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ABSTRACT. Let m > 1 be an integer and let G be a graph of
order n. A set D of vertices of G is a m-dominating set of G if
every vertex of V(G) —7D is within distance m from some vertex
of D. An independent set of vertices of G is a set of vertices
of G whose elements are pairwise nonadjacent. The minimum
cardinality among all independent m-dominating sets of G is
called the independent m-domination number and is denoted
by id(m,G). We show that if G is a connected graph of order
n > m+1, then id(m,G) < (n+m+1—2/n)/m, and this
bound is sharp.

1 Introduction

In this paper, we use fairly standard graph theoretic terminology and no-
tation. For example, for a connected graph G, the distance d(u, v) between
two vertices u and v is the length of a shortest u-v path. If S is a set of
vertices of G and v is a vertex of G, then the distance from v to S, denoted
by dg(v,S) or simply d(v,S), is the shortest distance from v to a vertex
of S.
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Let G = (V, E) be a graph with vertex set V and edge set E. If X and
Y are subsets of V, X dominates Y if and only if each vertex of Y — X
is adjacent to some vertex of X. In particular, if X dominates V, then
X is called a dominating set of G. An independent set of vertices is a set
of vertices whose elements are pairwise nonadjacent. The fact that every
maximal independent set of vertices in a graph is also a minimal dominating
set motivated Cockayne and Hedetniemi [12] in 1974 to initiate the study
of Yindependent domination’ in graphs. A dominating set of vertices in a
graph that is also an independent set is called an independent dominating
set. The minimum cardinality among all independent dominating sets of a
graph G is called the independent domination number of G and is denoted
by i(G). The parameter i(G) has received considerably attention in the
literature (see, for instance, [1, 2, 6, 15, 29]). For an excellent bibliography
on dominating and independent dominating sets we refer the reader to [23].

In this paper, we extend the definition of independent dominating sets
in graphs. Let m > 1 be an integer and let G = (V, E) be a graph. In [24],
if X and Y are subsets of V, then the set X is said to m-dominate Y if
and only if each vertex of Y — X is within distance m from some vertex
of X. In particular, if X m-dominates V, then X is defined to be an m-
dominating set of G. An m-dominating set of vertices in a graph that is
also an independent set we call an independent m-dominating set. The in-
dependent m-domination number id(m, G) of G is the minimum cardinality
among all independent m-dominating sets of G. Thus D is an independent
1-dominating set of G if and only if D is an independent dominating set of
G. Hence id(1, G) = i(G).

We show that if G is a connected graph of order n > m 4 1, then
id(m,G) < (n+m+1-24/n)/m, and this bound is sharp.

Results on the concept of m-domination in graphs have been presented
by, among others, Bascé and Tuza [3, 4], Beineke and Henning [5], Bondy
and Fan [7] , Chang [8], Chang and Nemhauser [9, 10, 11], Fraisse [15],
Fricke, Hedetniemi, and Henning [16, 17], Fricke, Henning, Oellermann,
and Swart [18], Hattingh and Henning [21, 22], Henning, Oellermann, and
Swart [24, 25, 26, 27, 28], Meir and Moon [30], Mo and Williams [31], Slater
[32], Topp and Volkmann [33], and Xin He and Yesha [34].

2 Known results

Let v be a vertex of a graph G, and let m be a positive integer. Then the
set of all vertices of G different from v and at distance at most m from »
in G is defined in [15] as the m-neighbourhood of v in G and is denoted by
Npm(v). We begin by stating the followmg result from [26], which will prove
useful to us later.
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Theorem A For m > 1, if G is a connected graph of order at least m+1,
then there exists a minimum m-dominating set D of G such that for each
v € D, there exists a vertez w € V(G) — D at distance ezactly m from v
such that Npp(w) N D = {v}.

Next we mention known upper bounds on id(m, G) for a connected graph
G. The following result is due to Gimbel and Vestergaard (20].

Theorem B If G is a connected graph of order n > 2, then
i(G)<n+2-2/n,
and this bound is sharp.

That the bound given in Theorem B is sharp, may be seen by considering
the graph G obtained from a complete graph on k+1 vertices by attaching
to each of its vertices k disjoint paths of length 1. Then n = (k+1)? and
i(G)=k?*+1,50i(G)=n+2-2n.

