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ABSTRACT. On the basis of circuit uniqueness, the concept of
strong circuit uniqueness is introduced, and some graphs with
the property of strong circuit uniqueness are identified. The
results are then used to prove successfully the circuit unique-
ness of the graphs Km U Kn and Kmn. This represents an
improvement on the previous papers on the same subject.

1 Basic Definitions

The graphs considered here are finite, undirected, and contain no loops and
no multiple edges. Let G be such a graph. We define a circuit (cycle) wzth
one and two nodes in G to be a node and an edge respectively. Circuits
with more than two nodes are called proper circuits. A circuit cover of G
is a spanning subgraph of G in which all the components are circuits.

Let us associate an indeterminate or weight w, with each circuit « in
G and the monomial W(S) = [Jwa, with each circuit cover S; where the
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product is taken over all the components in S. Then the circuit polynomial

of Gis
C(Giw) = Y W(S),

where the summation is taken over all the circuit covers of G, and w (called
the weight vector) is a vector of the indeterminates we.

The circuit polynomial was introduced in Farrell [1]. It has been shown in
Farrell [2], that both the characteristic polynomial and the matching poly-
nomial are special cases of the circuit polynomial. In this paper, we assign
the weight wy to each cycle with r nodes. Therefore w = (wy,wy, ..., wp),
where p is the number of nodes in G.

We shall say that C(G;w) characterizes graph G if and only if C(G;w) =
C(H;w) implies that H = G. In this case, we also say that G is circuit
unique. If C(G;w) = C(H;w), then we say that G and H are cocircuit. It
has been shown that many of the well known families of graphs are circuit
unique. These include chains (trees with nodes of valencies 1 and 2), stars,
wheels, complete graphs, regular complete bipartite graphs (see [5]), all
the basic graphs with cyclomatic number 2 (See [6]), short ladders (the
graph formed by joining pairs of corresponding nodes of two equal chains)
(see [6], and the unions of chains, cycles, and the union of a circuit unique
hamiltonian graph with itself (see [7]), etc. It is interesting to note, from
the above list, that the characterizing power of circuit polynomial is quite
strong.

In the material which follows, the notations P,,, K. and Z,, will be used
for the chain, complete graph and cycle with m nodes respectively. We will
denote the complete m by n bipartite graph by Ky, .. The notation GU H
will denote the disjoint union of graphs G and H, and U?P,, the disjoint
union of s copies of P.. Let H be a subgraph of G; then G — H denotes
the graph obtained from G by removing the nodes of H.

In this paper, we extend the list of graphs characterized by their circuit
polynomial . We show that the graphs K., U K,, and K, » are circuit
unique. We also introduce the idea of strong circuit uniqueness and identify
some families of graphs with this property. '

2 Preliminaries
We now give some results which have already been established and which
will be useful in the material which follows.
The following Lemmas were established in [2].
Lemma 1 (The Fundamental Edge Theorem). Let G be a graph and

zy an edge in G. Let G’ be the graph obtained from G by deleting zy, G"
the graph obtained from G by removing nodes z and y and G* the graph G
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with the restriction that in every cover, zy must be part of a proper cycle.
Then
C(G) = C(G") + w2C(G") + C(G*).

Lemma 2 (The Component Theorem). Let G be a graph consisting
of components Gy, Ga,...,Gk. Then

k
cG) =[] c(Gy).
i=1

The following Lemma can be easily proved.
Lemma 3. Let C(G) be the circuit polynomial of a graph with p nodes
and q edges. Then

(1) The highest power of w; in C(G) is w{ and this occurs with coefficient
1

(2) The coefficient of wf™ 2w, is q.
(3) The coefficient of wp is the number of hamiltonian cycles in G.

(4) The coefficient of wy,,Wr,, ..., Wr, is the number of spanning sub-
graphs of G consisting of the disjoint cycles Zy,, Zy,, ..., Zry-

The following lemma is given in Farrell and Guo [6].

Lemma 4. Let G be a nearly regular graph (a graph in which the valencies
of any pair of nodes differ by at most 1) and H a graph such that C(H) =
C(G). Then H is also nearly regular and H has the same valency sequence
as G.

