Snake-In-The-Box Codes for
Dimension 7

Krys J. Kochut

Department of Computer Science
University of Georgia
Athens, Georgia 30602-7404, USA

E-mail: kochut@cs.uga.edu

Abstract

In the n-dimensional hypercube, an n-snake is a simple path with
no chords, while an n-coil is a simple cycle without chords. There
has been much interest in determining the length of a maximum
n-snake and a maximum n-coil. Only upper and lower bounds for
these maximum lengths are known for arbitrary n. Computationally,
the problem of finding maximum n-snakes and n-coils suffers from
combinatorial explosion, in that the size of the solution space which
must be searched grows very rapidly as n increases. Previously, the
maximum lengths of n-snakes and n-coils have been established only
for n < 7 and » < 6, respectively. In this paper, we report on a
coil searching computer program which established that 48 is the
maximum length of a coil in the hypercube of dimension 7.

1 Introduction

In this paper we present a new computational result for the ”snake-in-the-
box” problem. Specifically, we have developed a program which efficiently
constructs all coils in hypercubes. Using this program, we have determined
the maximum length of a coil in the hypercube of dimension 7. We used a
substantially optimized version of a complete exhaustive search algorithm,

JCMCC 20 (1996), pp. 175-185

similar to the one used in a different experiment, in which the maximum
length of a snake in the hypercube of dimension 7 was determined [14].

Since the late 50’s, hypercubes have been studied for their relevance
to coding theory [11] and more recently due to the construction of paral-
lel computing systems with hypercube communication topologies. Harary
el al. [10] presented a survey of known theoretical results concerning hy-
percubes. Coils (simple cycles without chords) in hypercubes, as opposed
to snakes (simple paths without chords), have received the most atten-
tion in the literature |7, 1, 10, 19, 17]. Both coils and snakes have various
applications, such as error-detection in analog-to-digital conversion [13].
Generally, the longer the snake, the more accurate the conversion will be.
Additionally, snakes are related to algorithms used for disjunctive normal
form simplification and for electronic combination locking schemes; again,
the longer the snake, the more useful it is in the application [13].

2 Background and Definitions

We will consider only simple graphs G(V, E), i.e. graphs with neither mul-
tiple edges nor loops. A complete graph on n nodes, denoted Ky, is a graph
in which every two distinct nodes are adjacent (connected by an edge).

A paih in G is a sequence of nodes vg, vy, ...v,, in which v;—; and v;
(1 € i < n) are adjacent (in G). Such a path is said to have endpoints vy
and v,, and to have length n. A simple path is a path with no repeated
nodes.

A chordless path in G is a simple path vy, vy,...v, in G, such that v;
and v; are never adjacent when ¢ and j differ by more than 1.

A cycle in G is a sequence of nodes vg, vy, ...Un, vo, where vg, vy, ...v,
is a path and v, and vo are adjacent. Such a cycle is said to have length
n+1. A simple cycle is a cycle vg, vy, ...vp, vo, such that v; # v; if { # j.

A chordless cycle in G is a simple cycle vg, vy, ...vy, Vg, in which v; and
v; are never adjacent in G when 7 and j differ by more than 1 (mod n +1).

The cartesian product of two graphs (7; and G, denoted G = G x G2,
is a graph G, where the set of nodes of (+ = V; x V5 and two nodes (uy, u3)
and (v1,v2) of G are adjacent in G if and only if either u; = v; and uy and
vo are adjacent in (33, or us = v2 and u, and v; are adjacent in G.

176

0101 0111
P
/
1101 111 A
// e
0001 ool
1001 1011
1100 : 1110
1010 | .~
1000
0100 v 0110
\\ //
/
0000 0010

Figure 1: A coil in Q4

The n — dimensional hypercube, denoted @, can be defined induc-
tively as in [10] by:

Q1 = K,
Qn = Kax@Qn_1.

The nodes of @, can be represented as 2" vectors of binary digits,
each of length n. Two nodes are adjacent in @, if they differ in exactly one
coordinate. For example, in @4, the node 1010 is adjacent to 1000, 1011,
1110, and 0010.

An n-snake is a chordless path in Qy,. An n-coil is a chordless cycle in
Q@n. The length of an n-snake (n-coil) is the number of edges in the n-snake
(n-coil), i.e., just its length as a path (cycle).

