OGDD more easily than into an ordered-OGDD. Can we arrange any
OGDD into a cycliccOGDD? There is an example from [6] which can not
be arranged into a cycliccOGDD. That is, on Z, x {0, 1} form two GDD by
developing the following started blocks modulo (9, —):

GDD1 GDD2
00 20 81 01 21 80
00 40 71 01 41 70
00 10 51 01 11 50
60 11 21 01 10 20
01 21 81 60 20 50
60 30 60 01 31 61

Each of the first five starter blocks develops into nine blocks while the sixth
generates only three distinct blocks. It is easy to see that these two GDD
form OGDD. However, if we let (00 20 81) € A then (G0 20 50),(208141) €
B, then (20 50 80) € A, then (50 80 30) € B, then (20 31 41),(80 30 61) €
A, then (80 31 41),(80 70 61) € B, then (70 8031) € A. That is, (70 80)
is in a block of A but (70 80) is not in a block of B.

5 Further resulté

Lemma 5.1. Suppose there is a (u, K,1)-PBD. If there exist ordered-
OGDD of tyoe v* for any k € K. Then there exist ordered-OGDD of tyoe
vh.

Proof: Let A be a collection of blocks of a (u, K,1)-PBD on Z,,. For any
A € A let B;(A) and B2(A) be two collections of blocks of ordered-OGDD
of type v*, where |A| = k € K, on A x Z,. It is easy to see B; and By are
two collections of blocks of ordered-OGDD of type v* on Z, x Z,, where
B; = U4caBi1(A) and Bz = UgeaB2(A). :

Theorem 5.2. There exist ordered-OGDD of type 2% for u € B(Py¢).

Proof: Let u = 6k-+1 be a prime power and 6 be a primitive root of GF(u).
On Z, x {a,b}, define a GDD of type 2" by taking {i x {a,b}: i € Z,} to
form the u groups, and develop the ordered starter blocks:

((0, b): (_oj—t, a)) (0j-l’ a'))
((02k+j_‘1 a)' (0, b): (_02k+j_lv a’))
((—04&-”_" a)a (04k+j_tv a)a (0, b))

((0,), (¢%,), (67 + 625+4, b))
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where j = 0,1,...,k — 1 and ¢ = 2 modulo (u,—) to form the triples.
Form a second GDD by developing

((0,a), (-6-40),  (674h))
((6**374,b),  (0,a), (—6%+5=4,1))
((0,a), (¢, 0), (69 + 6%*%3, a))

where =0,1,...,k—1 and ¢ = 2.
Since #** # 1 and 1 + 62* 4 0% = 0 then 62* # -2, that is, §2*~¢ 4
1 # 0, then {£(8%~% 4+ 1)69, £(6%%—¢ + 1)6%k+J | +(92%~¢ + 1)0%%+3: j =
0,1,2,...,k—1} = GF(u)\ {0}. Therefore it is easliy verified that the two
GDD are ordered-OGDD. From Lemma 5.1 we have completed the proof.
From Theorem 4.1 and Corollary 4.3 we have

Corollary 5.3. There exist ordered-OGDD of type v* and (2v)*) for
u € B(Plys) and v € B(P,).
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