The following result was proved in [4].
Lemma 5.

2O -y -2,

where Z, is a cycle with r nodes, and the summation is taken over all such
cycles in G.

The following results can be found in [2].

Lemma 6. The circuit polynomial of the chain P is

o) =3 (75 F)uruk

k
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Lemma 7. The circuit polynomial of the circuit Z, is

o) =i+ 3 |27 777" ot us] + wpto> )

Lemma 8.

.1. 2 P Js
ot = B 1T (L) 2,

i=3

where the summation is taken over all sets of positive integers j; such that
2 idi=p.

Lemma 9. The circuit polynomial of the complete bipartite graph K,
satisfies the recurrence relation

C(Kmpn) =w10(K —1,n) + nw2C(Kpm—ypn—1)
Z(m l)a—l(n)aWaC(Km—a,n-a):

a=2

and its factorial generating function is
C(Kmn;iw,u,v) = exp{(u + v)w; + vows + 1/2w(u,v)},

where

w(u,v) = ng (wu)

=2

3 The Strong Circuit Uniqueness

Definition 1: Let H be a graph with p nodes. Let G1,G3,...,Gn be n
graphs each containing p nodes. If for any positive integer =, the equation
2-i=1C(G:) = nC(H) implies that G; & H (i =1,2,...,n), then H is said

to be strongly circuit unique.

Obviously, if H is strongly circuit unique, then H must be circuit unique.
We can see this by letting n = 1 in the definition. But, the converse is not
true. This is demonstrated in the following example.

Let H, G1, G2, be the graphs as shown in Figure 1.
It can be easily verified that H is circuit unique, and that

CH)=wi+ 4wfw2 + w2 + wyws,
C(G1) = wi + Swfwg + 2'w§ + 2wyws
and
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C(G3) = w} + 3wiw,.

Therefore C(G1) + C(G2) = 2 C(H). However, neither G nor G; is iso-
morphic to H.

Figure 1

Theorem 1. UP K, is strongly circuit unique.

Proof: Let H = UPK, and G4, Go,...,Gy be n graphs, such that }-,_,;
C(G;) = nC(H) = nwf. Since each C(G;) contains the term wf{, then
clearly C(G;) = v} (i = 1,2,...,n) = G; consists of p isolated nodes.
=G H (i=1,2,...,n). Hence, UPK] is strongly circuit unique. a
Theorem 2. K, is strongly circuit unique.

Proof: Let G4,G,,...,G, be n p-node graphs such that

) C(G:i) =nC(Ky).

i=1

Then from the expression of nC(Kj), we know that the graphs G}, G’:&
and Gy, have a total of np nodes and np(p—1)/2 edges. We claim that e4¢
G; has p(p — 1)/2 edges. If not, then 3 a certain G5 (1 < j < n) such that

|E(G)| > E(B;—l)- otherwise, the total number of edges of n G;’s cannot
reach np(p —1)/2. But this is impossible for a simple graph. Therefore for
each i, we must have | E(G;)| = p(p — 1)/2. Since each G; has p nodes, we
conclude that G; 2 K, (i =1,2,...,n). ]

Theorem 3. Z, is strongly circuit unique.

Proof: This follows immediately from Lemma 8 of [8]. (]
The following lemma is immediate from Theorem 1 of [6].

Lemma 10. Let G be a graph with p nodes, q edges and the valency
sequence (G) = (dy,dy,...,dp), where 2¢ =pd+7 (0 <r <p-—1), for
some positive integer d. Then the sum

> (3)
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attains & minimum value if and only if G is nearly regular and has valency
sequence ((d+1)7,d").

Theorem 4. P, is strongly circuit unique.

Proof: Let G1,Gp,...,Gy be n p-node graphs and satisfy the equation

" L
3G =n0E) =nY_ (7} F)ut ut.
=1 k=1

Then from Lemma 3, we know that Gy, G, ..., G, must have the following
properties:

1) T V(G = np, 0, |E(Gi)| = n(p — 1).

(2) None of G;’s contains cycle Z;, where ¢ > 3.

(3) The sum of the coefficients of the terms w§ w3 in all the C(G;)’s is
n(P3") —n XL, (%), where d; is the valency of node i in P,.