A Gray code is a Hamiltonian path or cycle in the hypercube. Using
the binary vector representation, one Gray code for Q4 is:

177

0000 0001 0011 0010 0110 0111 0101 0100
1100 1101 1111 1110 1010 1011 1001 1000

For dimension n > 3, every Gray code contains at least one chord. For
instance, in the Gray code above, 1010 and 1000 are adjacent in Q4 but not
consecutive in the code, so this edge is a chord. Figure 2 shows a maximum
length coil in Q4 containing 8 edges. The nodes of the coil are:

0000 0001 0011 0111 0110 1110 1100 1000 0000

Great interest has developed in determining maximum lengths of coils
and snakes in Q, (see for example [11, 6, 16, 5, 12, 8, 4, 7, 1, 19, 2, 17)).
In many of these papers, the term snake has been used to mean an n-coil.
In the present paper, we follow the notation introduced in [10] and use the
terms coil and snake to refer to an n-coil and an n-snake, respectively. We
use ¢, and s, to denote the length of a maximum n-coil and of a maximum
n-snake, respectively.

Finding long coils and snakes is such a computationally difficult prob-
lem that the values of ¢, and s, have previously been established only for
n up to 6 and 7, respectively. The result for s7 was reported in [14]. The
result for ¢7 is Theorem 1, below. The known maximum lengths of n-coils
and n-snakes are summarized in Table 1.

1 17 2
21 2| 4
3| 4| 6
4 71 8
5| 13|14
6 (26|26
7 150 | 48

Table 1: Maximum Lengths of Snakes and Coils

To date, only upper and lower bounds have been reported in the liter-
ature for ¢, where n > 7, and s,,, where n > 8. Table 2 shows the lower
bounds for coils and snakes for 8 < n < 11. The result for sg was obtained
computationally by using the genetic algorithm and reported by Potter et
al. [15]. Other results are by Abbott and Katchalski [3), and Even [9].

178

' n]ib fors, [Lb.fore, |

8 89 88
9 168 170
10 322 324
11 618 620

Table 2: Known Lower Bounds on Maximum Lengths of Snakes and Coils

Clearly, ¢, — 2 < sy, since one can always form an open snake by deleting
a node from a coil. The lower bounds for s, for n = 9, 10, and 11 follow
from this. Additionally, a lower bound for ¢7 of 48 was computationally
established by W.L. Eastman, as reported in [9].

A number of authors have derived upper bounds for ¢,,. Solov’jeva [18]
reported bounds for n > 7, which were recently improved by Snevily [17]
for n > 12. They give bounds for all n > 7 (n > 12, in [17]) which are
< 27! but asymptotic to 2”~!. The upper bounds do not seem to be as
good as the lower bounds, based on the data we now have for n < 7.

3 Coil Searching Algorithm

The enumerative algorithm works by selecting new nodes for exploration
in @, in a depth-first search. The algorithm attempts to extend a path,
so that it is an n-snake, one node at a time. On each extension attempt,
a check is performed to find out if the current path may be closed to form
an n-coil. Since in our experiment we considered @7, our explanations will
be based on hypercube nodes represented as binary vectors of length 7.

All enumerated snakes start at the origin, 0000000, and are extended
at the other end. If a coil may be closed by adding two additional edges
(leading back to the origin, i.e. 0000000), the length of the coil is recorded.
When a snake cannot be extended it is considered a dead-end (such a dead-
end snake is a maximal snake). A dead-end snake is discarded and other
snakes are considered. Backtracking occurs at each dead-end snake, so that
a whole tree of possibilities is explored.

We utilized the following symmetry optimization, similar to that em-
ployed in the earlier experiment which established the maximum length of
a snake in Q7 [14]. There are n! symmetries of the n-cube which leave the

179

origin fixed, corresponding to the symmetric group of all permutations of
the n coordinates. Each maximal path makes use of all n coordinates in
its transitions, and therefore cannot be left fixed by any of these symme-
tries of the n-cube except for the identity. That is, each path belongs to a
class of n! paths which are equivalent, and in particular are all of the same
length. In order to explore exactly one path in each equivalence class, the
search algorithim considers only paths which are canonicalin the sense that
the first occurrence of a 1 in each position follows the linear order of least
significant to most significant. Following this rule for n = 7, the next node
after 0600000 must be 0000001, rather than 1000000 or any of the other
five nodes adjacent to the origin. Later on, say when 1’s have appeared in
each of the first four positions but not in any of the last three, the next
position to contain a 1 for the first time must be the fifth. The current
path is extended by moving to an adjacent node that is not adjacent to
any other nodes in the current path. When dead-ends are encountered, the
algorithm backtracks.

The coil searching algorithm described here includes an additional op-
timization for pruning the search tree. The optimization eliminates paths
which can never possibly be closed to form coils (by returning back to the
origin). Since the coil searching algorithm starts enumerating canonical
paths at node 0000000, there are 6 nodes that can eventually lead back to
the origin (one of the 7 neighboring nodes, specifically 0000001, is used to
initially extend the path from the origin, and therefore is excluded as a po-
tential return node). Each time a path is extended by one node, all of the
neighbors are marked and if any of them are also neighbors of the origin, the
number of potential return nodes is decremented accordingly. Obviously, if
the number of potential return nodes drops to zero, the current path may
be discarded, even though it may be extended further.