Since i(G) = id(1, G), Theorem B gives a sharp upper bound on id(1, G)
for a connected graph G. For m > 2, Beineke and Henning [5] established
the following upper bound on id(m, G) for a connected graph G.

Theorem C For m > 2, if G i3 a connected graph of order n > m, then
) n
‘d(m’ G) < ;s

and this bound is asymptotically best possible.

That the bound given in Theorem C is in a sense best possible, may be
seen by considering the connected graph G constructed as follows: For &
and b very large integers, let G be obtained from a complete graph on b
vertices by attaching to each of its vertices k disjoint paths of length m.
(The graph G is shown in Figure 1.) Then id(m,G) = (b—1)k+1 and
n = |V(G)| = b(mk + 1), so

idm,G) bk—k+1 1-—}+44 brosoo 1

n bmk+b  m+1 m

If we restrict our attention to trees, then Beineke and Henning [5] estab-
lished the following upper bound on id(m,T) for small values of m.

Theorem D For m € {1,2,3}, if T is a tree of order n > m + 1, then
id(m,T) < n/(m+ 1), and this bound is sharp.

That the bound given in Theorem D is sharp, may be seen by considering
a tree T}, of order n obtained from a path on b vertices by attaching a path
of length m to each vertex of the path. Then id(m,Tn) =b=n/(m+1).
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Figure 1: The graph G.

3 Complexity issues

In this section, we consider the decision problem corresponding to the prob-
lem of computing id(m, G) for any fixed integer m > 1. We show that from
a computational point of view the problem of finding id(m, G) appears to
be very difficult.

The following independent dominating set problem is known to be N P-
complete (see Garey and Johnson [19]), and remains N P-complete for the
class of bipartite graphs, as shown by Corneil and Perl [14].

PROBLEM: Independent dominating set (I DOM)
INSTANCE: A graph G = (V, E) and a positive integer &k < |V/|.
QUESTION: Is i(G) < k (that is, is there a vertex set S C V such
that S is an independent dominating set with |S| < k)?
We will demonstrate a polynomial time reduction of the problem IDOM
to show that the following problem is also N P-complete.

PROBLEM: Independent m-dominating set (ImDOM)
INSTANCE: A graph H = (V, E) and a positive integer j < |V].
QUESTION: Is id(m, H) < j (that is, is there a vertex set S C V such
that S is an independent m-dominating set with |S| < k)?

Theorem 1 Problem ImDOM is N P-complete, even when resiricted to
bipartite graphs.
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Proof: It is obvious that ImDOM is a member of NP since we can, in
polynomial time, guess at a subset of vertices, verify that its cardinality is
at most j, and then verify that it is an independent m-dominating set. To
see that ImDOM is N P-complete it is next shown that a polynomial time
algorithm for ImDOM could be used to solve JDOM in polynomial time.
Starting with an instance G = (V,E) and k < |[V| = n and |E| = q
for problem 1 DOM, we can construct the graph H from G by attaching to
each vertex of G a path of length m —1. Thus in forming H from G we have
added n(m—1) new vertices and n(m—1) new edges. That is, |V (H)| = nm
and |E(G)| = ¢+ n(m — 1), so the graph H can be constructed from G in
time polynomial in n. We note that if G is bipartite, then so too is H.

Lemma 1 id(m, H) =i(G).

Proof: Let I be an independent dominating set of G of cardinality i(G).
Then I is an independent m-dominating set of H, so id(m, H) < |I| = i(G).
On the other hand, let D be an independent m-dominating set of H of
cardinality id(m, H). The minimality of D implies that D contains at most
one vertex from each path of length m — 1 added to G in forming H. Let
v € V(G) and consider the path of length m — 1 attached to v in forming
the graph H. If D contains a vertex w that belongs to this path, then
neither v nor any vertex adjacent to v in G belongs to D, for otherwise
we may remove w from D to produce an independent m-dominating set
of H of cardinality less that |[D|. Replacing the vertex w in D with the
vertex v produces a new independent m-dominating set of H of cardinality
|D]. Hence we may assume that each vertex of D belongs to G. But then
D forms an independent dominating set of G, so i(G) < |D| = id(m, H).
Consequently, id(m, H) = i(G). ) o

Lemma 1 implies that if we let j = k, then i(G) < k if and only if
id(m, H) < j. This completes the proof of Theorem 1. a

4 Bounds on id(m,G) for a connected graph G

Since the problem of computing id(m, G) appears to be a difficult one, it
is desirable to find good upper bounds on this parameter. In this section,
we prove the following result, which improves on that of Theorem C and
generalizes that of Theorem B.