From property (2), we know that for each i, |[E(G;)| < p ~ 1, and so, the
equation in property (1), 3_i, |E(G:)| = n(p — 1), implies |E(G;)| =p—1
for all 1’s.

Since each G; has p nodes, (p — 1) edges and cycle free, each G; must be
a tree. Let us consider the valency sequence

w(G) = (d0,d,..., ).

of G;. By property (3), we have
E)-£@)] -0 -£E

i=1
= i Pl (dg)) =n§pl (d;) (1)

i=1 j=

Now, let H; = U"Pp, Hy =Ul,G;, n(Hy) = (uy,us,..., u,,,,) and 7r(Hg) =
(v1,v2,...,Vnp).
Then it is clear that

SE-x®) -

i=1



Since H, is nearly regular, it follows from Lemma 10 that H; is also
nearly regular and 7(H;) = w(H;). Hence for all 4, 1 < ¢ < n, G; has nodes
with valencies 1 and 2 only. Since G; is a tree then Gj is a chain with p
nodes, i.e., G; = P, for all 1 < < n. Hence the result. o

Theorem 5. The star K 1,k(k > 1) is strongly circuit unique.

Proof: Let G1, Ga, ..., Gy be n (k+1)-node graphs, satisfying the equation

3 C(Gi) = nC(Kix) = n(wh+! + kwf~'wy).

i=1

Then G; must have the following properties.
1. T, IV(Gi) = n(k+1) and 321, |E(Gi)| = nk,
2. Vi, 1<i<mn, G;is Zfree (t > 3).
3. Vi, 1 <i<mn, G; does not contain any 2-matching.

From properties (1) and (2), we know that each G; is a tree with k edges,
by using the similar reasoning as in Theorem 4. From property (3), no G;
has a 2-matching. Therefore, each G; must be a star Kk, i.e G; = K k.
Hence the result follows. O

Theorem 6. K., n and K m41 are strongly circuit unique.

Proof: We first prove the case for K;m41. Let G1,Ga,...,Gn be n
(2m + 1)-node graphs satisfying C(G;) = nC(Km,m+1). Then G; must
have the following properties.

1. 0, IV(Gi)| = n(2m + 1) and Y11, |E(G;)| = nm(m +1) and
2. Each G is odd-cycle free.

From (2), we know that each G; is bipartite with (2m 4 1) nodes. It is
easy to see that |E(G;)| € m(m +1), 1 £ i < n. Since 30, |B(Gs)] =
nm(m + 1), we conclude |E(G;)| = m(m + 1) for all #’s.

Since a (2m + 1)-node bipartite graph with m(m + 1) edges must be
Ko m+1, each G; must be isomorphic to K m+1-

The case of Kpn,m can be easily proved in the same way. a

Theorems 1 to 6 show that many well-known graphs are strongly circuit
unique. These results will be used for establishing the circuit uniqueness of
some important graphs.
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4 The Circuit Characterization of Graphs K,, U K, and K 5
The following lemmas are taken from [7] and [6].
Lemma 12. K, U K,, is circuit unique.
Lemma 13. K,+1 U K,, is circuit unique.
We extend these two lemmas to the following theorem.
Theorem 6. K,, U K,, is circuit unique for all m, n > 1.

Proof: We may well assume m > n + 2, since the cases of m = n and
m = n+ 1 have been settled by Lemmas 12 and 13.

Let G = K,uUK,,. Suppose that H is a graph such that C(H) = C(G) =
C(Kn)C(K,). Then by Lemmas 3 and 8, H must have the following
properties

1. [V(H)| = m+n,|BH)| = =B | ninl)

2. H contains f(K,,) m-cycles 2%, i =1,2,..., f(Km), where f(Km)
is the total number of Hamilton cycles in K . From Lemma 8 we

know that f(K,,) = ﬂ{—u
3. H does not contain any cycle Z;, where t > m + 1.
4. The number of triangles contained in H is () + (3)-

5. The number of cycle covers of the form Z,, U Z,,, contained in H, is
f(Km)f(Ky), where if n = 1,2, we define f(K,)=1.

By applying Lemma 5 to C(G) and C(H), we obtain:

9c(G) 8
o) o [C(Km)CUK)
= o (] + . F(Kom o) O] = £ (KO ()
and ’
3C(H) f(f‘)C(H Z(:))
s (K,,.)