The pseudo-code of the main algorithm is shown in Fig. 3. The al-
gorithm uses two stacks, one for the nodes visited ”so far” (representing
the current path) and one for the pivot values, indicating the highest di-
mension already explored. (This value is necessary for implementing the
symmetry optimization, as described above.) Procedure markneighbors
marks the neighbors of the current node and decrements the number of
potential return nodes, whenever necessary.

180

procedure coilsearch(depth: integer);

var next, curr: node;
i, pivot: integer;

begin
curr_node := stack_top(nodestack); pivot := stack_top(pivotstack);

mark_neighbors(curr_node);
remember nodes marked at this level (later called just marked);

if there are no neighbors which were just marked or
number of possible return paths is zero then
return
else begin
for all i from 0 to pivot do
if the i-th neighbor was just marked then
begin
if can_close_coil then save_coil(depth);
push(the i-th neighbor, nodestack); push(pivot, pivotstack);
search(depth+1);
pop(nodestack); pop(pivotstack);
if empty(nodestack) then return
end;

if pivot < dim-1 then
begin
pivot := pivot + 1;
if pivot-th neighbor was just marked then
begin
if can_close_coil then save_coil(depth);
push(the pivot-th neighbor, nodestack);
push(pivot, pivotstack);
search(depth+1);
pop(nodestack); pop(pivotstack);
if empty(nodestack) then return
end
end
end

unmark nodes marked at this level;

end;

Figure 2: Pseudocode of Our Coil Search Algorithm

181

4 Results of the Coil Search

Since we anticipated a very long running time of the exhaustive coils search,
the program had to ”checkpoint” itself (save its state) frequently. Using
the recursive search algorithm shown in Fig. 3, it would be difficult to to
restart the program from any given checkpointed state. Thus, the recursive
algorithm was converted to an equivalent, non-recursive, stack-based ver-
- sion. The converted algorithm was coded in the C programming language,
and then optimized for speed. The non-recursive version implemented the
same basic algorithm, but instead of using the system stack, as is implicitly
done in recursive procedures, we elected to maintain a number of stacks
ourselves.

The enumerative coil search algorithm was run to look for canonical
coils in @7. The starting node was fixed at 0. To speed up the coil search-
ing process, the overall search tree was expanded to the depth of 7. At
that level, the search tree contained 12 unexplored branches. Since each
of the search-trees rooted at the 12 unexplored nodes at depth 7 was not
connected to any other search-tree, the searches of each branch were com-
pletely independent. Because of this, they could be explored in parallel on
independent computers. The computation was carried out on a network
consisting of 5 SUN Microsystems SparcCenter 1000’s (with two processors
each). The computation lasted a bit more than one month.

Theorem 1 From ezhaustive search, c; = 48.

Proof: Since our algorithm performed an exhaustive search, the complete
computation enables us to conclude that the longest coil in Q7 has length
48. It is only necessary to know this for canonical coils, since any coil
is equivalent to one of the canonical coils (and equivalence preserves coil
length). Thus, we have established that c¢; = 48. The program found 67488
canonical coils of length 48. A sample coil of length 48 from each of the 12
independent computations is presented in Table 3. O

5 Conclusions

Our coil searching program has establislied the value of ¢7 to be 48. This is
in agreement with our earlier experiment [14], which established the value

182

of s7 and improved the upper bound on ¢; by lowering it to 50. (It was
already known that 48 was a lower bound for ¢7.)

References
(1] H.L. Abbott and M. Katchalski. On the Snake-in-the-Box Problem, J.
Combin. Theory 45 (1988), 13-24.

[2] H.L. Abbott and M. Katchalski. Further Results on Snakes in Powers
of Complete Graphs, Discrete Math. 91 (1991), 111-120.

[3] H.L. Abbott and M. Katchalski. On The Construction Of Snake In
The Box Codes, Utilitas Math. 40 (1991), 97-116.

(4] L.E. Adelson, R. Alter, and T.B. Curtz. Long snakes and a charac-
terization of maximal snakes on the d-cube, Congr. Numer. 8 (1973),
111-124.

[6] L. Danzer and V. Klee. Lengths of Snakes in Boxes, J. Combin. Theory
2 (1967), 258-265.

[6] D.W. Davies. Longest -Separated- Paths and Loops in an N Cube,
IEEE Trans. Electronic Computers 14 (1965), 261.

[7] K. Deimer. A New Upper Bound for the Length of Snakes, Combina-
torica 5 (1985), 109-120.