Theorem 2 For m > 1, if G = (V,E) is a connected graph of order
n>m+1, then
id(m,G)sn+m+”t_2ﬁ

and this bound is sharp.
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Proof: Let D = {vy,... ,v} be a minimum m-dominating set of G that
satisfies the statement of Theorem A. We introduce the following notation.
Fori=1,...,b, let

Wi ={weV —D|d(v,w)=mand Np(w)ND = {v;}},
X; = {z € V| z belongs to a vi-w path of length m for some w € W; }, and

U; = {u € V | u is the vertex adjacent to v; on some v;-w path of length m
for some w € W; }.

By our choice of D, we know that W; 3 @ for all i. Hence |X;| > m+1
and v; € X; for all 1.

Claim1 X;NX;=0for 1<i<j<b.

Proof: Suppose z € X; N X; for some ¢ and j with 1 <i < j < b. Then
there exists a vertex w; (w;) in W; (Wj, respectively) such that a v;-w; path
(vj~w; path, respectively) of length m contains the vertex z. But then at
least one of w; and wj is within distance m from both v; and v;, which
produces a contradiction. O

By Claim 1, and since D m-dominates V, we can partition V into sets
Vi,..., Vs, Where each V; induces a connected graph of radius at most m,
and where X; C V; and v; m-dominates V;. Let S be the set produced by
the following algorithm.

Algorithm 1 :

Begin

1.S+~0,I{1,...,b} andi+1.
2. S—SU{w}and I —I-{i}.
8. Forjel do

If viv; € E then
3.1. Forue UJ' do
If (d(u,w) = m—1 for some w € W; satisfying d(w, S) >
m) then S~ SU {u}.
End for
8.2. I—1-{5}.

End for
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4. If I = 0, then continue; otherwise, let i’ € I, set i « i’, and return
to Step 2.

5. If S m-dominates V, then stop; otherwise, continue.
6. T—{teV|d,S)>m}.
7. ForteT do

7.1. Ift € V; then
ug + (the vertez adjacent to v; on some vj-t path of lengthm

in (V)
7.2. If d(t,S) > m then S «— SU {u,}.
End for
End

We prove that the set S produced by Algorithm 1 is an independent
m-dominating set of G of cardinality at most (n+m+1—2/n)/m. We
begin with two claims.

Claim 2 If vv; € E in Step 3 of Algorithm 1, then when j is removed
Jfrom I in Step 3.2, the set S m-dominates Wj.

Proof: In Step 3 of Algorithm 1, if v;u; € E, then we proceed system-
atically through the vertices of Uj, placing a vertex in S only if it is at
distance m — 1 from a vertex of W; which is not m-dominated by a vertex
already in S. Suppose that after the completion of Step 3, d(w;,S) > m
for some w; € Wj. Consider a v;-w; path of length m, and let u; be the
vertex adjacent to v; on this path. Then u; € U;. Since d(u;,w;) =m —1
and d(wj;, S) > m, the vertex u; would have been added to S in Step 3 of
Algorithm 1, producing a contradiction. ]

Claim 8 If t € T, then d(t,D) = m.

Proof: Suppose d(t,v;) < m —1 for some j(1 < j < b). Let S be the
set constructed when the set T in Step 6 of the algorithm is defined. Since
d(t,S) > m, v; ¢ S. Thus, by the way in which the set S is constructed,
there is a vertex v; of S N D adjacent to v;. But then d(t,v;) < m,
contradicting the fact that d(¢,S) > m. |

Ift € T, then t € Vj for some j(1 < j < b). Since v; m-dominates
V;, and (V;) is connected, d(v;,t) < m in (V;). However, by Claim 3,
d(vj,t) = m. Consequently, d(vj,t) = m in (V). Hence there exists a v;-t
path of length m in (V;), and therefore the vertex u, described in Step 7.2.
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of the algorithm does indeed exist. It is now evident from the way in which
the set S is constructed, that S is an m-dominating set of G. We show next
that S is also an independent set of G.