= Y C(H-2ZY) = f(Kn)C(Ky).

i=1

By using the strong circuit uniqueness of K,, we deduce that for any i,
1<i< f(Km), H- Z¥ = K,. Fixing a certain i, say i = t, we have
H -2 ~ K, = H,. We denote by H, the induced subgraph of V(Z)
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in H and call the edges between H; and Hj link edges. We discuss the

following cases:

Case 1. No link edge exist. Then H = H; U H,. Since H) has m nodes

and ™21 edges, H; 2 Km.

Case 2. There are link edges, but there is only one node in H; incident

with the link edges. Suppose that there are i link edges (i > 1). Then we

have

m(m—1)
2

by Property (2) H contains f(Km) m-cycles. Since m > n + 2, all these

cycles must be contained in Hy. So Hp has f(Ky,) cycles. = Hy & K.

This is a contradiction. Thus Case (2) is impossible.

Case 8. There are link edges, n > 2, and there are at least 2 nodes in Hj

incident with link edges, but only one node in Hj incident with link edges.

This case is illustrated in Figure 1.1.

|E(Hy)| = —1.= H, & Ky,

| v(H I]I =m>n+2

[V(H 2)|=l'1

Figure 1.1

By property (5), H contains f(Km)f(Ky) cycle covers of the form Z,, U
Z,. It is easy to see that all the nodes of Z,, in this kind of cover must
belong to V(H;)U{p}. Now, if p is a node of such a Z, then the remaining
n nodes in (Hy U {p} — Zn,) U (H2 — {p}), which is disconnected, cannot
contain Z,. So p cannot be a node of Z,, in the Z,,, U Z,-type covers. Thus
all the Z,,’s in Z,, U Z,-type covers must be contained in H;. Hence all
the Z,’s in the Z,, U Z,-type covers are in Hy. But, Hy = K;,. Therefore
there are f(Kp) Znsin Hp. By property (5), Hy must contain f(Km) Zms.
Thus H; & K. So link edges do not exist. Hence H & K, U K.
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Case 4. There are link edges.

(i) n =1, and there are at least 2 nodes in H; incident with link edges;
or,

(ii) » > 2, and there are at least 2 nodes both in H; and in H, that are
incident with link edges.

In this case, there must exist two different nodes, say i and j € V(H,),
that are adjacent to different nodes, say v; and v; € V(Hz), when n > 2.
(When n = 1, v; = v;, the following proof still apphes) The situation is
illustrated in Figure 2 (In the figure, we assume that i < j and the nodes

of Z( ) are numbered clockwise along the cycle).

Figure 2

Cased.l.n+l1<m<2n+2.

If j —1 < n+1, then the length of the path { —» y — j, denoted by
L(i—y—j),is <n+1. = thelengthofcycle L(i - v; »v; - j 5>z —
i) > m, where the path v; — v; passes through all the n nodes € V(H>).
This contradicts to Property (3).

fji—-12n+l,then t-3)+m<—-(n+1)+(2n+2) = n+1.
Hence the length of the path L(i —» z — j) < n+ 1. = the length of the
cycle L(i - y — j — v; — v; — i) is greater than m which again is a
contradiction.

Therefore, when n +1 < m < 2n + 2, there cannot be any link edges in
H Thus H;=2 K,=H=K,UK,.
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Case 4.2. m > 2n+ 2.
Case 4.2.1. There are only two nodes, say ¢ and j(j > i), in H;, incident
with link edges.

First assume m > 7. From the discussions in Case 4.1, we know that in
order to avoid the appearance of Z;(t > m) in H, j —1 must be > n+1
and (i — j) + m must also be > n+ 1. That is, length of the L(i — y — j)
and L(j — z — ) must both be > n + 1 (See Figure 2).

