Bounds on an Independent Distance Domination Parameter

John Gimbel

Mathematical Sciences University of Alaska Fairbanks, Alaska 99775-1110

Michael A. Henning*
Department of Mathematics
University of Natal
P.O. Box 375
Pietermaritzburg, South Africa

ABSTRACT. Let $m \geq 1$ be an integer and let G be a graph of order n. A set \mathcal{D} of vertices of G is a m-dominating set of G if every vertex of $V(G) - \mathcal{D}$ is within distance m from some vertex of \mathcal{D} . An independent set of vertices of G is a set of vertices of G whose elements are pairwise nonadjacent. The minimum cardinality among all independent m-dominating sets of G is called the independent m-domination number and is denoted by id(m, G). We show that if G is a connected graph of order $n \geq m+1$, then $id(m, G) \leq (n+m+1-2\sqrt{n})/m$, and this bound is sharp.

1 Introduction

In this paper, we use fairly standard graph theoretic terminology and notation. For example, for a connected graph G, the distance d(u, v) between two vertices u and v is the length of a shortest u-v path. If S is a set of vertices of G and v is a vertex of G, then the distance from v to S, denoted by $d_G(v, S)$ or simply d(v, S), is the shortest distance from v to a vertex of S.

^{*}Research supported in part by the University of Natal and the South African Foundation for Research Development.

Let G = (V, E) be a graph with vertex set V and edge set E. If X and Y are subsets of V, X dominates Y if and only if each vertex of Y - X is adjacent to some vertex of X. In particular, if X dominates V, then X is called a dominating set of G. An independent set of vertices is a set of vertices whose elements are pairwise nonadjacent. The fact that every maximal independent set of vertices in a graph is also a minimal dominating set motivated Cockayne and Hedetniemi [12] in 1974 to initiate the study of 'independent domination' in graphs. A dominating set of vertices in a graph that is also an independent set is called an independent dominating set. The minimum cardinality among all independent dominating sets of a graph G is called the independent domination number of G and is denoted by i(G). The parameter i(G) has received considerably attention in the literature (see, for instance, [1, 2, 6, 15, 29]). For an excellent bibliography on dominating and independent dominating sets we refer the reader to [23].

In this paper, we extend the definition of independent dominating sets in graphs. Let $m \ge 1$ be an integer and let G = (V, E) be a graph. In [24], if X and Y are subsets of V, then the set X is said to m-dominate Y if and only if each vertex of Y - X is within distance m from some vertex of X. In particular, if X m-dominates V, then X is defined to be an m-dominating set of G. An m-dominating set of vertices in a graph that is also an independent set we call an independent m-dominating set. The independent m-domination number id(m, G) of G is the minimum cardinality among all independent m-dominating sets of G. Thus D is an independent 1-dominating set of G if and only if D is an independent dominating set of G. Hence id(1, G) = i(G).

We show that if G is a connected graph of order $n \ge m+1$, then $id(m,G) \le (n+m+1-2\sqrt{n})/m$, and this bound is sharp.

Results on the concept of *m*-domination in graphs have been presented by, among others, Bascó and Tuza [3, 4], Beineke and Henning [5], Bondy and Fan [7], Chang [8], Chang and Nemhauser [9, 10, 11], Fraisse [15], Fricke, Hedetniemi, and Henning [16, 17], Fricke, Henning, Oellermann, and Swart [18], Hattingh and Henning [21, 22], Henning, Oellermann, and Swart [24, 25, 26, 27, 28], Meir and Moon [30], Mo and Williams [31], Slater [32], Topp and Volkmann [33], and Xin He and Yesha [34].

2 Known results

Let v be a vertex of a graph G, and let m be a positive integer. Then the set of all vertices of G different from v and at distance at most m from v in G is defined in [15] as the m-neighbourhood of v in G and is denoted by $N_m(v)$. We begin by stating the following result from [26], which will prove useful to us later.

Theorem A For $m \geq 1$, if G is a connected graph of order at least m+1, then there exists a minimum m-dominating set \mathcal{D} of G such that for each $v \in \mathcal{D}$, there exists a vertex $w \in V(G) - \mathcal{D}$ at distance exactly m from v such that $N_m(w) \cap \mathcal{D} = \{v\}$.