Claim 4 The set S produced by Algorithm 1 is an independent set.

Proof: If v; € S, then, by the way in which the set S is constructed, no
vertex v; of D adjacent to v; belongs to S. We show next that immediately
before a vertex u € Uj is placed in the set S in Step 3 of the algorithm,
d(u, S) > 1. We know that before u € Uj is placed in S, there exists a vertex
w € Wj satisfying d(w, §) > m and d(u, w) = m — 1. Hence before u € U;
is placed in S, it is adjacent to no vertex of S, for otherwise d(w, S) < m.
Furthermore, immediately before a vertex u; is placed in S in Step 7.2. of the
algorithm, we know that d(t,S) > m. However d(u,t) = m — 1, implying
that d(u,, S) > 1 before u, is placed in S for otherwise d(t,S) < m. Thus
whenever a vertex is added to S at any stage of the algorithm, it is adjacent
to no other vertex of S. a

It remains for us to show that [S| < (n+m+1—-2y/mn)/m. Fori=
1,...,b, let |V;| = n;. By the Pigeonhole Principle, at least one of the sets
Vi contains at least n/b vertices. Relabeling the sets if necessary, we may
assume that n; > n/b. Fori=1,...,b, let S; = S N V;. We show that,
foreachi=1,...,b,

n;—1
W< —.
1Si < —— )]

Since |X;| > m + 1, we know that n; = |[V;| > |X;| > m +1 for all 1.
For each v; € S, since v; m-dominates V;, it is evident from the way in
which the set S is constructed that v; is the only vertex of V; in S. Hence
equation (1) holds for all i for which v; € S. The only values of i for which
equation (1) is in doubt, are those integers j for which v; ¢ S.

If v; ¢ S, then, by the way in which the set S is constructed, there is
a vertex v; of SN D adjacent to vj. After the completion of Step 3 of
Algorithm 1, if SNU; # 0, then let u;,1,... ,uj,r, be the order in which the
vertices of U; were placed in S. For each k with 1 < k < r;, immediately
before u; . was placed into the set S in Step 3 of the algorithm, we know that
there exists a wjx € W; satisfying d(wj,x, S) > m and d(ujx, wjx) = m—1.
For k=1,...,rj let Q;i be a u;x-wj i path of length m — 1.

Claim 5 If SNU; #0, then
V(Qix)NV(Qje) =0 for 1<k < €<

200



Proof: Suppose z € V(Qj,x) N V(Qj,) for some k and £ with 1 < k <
£ < r;. Since k < ¢, it follows from the ordering on the vertices of S N U;
that d(uj,k, wje) > m. If the length of the u; =z section of Qj . is at least
the length of the uj -z section of Qj,k, then the u; s-wj;¢ path obtained by
following the u; -z section of Qj,x, and then proceeding along the z-wj,e
section of Q;,¢ has length at most that of Qj¢. That is to say, d(uj,c, wj.e) <
m — 1, which produces a contradiction. On the other hand, if the length
of the u; -z section of Q¢ is less than that of the uj-z section of Q;x,
then d(uj,¢, wsx) < m—1. Since vju;e € E, it follows that d(vj, wj,e) < m,
which once again produces a contradiction. a

If SNU; # 0, then UX,V(Qy,k) € X; € V;. Hence we have the following
result.

Claim 6 If SNU; #0 and SNU: # 0 for c# j, then
V(Qix)NV(Qee) =B for1<k<rjandl1 < €<

If T # 0, then let uy,,...,u, be the order in which the vertices of T
were placed in S in Step 7.2. of the algorithm. If ¢; € T, then ¢; € V; for
some j(1 < j < b). It follows then from Claim 3 that d(v;,t;) = m and
d(ug,t;)=m—1. Fori=1,...,8, let P; be a u-t; path of length m —1
in (V;).

Claim 7 V(P)NV(P) =0 for 1 <k<¢<s.

