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ABSTRACT. A graph is said to be in L, if deg u+degv > | N (u)U
N(w)UN (v)| -1 for each induced path uwv of order three. We
prove that a 2-connected graph G in L; of diameter two is
hamiltonian, or K4,4+1 C G C Ka+ (d+ 1)K, for some d > 2.
This theorem generalizes a couple of known sufficient conditions
for a graph to be hamiltonian. We also discuss the relation
between this theorem and several other degree conditions for
hamiltonicity.

We only consider finite simple graphs in this paper. For basic graph-
theoretic notation we follow that of [3]. For a graph G we define o(G) to
be:

o(C)= min{degz+degy|z,y € V(G),z #y,zy ¢ E(G)} if G is not complete
T 2lv(e)|-1 if G is complete.

There are a number of sufficient degree conditions for a graph to be hamil-
tonian. One of the oldest among them is Ore’s theorem.
Theorem A. [8]. A graph of order p with a(G) > p is hamiltonian. O

Later, it has been found that the bound of o(G) in the above theorem
can be relaxed by one if we allow a class of the exceptions, which is clearly
defined.

Theorem B. [1, 6, 7, 9]. A 2-connected graph G of order p with o(G) >
p — 1 is either hamiltonian, or Kga4y1 C G C K4+ (d + 1)K, for some
d>2.
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Note that a graph of order p with o(G) > p — 1 has diameter at most
two.

As an extension of Theorem A in a different direction, Asratian and
Khachatrian [5] have defined the local Ore-type condition. (In [5] Asratian’s
last name was transcribed as Hasratian.) For i > 0 a graph G is in L; if
degu+degv > |N(u)UN(w)UN(v)|—i for each induced path uww of order
three, where N(z) is the neighborhood of a vertex z. They have proved
the following generalization of Theorem A.

Theorem C. [5]. A graph in Lo of order at least three is hamiltonian.

A graph in Lo can have an arbitrarily large diameter. Hence one possible
interpretation of Theorem C is that though a graph satisfying the condition
of Theorem A has diameter at most two, this fact plays no role in its
hamiltonicity.

On the other hand, the situation in Theorem B is somewhat different. As
Asratian and Khachatrian have observed (see [2]), all claw-free graphs are
in L,. Since not all 2-connected claw-free graphs are hamiltonian, not all 2-
connected graph in L, are hamiltonian. Therefore, a different mechanisim
besides local Ore-type condition works under Theorem B.

In this paper we prove the following theorem.

Theorem 1. Let G be a 2-connected graph of diameter two. If G is in L,,
then either G is hamiltonian, or K41 C G C Kq+ (d+ 1)K, for some
d>2.

This theorem seems to give a “circumstantial evidence” that Theorem
B is a result of combined mechanisms of a local Ore-type condition and a
diameter condition.

Theorem 1 is stronger than Theorem B. Let H; = K; + 2K, and let
and y be a pair of nonadjacent vertices of degree two in Hy. Let Hy ~ K,,
(m > 1) and let G be a graph obtained from H; and H, by joining {z,y}
and every vertex in Hs. Then G is 2-connected graph of diameter two.
Moreover, it is in L; (actually it is claw-free). However, o(G) = 4 <
V(&) -

Since every claw-free graph is in L,, we also have the following theorem
by Gould as a corollary.

Theorem D. (Gould [4]). Every 2-connected claw-free graph of diameter
two is hamiltonian.

We mtroduoe some additional notation before we prove Theorem 1. We
denote by Ca cycle C with a given orientation. Let u, v € V(C). By

u C’ v we denote the consecutive vertices on C from u to » in the dJrectlon
specified by C’ The same vertices, in reverse order, are given by v C u. We
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also apply the same notation for a path. We use u™ to denote the successor
of u on C and u™ to denote its predecessor. We write u** instead of (u*)*.

For a subgraph H of G and z € V(G)-V(H), let Ny(z) = N(z)NV (H).
Thus Ng(z) = N(z). For A, B C V(G) with AN B = 9, we denote by
ec(A, B) the number of the edges in G that join a vertex in A and a vertex
in B
Proof of Theorem 1: First, note the inequality

degu+degv > [N(u) UN(w)UN(v)| -1
is equivalent to
|N(u) N N(v)| = |N(w) — (N(w) UN(v))| - 1.

