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ABSTRACT. Let G be a 2-edge-connected graph and v be a
vertex of G and F C F' C E(v) such that 1 < |F| and
|IF| 4+ 2 = |F'| € d(v) — 1. Then there is a subset F* such
that F C F* C F (here, |F*| = |F| + 1), and the graph ob-
tained from G by splitting the edges of F* away from v remains
2-edge-connected unless v is a cut-vertex of G. This generalizes
a very useful Vertex-Splitting Lemma of Fleischner. Let C be
a circuit cover of a bridge-less graph G. The depth of C is the
smallest integer k such that every vertex of G is contained in at
most k circuits of C. It is conjectured by L. Pyber that every
bridge-less graph G have a circuit cover C such that the depth
of C is at most A(G). In this paper, we prove that (i). every
bridge-less graph G has & circuit cover C such that the depth of
C is at most A(G)+2 and (ii). if a bridge-less graph G admits a
nowhere-zero 4-flow or contains no subdivision of the Petersen
graph, then G has a circuit cover C such that the depth of C is
at most 2[A(G)/3].

1 Introduction

Definition 1.1 A circuit of a graph is a connecled 2-regular subgraph,
while a cycle of a graph is a subgraph with even degree al every verlez.
A bridge b of a graph G is an edge of G that is not conlained in any circuit
of G.
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All other standard graph-theoretic terms that are used in this paper can
be found for instance in [3].

Definition 1.2 Let G be a bridge-less graph. A family C of circuits of G
is called a circuit cover of G if each edge of G is contained in some circuil
of C.

Definition 1.8 Let C be a circuit cover of a graph G and v € V(G). The
depth of the circuit cover C at the vertex v is the number of circuits of C
containing v and is denoted by cde(v). The depth of the circuit cover C is
max{cde(v) : v € V(G)} and is denoted by cde(G).

The following conjecture was presented by Lészl6 Pyber at the Julius
Petersen Graph Theory Conference, Denmark, 1990.

Conjecture 1.1 (Pyber, [2]) Each bridge-less graph G with mazimum
degree A(G) has a circuit cover C such that

cde(C) < A(G).
In this paper, we prove that

Theorem 1.1 Every bridge-less graph G has a circuit cover C such that
the depth of C is at most A(G) + 2.

Theorem 1.2 If a bridge-less graph G admits a nowhere-zero 4-flow or
contains no subdivision of the Pelersen graph, then G has a circuit cover C
such that the depth of C is at most 2[A(G)/3].

Let H be a subgraph of G. The set of edges of H incident with v is
denoted by Eg(v). The number of components of a graph G is denoted by
w(G).

Definition 1.4 Let G be a graph and v be a vertez of G and F C E(v).
The graph G|y} obtained from G by splitting the edges of F' away from v,
(that is, adding a new vertex v’ and changing the end v of the edges of F
to be v'. See figure 1). Note that the new vertez created in the splitting F
away from v is always denoted by v’ in the contest.

Theorem 1.3 (Fleischner [{], or see [7, 8]) Let G be a connected and
bridge-less graph and v € V(G) (with d(v) > 4) and ep, e1,e2 € Eg(v).
In the case of v being a cut-vertex, choose ey,eq from distinct blocks of G.
Then either Giy;(eo,e,}] O Glu;{eosea}] 38 connected and bridge-less.
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Figure 1: G and G|y, r): splitting F away from v

Theorem 1.3 is the well-known vertex-splitting lemma which has been
used by various authors in the studies of compatible decompositions, integer
flows, cycle covers and graph colorings. (For instance, [4], [5], (6], [7], (8],
[9], (12], [13], [14], [16], [19], [20], etc.) The following theorem is an analogy
of Theorem 1.3 which can be used for splitting a graph to meet certain
degree requirement.

Theorem 1.4 Let G be a connected and bridge-less graph and v be a vertex
of G and F C F' C E(v) such that 1 < |F| and |F|+2 = |F'| < d(v) - 1.
Then there is a subset F* such that F C F* C F' (here, |F*| = |F|+1), and
G|v;F+) is connected and bridge-less, unless Gyy;r) or G|y, ) is disconnected.

Theorem 1.4 and Theorem 1.3 have the same property that the vertex-
splitting operation preserves the embedding property of graphs.

2 Vertex splitting

A few lemmas are needed before the proof of Theorem 1.4.