Next we mention known upper bounds on id(m, G) for a connected graph G. The following result is due to Gimbel and Vestergaard [20].

Theorem B If G is a connected graph of order $n \geq 2$, then

$$i(G) \leq n+2-2\sqrt{n},$$

and this bound is sharp.

That the bound given in Theorem B is sharp, may be seen by considering the graph G obtained from a complete graph on k+1 vertices by attaching to each of its vertices k disjoint paths of length 1. Then $n = (k+1)^2$ and $i(G) = k^2 + 1$, so $i(G) = n + 2 - 2\sqrt{n}$.

Since i(G) = id(1, G), Theorem B gives a sharp upper bound on id(1, G) for a connected graph G. For $m \ge 2$, Beineke and Henning [5] established the following upper bound on id(m, G) for a connected graph G.

Theorem C For $m \geq 2$, if G is a connected graph of order $n \geq m$, then

$$id(m,G) \leq \frac{n}{m},$$

and this bound is asymptotically best possible.

That the bound given in Theorem C is in a sense best possible, may be seen by considering the connected graph G constructed as follows: For k and b very large integers, let G be obtained from a complete graph on b vertices by attaching to each of its vertices k disjoint paths of length m. (The graph G is shown in Figure 1.) Then id(m, G) = (b-1)k+1 and n = |V(G)| = b(mk+1), so

$$\frac{id(m,G)}{n} = \frac{bk-k+1}{bmk+b} = \frac{1-\frac{1}{b}+\frac{1}{bk}}{m+\frac{1}{k}} \xrightarrow{b,k\to\infty} \frac{1}{m}.$$

If we restrict our attention to trees, then Beineke and Henning [5] established the following upper bound on id(m, T) for small values of m.

Theorem D For $m \in \{1,2,3\}$, if T is a tree of order $n \ge m+1$, then $id(m,T) \le n/(m+1)$, and this bound is sharp.

That the bound given in Theorem D is sharp, may be seen by considering a tree T_m of order n obtained from a path on b vertices by attaching a path of length m to each vertex of the path. Then $id(m, T_m) = b = n/(m+1)$.

Figure 1: The graph G.

3 Complexity issues

In this section, we consider the decision problem corresponding to the problem of computing id(m, G) for any fixed integer $m \ge 1$. We show that from a computational point of view the problem of finding id(m, G) appears to be very difficult.

The following independent dominating set problem is known to be NP-complete (see Garey and Johnson [19]), and remains NP-complete for the class of bipartite graphs, as shown by Corneil and Perl [14].

PROBLEM: Independent dominating set (*IDOM*)

INSTANCE: A graph G = (V, E) and a positive integer $k \le |V|$. **QUESTION:** Is $i(G) \le k$ (that is, is there a vertex set $S \subseteq V$ such that S is an independent dominating set with $|S| \le k$)?

We will demonstrate a polynomial time reduction of the problem IDOM to show that the following problem is also NP-complete.

PROBLEM: Independent m-dominating set (ImDOM)

INSTANCE: A graph H = (V, E) and a positive integer $j \le |V|$. **QUESTION:** Is $id(m, H) \le j$ (that is, is there a vertex set $S \subseteq V$ such that S is an independent m-dominating set with |S| < k)?

Theorem 1 Problem ImDOM is NP-complete, even when restricted to bipartite graphs.

Proof: It is obvious that ImDOM is a member of NP since we can, in polynomial time, guess at a subset of vertices, verify that its cardinality is at most j, and then verify that it is an independent m-dominating set. To see that ImDOM is NP-complete it is next shown that a polynomial time algorithm for ImDOM could be used to solve IDOM in polynomial time.

Starting with an instance G = (V, E) and $k \le |V| = n$ and |E| = q for problem IDOM, we can construct the graph H from G by attaching to each vertex of G a path of length m-1. Thus in forming H from G we have added n(m-1) new vertices and n(m-1) new edges. That is, |V(H)| = nm and |E(G)| = q + n(m-1), so the graph H can be constructed from G in time polynomial in n. We note that if G is bipartite, then so too is H.

Lemma 1 id(m, H) = i(G).