Proof: Suppose z € V(P;) N V(P,) for some k and £ with 1 <k < €< s.
Suppose tx € V; and ¢, € V; where 1 <i < j <b. Then V(F;) C V; and
V(P;) C V;, implying necessarily that i = j. Since k < ¢, it follows from
the ordering on the vertices of S N T that d(ue,,t¢) > m. If the length
of the u.,-z section of P, is at least the length of the u,, -z section of Py,
then the u,, -t, path obtained by following the u,, -z section of Py, and then
proceeding along the z-t, section of P, has length at most that of P;. That
is to say, d(u,,ts) < m — 1, which produces a contradiction. On the other
hand, if the length of the u.,-z section of P, is less than that of the u;, -z
section of Pi, then d(ue,,tx) < m — 1, implying that d(v;,tx) < m, once
again producing a contradiction. a

Claim 8 If SNU; #0, then
V(Qix)NV(P)=0for1<k<rjand1<£<s.

Proof: Suppose z € V(Q;x) N V(P,) for some k and £ with 1 < k <r;
and 1 < ¢ < 8. Suppose tx € V; (1 < i <b). Then V(P,) C V;. Since
V(Qjx) C V;, it follows that i = j. By the way in which the set Sis
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constructed, the vertex u;x was placed in S before the vertex u,,. We know,
therefore, that d(uj,x, t¢) > m. Hence the length of the u; x-z section of Q; «
exceeds that of the u.,-z section of P,, for otherwise d(u;j ,t¢) < m—1. But
this implies that the ug,-w; x path obtained by following the u.,-z section
of Py, and then proceeding along the z-w; i section of Q; x has length less
than that of Qj,x. Thus, d(ue,, w;x) < m—1. Since vju,, € E, this implies
that d(vj, w;x) < m, which produces a contradiction. a

We now consider the sets S; for which v; ¢ S;. It follows from Claims 5,
6, 7, and 8, that there is a collection of |S;| vertex disjoint paths of
length m — 1 that belong to (V;) and do not contain the vertex v;. Thus
n; = |V;| = {v;H + m|S;|, so |S;| < (nj —1)/m. Hence equation (1) is
true for all i =1,...,b. Since S is an independent m-dominating set of G,
we now have

id(m,G) < I8| = I8i]+ 25, ISl
< Hol+ X, (m—1)/m  (by equation (1)
= 1+((n-ny)-(b-1))/m
< 1+(n-2-b+1)/m (since ny > %)
= L(m+n+1-2-b).

The last expression is maximized with b = v/n. Thus

id(m, ) < |S| < %(m+n+1 —2/m).

That this upper bound on id(m, G) is sharp may be seen by considering
the graph G shown in Figure 1 with b = mk + 1. Then id(m,G) =1+ (b—
1)k =1+ mk? and n = |V(G)| = b(mk + 1) = (mk + 1)2. Thus_

%(m+n+l —2y/n) =14 mk? = id(m, G).

This completes the proof of the theorem. g

202



References

[1] R.B. Allan and R. Laskar, On domination and independent domination
numbers of a graph. Discrete Math. 23 (1978), 73-76.

[2] R.B. Allan, R. Laskar and S.T. Hedetniemi, A note on total domina-
tion. Discrete Math. 49 (1984), 7-13.

[3] G.Basc6 and Z. Tuza, Dominating cliques in Ps-free graphs. Periodica
Math. Hungar. 21 (1990), 303-308.

[4] G. Bascé and Z. Tuza, A characterization of graphs without long in-
duced paths. J. Graph Theory 14 (1990), 455-464.

[5] L. Beineke and M.A. Henning, Some extremal results on independent
distance domination in graphs. Ars. Combinatoria 37 (1994), 223-233.

[6] B. Bollob4s and E.J. Cockayne, Graph-theoretic parameters concern-
ing domination, independence, and irredundance. J. Graph Theory 3
(1979), 241-249.

[7] J.A. Bondy and Geng-hau Fan, A sufficient condition for dominating
cycles. Discrete Math. 76 (1987), 205-208.

[8] G.J. Chang, k-domination and graph covering problems. Ph.D. Thesis,
School of OR and IE, Cornell University, Ithaca, N.Y., 1982.