Lemma 2.1 Let G be a bridge-less graph and v be @ vertex of G and F C
E(v) such that 2 < |F| < d(v) — 2. Then G|y;r) is bridge-less if and only
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if either v’ and v are in two distinct components or there are a pair of
edge-disjoint paths in G|y,p| joining v’ and v.

Proof. If Gy;r) has a bridge b, then there must be a path P of Gy;r)
joining +’,v and containing b since G is bridge-less and each circuit of G
containing b is broken into a path because of the splitting of the vertex v.
Thus, v, v are in the same component of Gjy;r| and we assume that there
are a pair of edge-disjoint paths S;,S2 joining v’,v in Gjy;r. Without
loss of generality, let S; be a path not containing the edge b. Thus, the
symmetric difference of P and S, yields a cycle of G|y, r) containing b. This
contradicts that b is a bridge of Gjy;r). The another direction of the lemma
is trivial. a

Lemma 2.2 Let G be a connected, bridge-less graph and v be a vertez of G
and F C E(v) such that 2 < |F| < da(v) — 2. If the graph G’ = G|y;r| has
a bridge e € Eg/(v') (or e € Egi(v)), then either Giy,p\(e}] o7 Glv;Fule}] 8
not connected.

Proof. Without loss of generality, we suppose that G is connected. Assume
that G’ has a bridge e € Eg/(v'). The bridge e = v’z must be contained in
a path connecting v and v’ since G is bridge-less and connected. Hence G’
is connected and G’\ {e} is disconnected with z contained in the component
containing v but not v’. Therefore Gjy;r\(e}} is disconnected. O
Proof of Theorem 1.4. Let F'\ F = {e,ez}. Let H; = Gy, ru(e;}) for
j =1,2. Assume that both H; and H have bridges and both Gj,;s and
G|v;r) are connected.

By Lemma 2.2, neither e, nor e is a bridge of H; (j = 1,2) since both
Giv;r) and Gy, rv| are connected. By Lemma 2.1, H; does not have a pair
of edge-disjoint paths joining v and »'. Hence, e,, ez are in two distinct
blocks, say K and Ko, of H;. Since neither e; nor e is a bridge of Hj,
K, K, are non-trivial blocks. Let C; be a circuit of K; containing e; for
i = 1,2. In the graph Hy = Gu;rufes))» the circuits Cy,C, are broken
into two edge-disjoint paths connecting v and v’. By Lemma 2.1, Ha is
bridge-less. (]

Now, we are to deduce Theorem 1.3 from Theorem 1.4.

Proof of Theorem 1.3. It is obvious if » is not a cut-vertex of G. Assume
that v is a cut-vertex of G. Let F = {eo} and F’ = {ep,e1,e2}. If Gy,
is disconnected then ep is a bridge of G. This contradicts that G is bridge-
less. Now, by Theorem 1.4, we only need to show that G|y ] is connected.
Note that each non-trivial block of G contains at least two edges and G is
bridge-less, for i = 0,2 let f; (f; # e;) be an edge of Eg(v) contained in
the block of G containing e;. Since eg, e2 are chosen from distinct blocks of
G and |{eo, €2, fo, f2}| = 4 and |F’| = 3, Eg_ ., (v) contains at least one of
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{fo, f2} and hence, v/, v are in the same component of Giy;r). Therefore,
G\v;r) is connected and Theorem 1.3 follows.

Remarks.

Similar to Theorem 1.3, the splitting operation induced in Theorem 1.4
also preserve the embedding property of G. Let the edges incident with a
vertex v be arranged on a surface in the order as ey, - -, eq. If one chooses

= {e, €41, ,€j-1,¢;} and F = {ei41,*-+,e5—1}, then the graph
Gv,F+) preserves the embedding property on the same surface where F* is
one of {e;, €41, ,€j-1} and {ei41,-+- , €}

Note that the vertex splitting operations in Theorem 1.3 and its general-
ization, Theorem 1.4 preserve the 2-edge-connectivity of graphs. While for
higher edge-connectivity, Nash-Williams has the following theorem. (Note,
the following theorem does not preserve the embedding property of graphs)

Theorem 2.3 (Nash-Williams [22]) Let k be an even integer and G be a
k-connected graph and v € V(G). Let a be an integer such that k < a <
d(v) — k. Then there is an edge subset F C E(v) such that |F| = a and
Gv;F) 18 k-edge-connected.