Proof: Let I be an independent dominating set of G of cardinality i(G). Then I is an independent m-dominating set of H, so $id(m, H) \leq |I| = i(G)$. On the other hand, let \mathcal{D} be an independent m-dominating set of H of cardinality id(m, H). The minimality of \mathcal{D} implies that \mathcal{D} contains at most one vertex from each path of length m-1 added to G in forming H. Let $v \in V(G)$ and consider the path of length m-1 attached to V in forming the graph H. If \mathcal{D} contains a vertex V that belongs to this path, then neither V nor any vertex adjacent to V in V belongs to V, for otherwise we may remove V from V to produce an independent V-dominating set of V of cardinality less that V. Replacing the vertex V in V with the vertex V produces a new independent V-dominating set of V belongs to V. But then V forms an independent dominating set of V, so V belongs to V. But then V forms an independent dominating set of V, so V belongs to V. But then V forms an independent dominating set of V, so V belongs to V. But then V forms an independent dominating set of V belongs to V.

Lemma 1 implies that if we let j = k, then $i(G) \le k$ if and only if $id(m, H) \le j$. This completes the proof of Theorem 1.

4 Bounds on id(m, G) for a connected graph G

Since the problem of computing id(m, G) appears to be a difficult one, it is desirable to find good upper bounds on this parameter. In this section, we prove the following result, which improves on that of Theorem C and generalizes that of Theorem B.

Theorem 2 For $m \geq 1$, if G = (V, E) is a connected graph of order $n \geq m+1$, then

$$id(m,G) \leq \frac{n+m+1-2\sqrt{n}}{m}$$

and this bound is sharp.

Proof: Let $\mathcal{D} = \{v_1, \ldots, v_b\}$ be a minimum *m*-dominating set of G that satisfies the statement of Theorem A. We introduce the following notation. For $i = 1, \ldots, b$, let

$$W_i = \{w \in V - \mathcal{D} \mid d(v_i, w) = m \text{ and } N_m(w) \cap \mathcal{D} = \{v_i\} \},$$

$$X_i = \{x \in V \mid x \text{ belongs to a } v_i\text{-}w \text{ path of length } m \text{ for some } w \in W_i \}, \text{ and }$$

$$U_i = \{u \in V \mid u \text{ is the vertex adjacent to } v_i \text{ on some } v_i\text{-}w \text{ path of length } m \text{ for some } w \in W_i \}.$$

By our choice of \mathcal{D} , we know that $W_i \neq \emptyset$ for all *i*. Hence $|X_i| \geq m+1$ and $v_i \in X_i$ for all *i*.

Claim 1
$$X_i \cap X_j = \emptyset$$
 for $1 \le i < j \le b$.

Proof: Suppose $x \in X_i \cap X_j$ for some i and j with $1 \le i < j \le b$. Then there exists a vertex w_i (w_j) in W_i $(W_j$, respectively) such that a v_i - w_i path $(v_j$ - w_j path, respectively) of length m contains the vertex x. But then at least one of w_i and w_j is within distance m from both v_i and v_j , which produces a contradiction.

By Claim 1, and since \mathcal{D} *m*-dominates V, we can partition V into sets V_1, \ldots, V_b , where each V_i induces a *connected* graph of radius at most m, and where $X_i \subseteq V_i$ and v_i *m*-dominates V_i . Let S be the set produced by the following algorithm.

Algorithm 1:

Begin

End for

- 4. If $I = \emptyset$, then continue; otherwise, let $i' \in I$, set $i \leftarrow i'$, and return to Step 2.
- 5. If S m-dominates V, then stop; otherwise, continue.
- 6. $T \leftarrow \{t \in V \mid d(t,S) > m\}$.
- 7. For $t \in T$ do
 - 7.1. If $t \in V_j$ then

 $u_t \leftarrow (\text{ the vertex adjacent to } v_j \text{ on some } v_j\text{-t path of length } m \text{ in } \langle V_i \rangle)$

7.2. If d(t, S) > m then $S \leftarrow S \cup \{u_t\}$.

End for

End

We prove that the set S produced by Algorithm 1 is an independent m-dominating set of G of cardinality at most $(n+m+1-2\sqrt{n})/m$. We begin with two claims.

Claim 2 If $v_iv_j \in E$ in Step 3 of Algorithm 1, then when j is removed from I in Step 3.2, the set S m-dominates W_j .