(8] R.J. Douglas. Upper Bounds on the lengths of circuits of even spread
in the d-cube, J. Combin. Theory 7 (1969), 206-214.

[9] S. Even. Snake in the Box Codes, IRE Transactions on Electronic
Computers EC-12 (1963), 18.

[10] F. Harary, J. P. Hayes, and H. J. Wu. A survey of the theory of hy-
percube graphs, Comput. Math. Applic. 15 (1988) 277-289.

(11] W.H. Kautz. Unit-Distance Error-Checking Codes, IRE Trans. Elec-
tronic Computers 7 (1958), 179-180.

[12] V. Klee. A method for constructing circuit codes, J. Assoc. Comput.
Mach. 14 (1967), 520-538.

(13] V. Klee. What is the maximum length of a d-dimensional snake?,
Amer. Math. Monthly 77 (1970), 63--65.

183

[14] K.J. Kochut, J.A. Miller, W.D. Potter, and R.W. Robinson. Hunting
For Snake-In-The-Box-Codes, Annals of Mathemalics and Artificial
Intelligence (1994) (under review).

[15] W.D. Potter, R.W. Robinson, J.A. Miller, and K.J. Kochut. Using
the Genetic Algorithm to Find Snake-In-The-Box Codes, 7-th Intl.
Conf. on Industrial & Eng. Applic. of Artificial Intelligence and Ezpert
Systems, Austin, Texas, (1994), 421-426.

[16] R.C. Singleton. Generalized Snake-in-the-Box Codes, IEEE Trans.
Electronic Computers 15 (1966), 596-602.

[17) H.S. Snevily. The Snake-in-the-Box Problem: A New Upper Bound,
Discrete Math., (1993) (to appear).

[18] F.I. Solov’jeva. An Upper Bound for the Length of a Cycle in an n-
Dimensional Unit Cube, Discret. Analiz. 45 (1987).

[19] J. Wojciechowski. A new lower bound for Snake-in-the-Box codes,
Combinatorica 9 (1989), 91-99.

184

| No. | Sequence

1

01371513 12283026 27 2557 56 40 104 72 73 75 107
111 110 46 38 36 52 116 124 125 93 95 87 119 55 51 50 114
98 66 70 68 69 101 97 11381 80160

013715132928 3026 27 59 57 41 40 42 46 38 36 37 53
55 119 87 86 84 68 76 78 74 75 107 111 109 125 124 120 88
89 81 113 97 96 98 114 50 48 16 0

013715141026 27 2529 28 20 22 54 50 51 49 53 117
125 121 120 88 80 81 83 87 95 94 126 110 108 44 45 41 43
107 75 73 77 69 68 70 66 98 96 32 0

0137151412 2829 25 27 26 18 22 54 55 51 115 83 87
9594 126 122 120 121 125 117 116 84 68 69 77 73 72 74 66
98 102 103 111 107 4341 453736 320

01371514 3028 29 25 27 59 58 56 40 41 45 37 53 52 54
38 34 98 96 97 113 121 125 124 126 110 111 103 119 87 86
70 68 69 77 73 75 74 90 88 80 16 0

013715312726 24282021 53 49 51 50 54 62 46 42 43
41 105 104 120 122 123 127 111 103 99 98 66 74 78 94 86
87 83 81 89 93 77 69 68 100 36 32 0

013715312928 24 26 18 22 54 55 53 49 57 59 43 42 40
44 36 100 101 97 99 98 114 122 120 124 125 127 111 110
78 76 77 73 75 91 83 87 85 84 80 64 0

01371531 302824 25573951 50 54 52 53 37 45 44 46
42 10 74 90 122 126 124 125 93 77 73 105 107 111 103 102
9896 112 113 81 83 87 8684684 0

0137153163 62605648 49113 121 123917573 77 69
85 21 20 22 18 26 10 42 43 41 45 37 36 100 116 118 114 98
99 103 111 110 78 94 92 88 80 64 0

10

01376141026 272529 28 20 52 53 55 51 50 34 98 102
103 101 97 113 81 83 82 86 94 95 127 125 124 120 104 40
44 45 47 43 107 75 73 77 76 68 64 0

11

0137614121329 31 27 26 18 50 54 55 53 49 57 121
105 73 75 74 66 98 99 115 83 87 85 69 68 100 116 112 80
88 92 94 126 127 111 47 43 42 40 32 0

12

0137614303129 2524 56 58 59 43 41 45 37 101 100
68 84 20 52 54 55 119 87 83 91 90 74 72 73 77 79 111 110
126 124 125 121 113112114 9834 320

Table 3: A Sample of Coils in @7 of Length 48

185