Now look at the node j +1. We claim that the n edges (+1)(i+1), (G +
1)(E+2),...,(F + 1)+ n) € (E(H;). If contrary, i.e 3 k, 1 < k < n, such
that ( + 1)@+ k) € E(Hy),then LG+1 > i+ k = j - v; — vy —
i -z — j+ 1) > m — a contradiction. Likewise, we can prove for all
k,1 <k <n, (i—1)(j — k) € E(H;). Hence there are at least 2n edges
€ E(H;). (Note: All the additions and subtractions appeared here and
later are taken in modulo m.)

Since m > 7, either t+2 # j—1o0r 7+ 2 5 i — 1. Without loss of
generality, we assume j + 2 # i — 1. Then at least one of the three edges
G+1)i, (G+2)(E+1), and (5 + 1)(: — 1) € E(H,). Otherwise, the cycle
J+Hloioy—vjojoy—it+tloj4+2—-2—i—-1->j+1must
have length > m; a contradiction. Hence H; has at most ﬂ";—_ll —(2n+1)
edges. But the number of link edges ending at ¢ and j cannot be greater
than 2n.

m(m —1) nn-1)

= E(H) < 5

+(2n+1)+2n+
_m(m-1)

n(n—1)
=—5 t—3

contradicting property (1).

Next, let m < 6. Since m > 2n + 2, we need only consider the 4 poss-
sibilities, n=4andn=1;m=5andn=1;,m=6,n=1and m =6,
n = 7. In each, there are 2 nodes in H; incident with link edges. It is not
difficult to show that each case leads to a contradiction.

Case 4.2.2. There are at least 3 nodes in H, incident with link edges. The
situation is shown in Figure 3.

With the similar arguments as in Case 4.1, we know that L(a; — z; —
a2) > n+1, L(az = z2 — a3) > n+1,...,L(a; — z; — a;) > n+1. (Note:
It is possible for several different nodes in H; to be joined to one node in Hs.
If this happens, we need only consider one of these link edges and disregard
all the rest. By so doing, the different nodes in H,, vy, a4, ag,..., a;, may
be regarded to be joined to different nodes in Hp. (When n = 1, these
nodes belong to V/(Hz) coincide with each other; and the correctness of the
following proof will not be affected.)

149



oV

Figure 3

We first consider the nodes a; and as. In the similar manner as in case
4.1, we may prove that for all ky, 1 < k; < n, the edge (a1 —1)(az — k1) €
E(Hl), and V kg, 1 < k2 < n, the edge (a2 + 1)(0.1 + k2) € E(H,), and
moreover, at least one of the three edges (a2 + 2)(ay + 1), (a2 + 1)(a; — 1)
and (a2 + 1)a; € E(H,)

Suppose that there are exactly 1 = 3 nodes in H; with link edges. In this
case, m must be > 2i = 6, because of Property (3).

We next consider nodes a; and ag. If m > 7, then either L(a; — z; —
a3), or L(az — zo — ag), or L(ag — z3 — a1), > 3. Without loss of
generality, we assume L(az — z3 — a;) > 3. = ag+1 # a; — 1. Then for
all k3, 1 < k3 < n, (ag + 1)(az + k3) € E(Hy). If m = 6, then n =1, and
the graph is shown in Figure 4. Since the number of triangles contained in
this graph < () —(m —2)+3= (%) -1 < (3).

It follows that this graph cannot be isomorphic to H. And so, we need
not consider it.

Now suppose i > 4. Then m > 2i > 8, because of Property (3). Similarly,
for a; and as, for all k3, 1 < k3 < n, (03 +1)(a2 +ks3) € E(Hl); for az and
ay, for all k4, 1 < kg < n, (ag+1)(a3 +kq) € E(H,); and go on this way up
to nodes a;_1, a;, for all k;, 1 < k; < n, (a;+1)(ai +1)(ai—1+k;) € E(H,).
Hence, |E(Hy)| < Mflz — (ni+1), i=3,4,..., while the number of link
edges cannot exceed ni. = |E(H;)| < 23=1 4 2(2-1) _ 1 contradicting
property (1).
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Figure 4

Therefore only case 1 is possible, and that completes our proof. O
The following result is taken from [8].
Lemma 11. K, U Z,, is circuit unique, where m # p.

Farrell and Guo [5] proved the circuit polynomials characterize K m
and K, m41 and conjectured that Kmyn is circuit unique. We now prove
that this conjecture is true.