Proof: In Step 3 of Algorithm 1, if $v_iv_j \in E$, then we proceed systematically through the vertices of U_j , placing a vertex in S only if it is at distance m-1 from a vertex of W_j which is not m-dominated by a vertex already in S. Suppose that after the completion of Step 3, $d(w_j, S) > m$ for some $w_j \in W_j$. Consider a v_j - w_j path of length m, and let u_j be the vertex adjacent to v_j on this path. Then $u_j \in U_j$. Since $d(u_j, w_j) = m-1$ and $d(w_j, S) > m$, the vertex u_j would have been added to S in Step 3 of Algorithm 1, producing a contradiction.

Claim 3 If $t \in T$, then $d(t, \mathcal{D}) = m$.

Proof: Suppose $d(t, v_j) \leq m-1$ for some $j (1 \leq j \leq b)$. Let S be the set constructed when the set T in Step 6 of the algorithm is defined. Since d(t, S) > m, $v_j \notin S$. Thus, by the way in which the set S is constructed, there is a vertex v_i of $S \cap \mathcal{D}$ adjacent to v_j . But then $d(t, v_i) \leq m$, contradicting the fact that d(t, S) > m.

If $t \in T$, then $t \in V_j$ for some $j (1 \le j \le b)$. Since v_j m-dominates V_j , and $\langle V_j \rangle$ is connected, $d(v_j,t) \le m$ in $\langle V_j \rangle$. However, by Claim 3, $d(v_j,t) \ge m$. Consequently, $d(v_j,t) = m$ in $\langle V_j \rangle$. Hence there exists a v_j -t path of length m in $\langle V_j \rangle$, and therefore the vertex u_t described in Step 7.2.

of the algorithm does indeed exist. It is now evident from the way in which the set S is constructed, that S is an m-dominating set of G. We show next that S is also an independent set of G.

Claim 4 The set S produced by Algorithm 1 is an independent set.

Proof: If $v_i \in S$, then, by the way in which the set S is constructed, no vertex v_j of D adjacent to v_i belongs to S. We show next that immediately before a vertex $u \in U_j$ is placed in the set S in Step 3 of the algorithm, d(u,S) > 1. We know that before $u \in U_j$ is placed in S, there exists a vertex $w \in W_j$ satisfying d(w,S) > m and d(u,w) = m-1. Hence before $u \in U_j$ is placed in S, it is adjacent to no vertex of S, for otherwise $d(w,S) \leq m$. Furthermore, immediately before a vertex u_t is placed in S in Step 7.2. of the algorithm, we know that d(t,S) > m. However $d(u_t,t) = m-1$, implying that $d(u_t,S) > 1$ before u_t is placed in S for otherwise $d(t,S) \leq m$. Thus whenever a vertex is added to S at any stage of the algorithm, it is adjacent to no other vertex of S.

It remains for us to show that $|S| \leq (n+m+1-2\sqrt{n})/m$. For $i=1,\ldots,b$, let $|V_i|=n_i$. By the Pigeonhole Principle, at least one of the sets V_i contains at least n/b vertices. Relabeling the sets if necessary, we may assume that $n_1 \geq n/b$. For $i=1,\ldots,b$, let $S_i = S \cap V_i$. We show that, for each $i=1,\ldots,b$,

$$|S_i| \le \frac{n_i - 1}{m} \,. \tag{1}$$

Since $|X_i| \ge m+1$, we know that $n_i = |V_i| \ge |X_i| \ge m+1$ for all *i*. For each $v_i \in S$, since v_i *m*-dominates V_i , it is evident from the way in which the set S is constructed that v_i is the only vertex of V_i in S. Hence equation (1) holds for all *i* for which $v_i \in S$. The only values of *i* for which equation (1) is in doubt, are those integers *j* for which $v_j \notin S$.

If $v_j \notin S$, then, by the way in which the set S is constructed, there is a vertex v_i of $S \cap \mathcal{D}$ adjacent to v_j . After the completion of Step 3 of Algorithm 1, if $S \cap U_j \neq \emptyset$, then let $u_{j,1}, \ldots, u_{j,r_j}$ be the order in which the vertices of U_j were placed in S. For each k with $1 \leq k \leq r_j$, immediately before $u_{j,k}$ was placed into the set S in Step 3 of the algorithm, we know that there exists a $w_{j,k} \in W_j$ satisfying $d(w_{j,k},S) > m$ and $d(u_{j,k},w_{j,k}) = m-1$. For $k = 1, \ldots, r_j$, let $Q_{j,k}$ be a $u_{j,k}$ - $w_{j,k}$ path of length m-1.