3 Parity subgraphs

Definition 8.1 Let G and H be two graphs. The graph H is said to be
oblained from G by a vertex splitting 7 if V(H) has a partition {U; :
i=1,--- ,n} such that G can be obtained from H by identifying every U;
(i =1,--- ,n) to a single vertex v;. If a graph H is oblained from G by
a vertez splilting w, then we write H = w(G) and U; = w(v;) for each
v; € V(G). (Here, we simply consider E(G) = E(n(G))).

Definition 8.2 A graph G is quasi-cubic if the degree of each vertez of G
i3 either three or two.

By recursively applying Theorem 1.4 to each vertex of a graph with
degree at least four (with a,b = 3, or 2), we have the following corollary,

Lemma 3.1 Let G be a bridge-less graph. Then G has a vertez-splitting w
such that

(1). 7(G) is bridge-less;

(2). w(G) is quasi-cubic;

(8). For each vertex v € V(G) with degree dg(v) > 2, w(v) is a set of t(v)
degree-three-vertices and s(v) degree-two-vertices where

de(v)/3 if dg(v) =0mod 3
t(v) { (dg(v) —2)/3 ifde(v)=2mod3
(de(v) —4)/3 ifdg(v) =1mod 3,
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and

0 ifdc(v)=0mod3
s(w)=<{ 1 ¥fdeg(v)=2mod3
2 ifde(v) =1mod3.
Definition 3.8 A subgraph P of a graph G is a parity subgraph of G if
dp(v) = dg(v), (mod 2) for each vertex v € V(G).

Theorem 3.2 Let G be a graph. Then G has a parily subgraph P such
that for each vertez v € V(G)

{ dg(v)/3 if dg(v) =0mod 3
dp(v) < ¢ (dg(v)—2)/3+2 ifde(v)=2mod3
(de(v) —4)/3+4 if dg(v) =1mod 3.

Proof. By Lemma 3.1, let = be a vertex splitting of G such that #(G) is
described in Lemma 3.1, The underlying graph of #(G) is cubic and bridge-
less and therefore has a perfect matching M, (Petersen Theorem [17], or
see (3] p79). The subgraph Q of #(G) induced by the edgésof M is a parity
subgraph of w(G) such that

1 ifdygy) =3
"’Q(")—{ Dor2 ifdygg(s) =2.

Thus the subgraph P of G induced by the edges of E(Q) is a parity subgraph
of G satisfying the description of the theorem. a

The properties of parity subgraphs and their relations with the prob-
lems of integer flow, circuit cover can be found in the papers [15, 25, 26].
Theorem 3.2 will be applied in next section.

4 Depth of circuit cover

4.1 A general upper bound

The following theorem (the 8-Flow Theorem) is one of the fundamental
results that we will use in this paper.

Lemma 4.1 (Jaeger [11], or see [13]) Every bridge-less graph G has a
cycle cover consisting of at most three cycles.

Note that a cycle is a union of edge-disjoint circuits. As an immediate

corollary of Lemma 4.1, the following result was originally observed by
Pyber ([2]).
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Theorem 4.2 Each bridge-less graph G with mazimum degree A(G) has
a circuit cover C such that

3
cde(G) < 5A(G).
However, for a quasi-cubic graph, Theorem 4.2 can be improved

Lemma 4.8 Each bridge-less quasi-cubic graph G has a circuil cover C
such that

cde(G) < 3.

Proof. For a quasi-cubic graph, each cycle of G is the union of vertex-
disjoint circuits. Thus, by Lemma 4.1, for a 3-cycle cover of G, each vertex
is contained in at most three circuits. a

An immediate corollary of Lemma 3.1 and Lemma 4.3 is the following
result which generalizes Theorem 4.2.

Theorem 4.4 Let G be a bridge-less graph. Then G has a circuit cover C
such that for each vertez v € V(G)

da(v) if dg(v) =0mod 3
cde(v) £ { dg(v) —2+3=dg(v)+1 ifde(v)=2mod3
do(v) —4+6=dc(v)+2 ifdc(v)=1mod3

The following result and Theorem 1.1 are immediate corollaries of The-
orem 44.

Corollary 4.5 Let G be a bridge-less graph with the maximum degree A(G).
Then G has a circuit cover C such that

A(G) if A(G) =0mod 3
cde(G) £ { AG)+1 fA(G)=2mod3
AG)+2 #A(G)=1mod3

4.2 A better bound for certain families of graphs

It was observed by Pyber [2] that the famous Circuit Double Cover Conjec-
ture (Conjecture 5.1 in next section, by Szekeres [21], Seymour [18]) implies
Conjecture 1.1. Since we have known ([12], [1]) that a graph admitting a
nowhere-zero 4-flow or containing no subdivision of the Petersen graph has
a circuit double cover, Conjecture 1.1 holds for those graphs. That is,

Theorem 4.8 If a bridge-less graph G admits a nowhere-zero 4-flow or

contains no subdivision of the Petersen groph, then G has a circuit cover C
such that cde(G) < A(G).
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This result is to be generalized in this section. The following lemmas are
fundamental in this section.