Theorem 7. Ky, n is circuit unique.

Proof: The case for m = n is settled in [5]. And so, we assume that m # n.
Without loss of generality, we let m > n.

Let G be a graph such that C(G) = C(Kmn). By Lemma 3, G has the
following properties:

@) V(@) =m+n, |E(G)| = mn.

(2) G contains f(Km,n) cycles of length 2n, where f(K ») is the number
of cycles of length 2n in Ky n.

(8) G does not contain any cycle of length > 2n.
(4) G does not contain any odd cycles.
By property (4), G is a bipartite graph. By Lemma 5,
0C(Kmzn)
awZn
O(x;)the other hand, 528 = U=~ (G - 2. = T~ (G -
Z3))) = f(Kmna)C(U™™K)).

=3 CKmpn = Z2n) = [(Kumn)C(U™"K).
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By Theorem 1, we know that for any j, 1 < j < f(Kmmn),
G- 2Y) 2ymrKk,.

For a fixed j, let the induced subgraph of V(Zg,) ) in G be G;. Number the
2n nodes on Zg,) by 0,1,...2n—1, in clockwise order. Let G, = G — g.) =
U™—"K,. Obviously, G; does not contain any odd cycles either. = G, is
bipartite. Let V1(G1) and V2(G1) be the two parts of the node set V(Gy)
"in this bipartition. Since G; has a Hamilton cycle Zg‘), it follows that
Vi(G1)| = [Va(G1)| = n. = |(EGy)| < n.
Hence, there are at least mn —n? = (m — n)n link edges between G; and
Gs. Since |V(G2)| = (m —n), it follows that 3 a node v; € G2 such that v
is incident with at least n link edges, i.e. d(v;) > n... (2), (See Figure 5).

Figure 5

Write d(vy) = d;. Without loss of generality, we assume the end nodes of
the d link-edges incident with V; are a, a2, ..., a4, suchthata; < ay--- <
ag,. If two of these nodes are adjacent then Z, could be extended via v,
to the cycle Z;, where t > 2n: contradicting Property (3). Therefore no
two g;’s are adjacent. Clearly then |V(G,)| 2 2d;. = 2d; < 2n. Therefore
d; £ n. Combining with Relation (2), it follows that d; = n, and each
pair of n nodes are separate by exactly one node. This means that either
v is joined to each node in V;(G;) or is joined to each node belonging to
V2(G,). Let us assume the former.

'Now consider the set A; = V(G2) — {v1}. |A1] = m—n—1. There are at
least (m — n)n —n = n(m —n — 1) edges linking G; to A;. Thus 3 a node
vg € A; such that d(v,) > n. Similarily, we can deduce that v, is joined to
every node € V1(G)), or is joined to every node € V2(G}). (See Figure 6.)

But vz cannot be joined to any node in V2(G}) since there would be a
cycleay vy a2z a1 +1— v2 = a2+1— z — ay of length 2n + 2,
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contradicting Property (3). (See Figure 6)

Figure 6

We continue this procedure up to Apm—n—-1 = V(G2)—{v1,...,Vm-n-1} =
{vm-n}, and it follows that d(vm—_n) is adjacent with every node € V;(G,).

Hence, there are exactly (m — n)n link edges between G, and G2. Thus
|E(G1)| = mn — (m — n)n = n?. Since G, is a bipartite graph with 2n
nodes, it follows G; 22 K,,, ,,. Because each node in V(G3) is adjacent with
V1(G1) and |E(G3)| = 0, it follows that G = Ky, .

Farrell and Whitehead proved in [3] that if graph G is matching unique,
so is G. We pose the following question:

If graph G is circuit unique, is G also circuit unique?

If G and G are both circuit unique, then we say G is two-way circuit
unique. Combining the results in Theorem 6 and Theorem 8, we have the
following:

Theorem 8. K, is two-way circuit unique.

We note that if G is characteristically unique, then G is circuit unique.
The converse need not be true. It is known that K, , is not character-
istically unique. We have proved, however that K, » is circuit unique.

Furthermore, we note here that it has been proved (Xu [9]) that Kp s is
chromatically unique.
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