Claim 5 If $S \cap U_j \neq \emptyset$, then

$$V(Q_{j,k}) \cap V(Q_{j,\ell}) = \emptyset$$
 for $1 \le k < \ell \le r_j$.

Proof: Suppose $x \in V(Q_{j,k}) \cap V(Q_{j,\ell})$ for some k and ℓ with $1 \leq k < \ell \leq r_j$. Since $k < \ell$, it follows from the ordering on the vertices of $S \cap U_j$ that $d(u_{j,k}, w_{j,\ell}) > m$. If the length of the $u_{j,\ell}$ -x section of $Q_{j,\ell}$ is at least the length of the $u_{j,k}$ -x section of $Q_{j,k}$, then the $u_{j,k}$ - $w_{j,\ell}$ path obtained by following the $u_{j,k}$ -x section of $Q_{j,k}$, and then proceeding along the x- $w_{j,\ell}$ section of $Q_{j,\ell}$ has length at most that of $Q_{j,\ell}$. That is to say, $d(u_{j,k}, w_{j,\ell}) \leq m-1$, which produces a contradiction. On the other hand, if the length of the $u_{j,\ell}$ -x section of $Q_{j,\ell}$ is less than that of the $u_{j,k}$ -x section of $Q_{j,k}$, then $d(u_{j,\ell}, w_{j,k}) < m-1$. Since $v_j u_{j,\ell} \in E$, it follows that $d(v_j, w_{j,\ell}) < m$, which once again produces a contradiction.

If $S \cap U_j \neq \emptyset$, then $\bigcup_{k=1}^{r_j} V(Q_{j,k}) \subseteq X_j \subseteq V_j$. Hence we have the following result.

Claim 6 If $S \cap U_i \neq \emptyset$ and $S \cap U_c \neq \emptyset$ for $c \neq j$, then

$$V(Q_{j,k}) \cap V(Q_{c,\ell}) = \emptyset$$
 for $1 \le k \le r_j$ and $1 \le \ell \le r_c$.

If $T \neq \emptyset$, then let u_{t_1}, \ldots, u_{t_s} be the order in which the vertices of T were placed in S in Step 7.2. of the algorithm. If $t_i \in T$, then $t_i \in V_j$ for some $j (1 \leq j \leq b)$. It follows then from Claim 3 that $d(v_j, t_i) = m$ and $d(u_{t_i}, t_i) = m - 1$. For $i = 1, \ldots, s$, let P_i be a u_{t_i} - t_i path of length m - 1 in $\langle V_j \rangle$.

Claim 7 $V(P_k) \cap V(P_\ell) = \emptyset$ for $1 \le k < \ell \le s$.

Proof: Suppose $x \in V(P_k) \cap V(P_\ell)$ for some k and ℓ with $1 \le k < \ell \le s$. Suppose $t_k \in V_i$ and $t_\ell \in V_j$ where $1 \le i \le j \le b$. Then $V(P_k) \subseteq V_i$ and $V(P_\ell) \subseteq V_j$, implying necessarily that i = j. Since $k < \ell$, it follows from the ordering on the vertices of $S \cap T$ that $d(u_{t_k}, t_\ell) > m$. If the length of the u_{t_ℓ} -x section of P_ℓ is at least the length of the u_{t_k} -x section of P_k , then the u_{t_k} - t_ℓ path obtained by following the u_{t_k} -x section of P_k , and then proceeding along the x- t_ℓ section of P_ℓ has length at most that of P_ℓ . That is to say, $d(u_{t_k}, t_\ell) \le m - 1$, which produces a contradiction. On the other hand, if the length of the u_{t_ℓ} -x section of P_ℓ is less than that of the u_{t_k} -x section of P_k , then $d(u_{t_\ell}, t_k) < m - 1$, implying that $d(v_j, t_k) < m$, once again producing a contradiction.

Claim 8 If $S \cap U_j \neq \emptyset$, then

$$V(Q_{i,k}) \cap V(P_{\ell}) = \emptyset$$
 for $1 \le k \le r_i$ and $1 \le \ell \le s$.