[9] G.J. Chang and G.L. Nemhauser, The k-domination and k-stability
problems on sunfree chordal graphs. SIAM J. Algebraic Discrete Meth-
ods 5(3) (1984), 332-345.

[10] G.J. Chang and G.L. Nemhauser, R-domination of block graphs. Oper.
Res. Lett. 1(6) (1982), 214-218.

[11] G.J. Chang and G.L. Nemhauser, The k-domination and k-stability
problem on graphs. Tech. Report 540, School of Operations Res. and
Industrial Eng., Cornell Univ., 1982.

[12] E.J. Cockayne and S.T. Hedetniemi, Independence graphs. In: Pro-
ceedings of Fifth Southeastern Conference on Combinatorics, Graph
Theory and Computing (Utilitas Mathematica, Winnipeg, 1974), 471~
491.

[18] E.J. Cockayne and S.T. Hedetniemi, Towards a theory of domination
in graphs. Networks 7 (1977), 247-261.

[14] D.G. Corneil and Y. Perl, Clustering and domination in perfect graphs.
Discrete Applied Math. 9 (1984), 27-40.

203



[15] P. Fraisse, A note on distance dominating cycles. Discrete Math. 71(1)
(1988), 89-92.

[16] G. Fricke, S.T. Hedetniemi, and M.A. Henning, Distance independent
domination in graphs. Ars Combinatoria 41 (1995), 33-44.

[17] G. Fricke, S.T. Hedetniemi, and M.A. Henning, Asymptotic results on
distance independent domination in graphs. J. Combin. Math. Com-
bin. Comput. 17 (1995), 160-174.

(18] G. Fricke, M.A. Henning, O.R. Oellermann, and H.C. Swart, An ef-
ficient algorithm to compute the sum of two distance domination pa-
rameters. To appear in Discrete Applied Math.

[19] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness, W.H. Freeman and Company, New
York (1979).

[20] J. Gimbel and P.D. Vestergaard, Inequalities for total matchings of
graphs. Ars Combinatoria 39 (1995), 109-119.

[21] J.H. Hattingh and M.A. Henning, A characterization.of block graphs
that are well-k-dominated. J. Combin. Math. Combin. Comput. 13
(1993), 33-38.

[22] J.H. Hattingh and M.A. Henning, The ratio of the distance irredun-
dance and domination numbers. J. Graph Theory 18 (1994), 1-9.

[23] S.T. Hedetniemi and R.C. Laskar, Bibliography on domination in
graphs and some basic definitions of domination parameters. Discrete
Math. 86 (1990), 257-277.

[24] M.A. Henning, O.R. Oellermann, and H.C. Swart, Bounds on distance
domination parameters. J. Combin. Inf. Syst. Sci. 16 (1991), 11-18.

[25] M.A. Henning, O.R. Oellermann, and H.C. Swart, Relationships be-
tween distance domination parameters. Mathematica Pannonica 5(1)
(1994), 69-79.

[26] M.A. Henning, O.R. Oellermann, and H.C. Swart, Relating pairs of
distance domination parameters. J. Combin. Math. Combin. Comput.
18 (1995), 233-244.

[27) M.A. Henning, O.R. Oellermann, and H.C. Swart, The diversity of
domination. To appear in Discrete Math.

[28] M.A. Henning, O.R. Oellermann, and H.C. Swart, Distance domina-
tion critical graphs. To appear in J. Combin. Inf. Syst. Sci.

204



[29] E. Loukakis, Two algorithms for determining a minimum independent
dominating set. Internat. J. Comput. Math. 15 (1984), 213-229.

[30] A.Meir and J.W. Moon, Relations between packing and covering num-
bers of a tree. Pacific J. Math. 61 (1975), 225-233.

[31] Z. Mo and K. Williams, (r,s)-domination in graphs and directed
graphs. Ars. Combinatoria 29 (1990), 129-141.

[32) P.J. Slater, R-domination in graphs. J. Assoc. Comp. Mach. 23 (1976),
446-450.

[33] J. Topp and L. Volkmann, On packing and covering numbers of graphs.
Discrete Math. 96 (1991), 229-238.

[34] Xin He and Y. Yesha, Efficient parallel algorithms for r-dominating
set and p-center problems on trees. Algorithmica 5 (1990), 129-145.

205