Lemma 4.7 (Jaeger [11], or see [18]) Every 4-edge-connected graph G
admils a nowhere-zero 4-flow.

Lemma 4.8 (Zhang [24], or see [26, 10]) Let G be a groph and P be a
parity subgraph of G. If G admils a nowhere-zero {-flow, then G has a
circuit cover C such that each edge e € E(P) is contained in precisely two
circuits of C and each edge e € E(G) \ E(P) is contained in precisely one
circuit of C.

Lemma 4.9 (Alspach, Goddyn and Zhang [1], or see [10, 25]) Let G be
a bridge-less graph and P be a parity subgraph of G. If G contains no
subdivision of the Petersen graph, then G has a circuit cover C such that
each edge e € E(P) is contained in precisely two circuits of C and each edge
e € E(G)\ E(P) is contained in precisely one circuit of C.

(Please refer to [13] or [23] for the definition and properties of integer
flows, and refer to [15] and [26] for the relations of parity subgraphs and
integer flows, circuit covers.)

Now we are ready to use Theorem 3.2 and Lemmas 4.7, 4.8, 4.9 to obtain
the following theorems.

Theorem 4.10 Let G be a bridge-less graph. If G admits a nowhere-zero 4-
flow or contains no subdivision of the Petersen graph or is {-edge-connected,
then G has a circuit cover C such that

2da('v) if de(v) =0mod 3

ede(v) < { g(da(v) +1) ifdg(v) =2mod3
3(de(v)+2) #fde(v)=1mod3

Proof. Let P be a parity subgraph of G described in Theorem 3.2. Let
C be a circuit cover of G covering each edge of P twice and each edge of
E(G) \ E(P) once. Since a circuit is a connected 2-regular subgraph, for
each vertex v € V(G), the number of circuits of C containing v is

52dp(0) + (dofw) - dp(v)] = 5(do(w) + dp(u)

?(dc('v) + 3de(v)) = 2de(v) if dg(v) = 0mod 3
< ?[da(v) + §(dc(v) 2) +2] = 3(arc(u) +1) ifdg(v)=2mod3
3lde(v) + 3(de(v) —4) + 4] = §(de(v) +2) ifdg(v)=1mod3

O
An immediate corollary of Theorem 4.10 is Theorem 1.2.
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5 Edge-depth of circuit cover

Definition 5.1 Let C be a circuit cover of a graph G and e € E(G). The
edge-depth of the circuit cover C at the edge e is the number of circuits
of C containing e and is denoted by cedc(e). The edge-depth of the circuit
cover C is max{cedc(e) : e € E(G)} and is denoted by cede(G).

The following conjecture is an equivalent version of the famous Circuit
Double Cover Conjecture. The problem of circuit double cover has been
" extensively studied in recent years. (See surveys, [10, 12, 13, 25), etc.)

Conjecture 5.1 (Szekeres [21], Seymour [18]) Every bridge-less graph G
has a circuit cover C such that cede(G) < 2.

Note, the 8-flow theorem (Lemma 4.1) implies that every bridge-less
graph has a circuit cover with the edge-depth at most three.

Definition 5.2 Let G be a bridge-less graph. A circuit cover C is shortest
if the total length of circuits of C is shortest among all circuil covers of G.

There are many articles in the topic of shortest circuit cover. (See survey,
[10], etc.)

Conjecture 5.2 (Zhang [25]) Every bridge-less graph G has a shortest
circuit cover C with cede(G) < 2.

Conjecture 5.2 implies Circuit Double Cover Conjecture (Conjecture 5.1).
Conjecture 5.2 holds for certain families of graphs, for example, the graphs
admitting nowhere-zero 4-flow (Lemma 4.8) and the bridge-less graphs con-
taining no subdivision of the Petersen graph (Lemma 4.9). On the other
hand, we do not even know if there exists a constant upper bound for
the edge-depths of shortest circuit covers for all bridge-less graphs. The
following is a weak version of Conjecture 5.2.

Conjecture 5.3 There is an integer K such that every bridge-less graph
G has a shortest circuit cover C with cede(G) < K.
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