Proof: Suppose $x \in V(Q_{j,k}) \cap V(P_{\ell})$ for some k and ℓ with $1 \leq k \leq r_j$ and $1 \leq \ell \leq s$. Suppose $t_k \in V_i$ $(1 \leq i \leq b)$. Then $V(P_{\ell}) \subseteq V_i$. Since $V(Q_{j,k}) \subseteq V_j$, it follows that i = j. By the way in which the set S is

constructed, the vertex $u_{j,k}$ was placed in S before the vertex $u_{t_{\ell}}$. We know, therefore, that $d(u_{j,k}, t_{\ell}) > m$. Hence the length of the $u_{j,k}$ -x section of $Q_{j,k}$ exceeds that of the $u_{t_{\ell}}$ -x section of P_{ℓ} , for otherwise $d(u_{j,k}, t_{\ell}) \leq m-1$. But this implies that the $u_{t_{\ell}}$ - $w_{j,k}$ path obtained by following the $u_{t_{\ell}}$ -x section of P_{ℓ} , and then proceeding along the x- $w_{j,k}$ section of $Q_{j,k}$ has length less than that of $Q_{j,k}$. Thus, $d(u_{t_{\ell}}, w_{j,k}) < m-1$. Since $v_{j}u_{t_{\ell}} \in E$, this implies that $d(v_{j}, w_{j,k}) < m$, which produces a contradiction.

We now consider the sets S_j for which $v_j \notin S_j$. It follows from Claims 5, 6, 7, and 8, that there is a collection of $|S_j|$ vertex disjoint paths of length m-1 that belong to $\langle V_j \rangle$ and do not contain the vertex v_j . Thus $n_j = |V_j| \geq |\{v_j\}| + m|S_j|$, so $|S_j| \leq (n_j - 1)/m$. Hence equation (1) is true for all $i = 1, \ldots, b$. Since S is an independent m-dominating set of S, we now have

$$id(m,G) \le |S| = |S_1| + \sum_{i=2}^b |S_i|$$

$$\le |\{v_1\}| + \sum_{i=2}^b (n_i - 1)/m \quad \text{(by equation (1))}$$

$$= 1 + ((n - n_1) - (b - 1))/m$$

$$\le 1 + (n - \frac{n}{b} - b + 1)/m \quad \text{(since } n_1 \ge \frac{n}{b})$$

$$= \frac{1}{m} (m + n + 1 - \frac{n}{b} - b).$$

The last expression is maximized with $b = \sqrt{n}$. Thus

$$id(m,G) \leq |S| \leq \frac{1}{m} (m+n+1-2\sqrt{n}).$$

That this upper bound on id(m, G) is sharp may be seen by considering the graph G shown in Figure 1 with b = mk + 1. Then $id(m, G) = 1 + (b - 1)k = 1 + mk^2$ and $n = |V(G)| = b(mk + 1) = (mk + 1)^2$. Thus

$$\frac{1}{m}(m+n+1-2\sqrt{n})=1+mk^2=id(m,G).$$

This completes the proof of the theorem.

References

- [1] R.B. Allan and R. Laskar, On domination and independent domination numbers of a graph. *Discrete Math.* 23 (1978), 73–76.
- [2] R.B. Allan, R. Laskar and S.T. Hedetniemi, A note on total domination. *Discrete Math.* 49 (1984), 7-13.
- [3] G. Bascó and Z. Tuza, Dominating cliques in P₅-free graphs. Periodica Math. Hungar. 21 (1990), 303-308.
- [4] G. Bascó and Z. Tuza, A characterization of graphs without long induced paths. J. Graph Theory 14 (1990), 455-464.
- [5] L. Beineke and M.A. Henning, Some extremal results on independent distance domination in graphs. Ars. Combinatoria 37 (1994), 223-233.
- [6] B. Bollobás and E.J. Cockayne, Graph-theoretic parameters concerning domination, independence, and irredundance. J. Graph Theory 3 (1979), 241-249.
- [7] J.A. Bondy and Geng-hau Fan, A sufficient condition for dominating cycles. Discrete Math. 76 (1987), 205-208.
- [8] G.J. Chang, k-domination and graph covering problems. Ph.D. Thesis, School of OR and IE, Cornell University, Ithaca, N.Y., 1982.
- [9] G.J. Chang and G.L. Nemhauser, The k-domination and k-stability problems on sunfree chordal graphs. SIAM J. Algebraic Discrete Methods 5(3) (1984), 332-345.
- [10] G.J. Chang and G.L. Nemhauser, R-domination of block graphs. Oper. Res. Lett. 1(6) (1982), 214-218.
- [11] G.J. Chang and G.L. Nemhauser, The k-domination and k-stability problem on graphs. *Tech. Report 540*, School of Operations Res. and Industrial Eng., Cornell Univ., 1982.
- [12] E.J. Cockayne and S.T. Hedetniemi, Independence graphs. In: Proceedings of Fifth Southeastern Conference on Combinatorics, Graph Theory and Computing (Utilitas Mathematica, Winnipeg, 1974), 471–491.
- [13] E.J. Cockayne and S.T. Hedetniemi, Towards a theory of domination in graphs. *Networks* 7 (1977), 247-261.
- [14] D.G. Corneil and Y. Perl, Clustering and domination in perfect graphs. Discrete Applied Math. 9 (1984), 27-40.