Assume G is not hamiltonian and let C be a longest cycle in G. Let H be
a component of G — V(C). Since G is connected, H has a vertex z € V(H)
with N¢(z) # 0. Let Ng(z) = {z1,...,z4}. We may assume zy,...z4

—

appear in the consecutive order along C. Then since zz;z] is an induced
path in G, we have

IN(z) N N(z)| 2 IN(z:) — (N(z) UN(=))| - 1. (1)

Let A = {z1,...,z4} and B = {z},...,z}}. Since C is a longest cycle,
AN B = 0. We count the number of the edges between A and B. Since
C is a longest cycle, N(z}) n N(z) & V(C) (1 <i < d). Therefore,
N(z})n A= N(z}) N N(z). Again, since C is a longest cycle, BU {z} is
an independent set, and hence

N(z)NB C N(zi) — (N(z})UN(2)) - {z}. 2)
Therefore,
d d
Y INEH) NN(2)=)_ IN(zF) N Al=ec(A, B) (3).
i=1 i=1

d d
=Y IN(z:) N BI<Y (IN(z:) - (N(z}) UN(2))|~1)
i=1 i=1

By (1) and (3) the equality holds in (1) and (2). In particular, we have
N(z;) - (N(z})UN(2)) - {z} = N(=:)n B C B. (4)
By the same arguments we also have
N(z:)-(N(z;)UN(2))—{z}=N(z:;) N {z],...,z7}C{z],.-- ,z;}.(s)
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Now we claim z =z}, for each i, 1 < i < d. (We consider 441 = z;.)

Assume the contrary. Then we may assume z} # z7. Then z] €
N(z1) = N(2) — {2}. If z; ¢ N(z{), then by (4) we have z] = zJ, a con-
tradiction. Thus, we have 7 € N(z{). This implies ] € N(z;)N N(z7).
On the other hand, z7 ¢ N(z) since C is a longest cycle. Therefore,
z{ # z3, and there exists a vertex v € z}+ C z; with v ¢ N(zi)NN(zy)
and z} C v~ C N(z;) N N(z7). Since v € zit C z7, v ¢ N(z). Since
diam(G) = 2, we have N(v) N N(z) # 0, say u € N(v) N N(z). (Note that
even if d = 1 the arguments in this paragraph holds by putting zz = z;.)

Ifu ¢ V(C), thenv c v~ c zyzuv is a cycle which is longer than C, a
contradiction. Therefore, we have u € V(C). This implies u = z; for some
,1<i<d.

Assume i # 1. Since v € N(z;) — N(2) — {z} and v ¢ {z{,...,z}}, we
have v € N(z}) by (4). Then zz; c vz} c zyv” E’ z1z is a cycle which is
longer than C, a contradiction. Thus, we have i = 1. Then v ¢ N(z7).

Now we have v € N(z;) — (N(zy) U N(2)) — {2}, and by (5) this is
possible only if d > 2 and v = z;,ord =1l and v = z]. Ifd > 2,
2z, C zyzf c Zp z12 is a cycle longer than C. This is a contradiction. If
d =1, consider the component H of G — V(C) that contains 2. Since G is
2-connected and C is a longest cycle, there exists an edge ab € E(G) with
a € V(C) — {z1,zf,z7} and b € V(H) — {z}. Let P be a path joining
z and b in H. Since a # z1, a~ # z] and hence a~ € N(z;). Then
z I_-"' ba 5 z7zf a a~z;2 is a cycle longer than C. This is a contradiction,
and the claim follows.

By the above claim, we have V(C) = AU B. Since 2 can be any vertex
in G- V/(C) with Ng(2) # 0, each component in G — V(C) consists of one
vertex. This implies d > 2. Then for each y € V(G) - V(C), N(y) = A
or N(y) = B. However, if N(y) = B for some y € V(G) — V(C), then
zz9afya} C 312 is a cycle longer than C. This is a contradiction, and
hence N(y) = A for each y € V(G) — V(C). Let |V(G) - V(C)| = m.
By the assumption m > 1. Since z;4, 5 T;2Ti4) is a longest cycle, we
have N(z}) = A for each i, 1 < i < d. Thus, BU (V(G) — V(C)) is an
independent set and BU (V(G) — V(C)) C N(z;) foreachi,1<i < d.

Since zz,z{ is an induced path in G, degz+degz} > [N(z) UN(z})u
N(z1)| - 1. However, since N(z) = N(z}) = A and BU(V(G) - V(C)) C
N(z,), we have N(z) U N(z§)U N(z;) = V(G) and

2d =degz; +degz! >2d+m —1.
This implies m < 1 and hence m = 1. Therefore, we have K441 C G C

Ki+ (d+1)K;. o
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