- [15] P. Fraisse, A note on distance dominating cycles. Discrete Math. 71(1) (1988), 89-92.
- [16] G. Fricke, S.T. Hedetniemi, and M.A. Henning, Distance independent domination in graphs. Ars Combinatoria 41 (1995), 33-44.
- [17] G. Fricke, S.T. Hedetniemi, and M.A. Henning, Asymptotic results on distance independent domination in graphs. J. Combin. Math. Combin. Comput. 17 (1995), 160-174.
- [18] G. Fricke, M.A. Henning, O.R. Oellermann, and H.C. Swart, An efficient algorithm to compute the sum of two distance domination parameters. To appear in *Discrete Applied Math*.
- [19] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, W.H. Freeman and Company, New York (1979).
- [20] J. Gimbel and P.D. Vestergaard, Inequalities for total matchings of graphs. Ars Combinatoria 39 (1995), 109-119.
- [21] J.H. Hattingh and M.A. Henning, A characterization of block graphs that are well-k-dominated. J. Combin. Math. Combin. Comput. 13 (1993), 33-38.
- [22] J.H. Hattingh and M.A. Henning, The ratio of the distance irredundance and domination numbers. J. Graph Theory 18 (1994), 1-9.
- [23] S.T. Hedetniemi and R.C. Laskar, Bibliography on domination in graphs and some basic definitions of domination parameters. *Discrete Math.* 86 (1990), 257-277.
- [24] M.A. Henning, O.R. Oellermann, and H.C. Swart, Bounds on distance domination parameters. J. Combin. Inf. Syst. Sci. 16 (1991), 11-18.
- [25] M.A. Henning, O.R. Oellermann, and H.C. Swart, Relationships between distance domination parameters. *Mathematica Pannonica* 5(1) (1994), 69-79.
- [26] M.A. Henning, O.R. Oellermann, and H.C. Swart, Relating pairs of distance domination parameters. J. Combin. Math. Combin. Comput. 18 (1995), 233-244.
- [27] M.A. Henning, O.R. Oellermann, and H.C. Swart, The diversity of domination. To appear in *Discrete Math*.
- [28] M.A. Henning, O.R. Oellermann, and H.C. Swart, Distance domination critical graphs. To appear in J. Combin. Inf. Syst. Sci.

- [29] E. Loukakis, Two algorithms for determining a minimum independent dominating set. *Internat. J. Comput. Math.* 15 (1984), 213-229.
- [30] A. Meir and J.W. Moon, Relations between packing and covering numbers of a tree. *Pacific J. Math.* 61 (1975), 225-233.
- [31] Z. Mo and K. Williams, (r, s)-domination in graphs and directed graphs. Ars. Combinatoria 29 (1990), 129-141.
- [32] P.J. Slater, R-domination in graphs. J. Assoc. Comp. Mach. 23 (1976), 446–450.
- [33] J. Topp and L. Volkmann, On packing and covering numbers of graphs. Discrete Math. 96 (1991), 229-238.
- [34] Xin He and Y. Yesha, Efficient parallel algorithms for r-dominating set and p-center problems on trees. Algorithmica 5 (1990), 129-145.