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ABSTRACT

A graph H is G-decomposable if 4 can be decomposed into
subgraphs, each of which is isomorphic to G. A graph G is a greatest
common divisor of two graphs G, and G, if G is a graph of maximum size
such that both G, and G, are G-decomposable. The greatest common
divisor index of a graph G of size ¢ 21 is the greatest positive integer n for
which there exist graphs G, and G,, both of size at least ng, such that G is
the unique greatest common divisor of G, and G,. If no such integer n
exists, the greatest common divisor index of G is infinite. Several graphs are
shown to have infinite greatest common divisor index, including matchings,
stars, small paths, and the cycle C,. It is shown for an edge-transitive graph F
of order p with vertex independence number less than p/2 thatif G isan
F—decomposable graph of sufficiently large size, then G isalso (F-e) UKy~
decomposable. From this it follows that each such edge-transitive graph has
finite index. In particular, all complete graphs of order at least 3 are shown to
have greatest common divisor index 1 and the greatest common divisor index of
the odd cycle C,, , lies between k and 4k” -2k - 1. The graphs Kp—e.
p 2 3, have infinite or finite index depending on the value of p; in particular,

Kp~e has infinite index if p<5 andindex 1 if p26.
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1. Imtroduction

A nonempty graph H is decomposable into the subgraphs G, G,,
-+ G, of H ifnograph G; (1<i<n) has isolated vertices and E(H) can
be partitioned into E(G,), E(G,), ... , E(G,). If G;=G for each integer i
(1 <i<n),then His G-decomposable, in which case we say G divides H
and writ¢ G|H. In general, we follow [4] for graph theory notation and

terminology.
Let G, and G, be two nonempty graphs. In [1] a graph G

without isolated vertices is defined to be a greatest common divisor of G, and
G, if G is a graph of maximum size such that G | G, and G | G,. Since
K, divides every nonempty graph, it is evident that every two nonempty graphs
have a greatest common divisor. For the graphs G, and G, of Figure 1,
their unique greatest common divisor G is shown.

Gr: z ; Gy: i G: Y
Figure 1

Although the two graphs G, and G, of Figure 1 have a unique

greatest common divisor, this is, by no means, always the case. Indeed it was
shown in [2] that for every positive integer n, there exist graphs G, and G,
having exactly n greatest common divisors. We denote the set of
greatest common divisors of G, and G, by GCD(G,, G,) and write
GCD(G,, G,) =G if the greatest common divisor is uniquely G. Greatest

common divisors of graphs were investigated in detail in [6].
In this paper we consider pairs of graphs with a prescribed unique
greatest common divisor, but with an added condition. Suppose that G, and

G, are graphs of sizes q; and g, respectively, and G is a graph of size q.
If G is a greatest common divisor of G, and G,, then ¢ | q, and ¢ | 'O
indeed, ¢ | gcd(gy. g5)- Even though G is a greatest common divisor of G,
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and G,,thesize g of G need not equal gcd(q,, g,)- In fact, the graphs G,
and G, of Figure 1 have size 8, while G has size 4.

A basic question concerning greatest common divisors is the following:
For a given graph G (without isolated vertices), do there exist graphs G, and

G, suchthat G is a greatest common divisor of G; and G,? This question
surely has an affirmative answer since we may take G, =G and G, =G, or
even take G, =G and choose G, to be any graph for which Gi G,. In
these cases, not only is G a greatest common divisor of G; and G,, itis the
unique greatest common divisor of G, and G,.

On the basis of these observations, our revised question becomes: For
a given graph G (without isolated vertices), do there exist graphs G, and

G, neither of which is isomorphic to G, such that G is a greatest common
divisor of G, and G,? This new question also has an affirmative answer since
we may take G, =2G (two disjoint copies of G) and G, =3G. Clearly
Gl G, and G | G,. If G has size q,then G; hassize 29 and G, has
size 3q. Since gcd(2g, 3q) = ¢, the greatest possible size of a greatest common
divisor of G, and G, is g. However, G has size ¢ and, consequently, G
is a greatest common divisor of G; and G,. Certainly in the definitions of
G, and G,, we may replace the integers 2 and 3 by any two relatively

prime integers. This response to our new question is not completely
satisfactory, however. For example, suppose that G = P (a path of order 3).

Let G, =2G and G,=3G (see Figure 2). As we observed earlier, G is a
greatest common divisor of G; and G,. However, G is not the only greatest
common divisor of G; and G,. Sotoois G'=2K, (see Figure 2). Are
there two graphs G, and G,, neither of which is isomorphic to G = P53, such
that G is the unique greatest common divisor of G, and G,? The answer is
yes, for if we take H; = K, 4 and Hy=K, ¢, then G =P; is the unique
greatest common divisor of H; and H,. Can graphs G, and G, of even
larger size be found with this property? Here too the answer is yes, as can be
seen by taking G, =K 1.2n and G, =K 1.2n42 for arbitrarily large positive
integers n. This leads us to the main concept of this paper.

For a graph G of size g 2 1, we define the greatest common divisor
index (or simply the index) i(G) of G as the greatest positive integer n for
which there exist graphs G, and G5, both of size at least ngq, such that
GCD(G,, G9) = G. If no such integer n exists, then we define this index to
be «. Hence, a graph G has infinite index if and only if there exist graphs of
arbitrarily large size having G as their unique greatest common divisor. If G
is a graph such that GCD(G,, G,) =G implies that G; or G, is
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isomorphic to G, then G has index 1. Certainly, every graph (without
isolated vertices) has an index.

G: Gy: Ga: G

Figure 2

2. Graphs With Infinite Greatest Common Divisor Index

We now give several examples of graphs havmg infinite index. We
first show that the index of all matchings (disjoint copies of K5) is infinite.

Theorem 1 For every positive integer n,
i(nKp) =co

Proof For positive integers a and b, GCD(ak,, bK,) = gcd(a, b)K,.
Hence for distinct primes p; and py, GCD(pynKj, pynKsy) = nK,. Since p;
and p, can be chosen arbitrarily large, i(nKy) =, Q

A similar proof gives the following result concerning stars.
Theorem 2 For every positive integer a,
Ky p) =
These results can be extended as follows.
Theorem 3 For all positive integers m, Ry, Ry, ... iy (k21),

i(sz v Kl.nl v Kl.’lz V... VU Kl.n,‘) =00,

Proof Let G=mK, U Kl'"n v Kl'n2 v..u Kl.n,; The result follows

as before by considering distinct primes p; and p, and observing that G is
the unique greatest common divisor of the graphs G, = pymK, L
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K(l,p1n1) v K(1, piny) U ... UKQ, pyng) and G4 =poymKy U
K(l,pznl) v K(l, p2n2) V...V K(l, pznk). Q

By Theorems 1 and 2, the index of the paths P, and P; of orders 2
and 3, respectively, is co. We show that this is the case for P, and Py as
well. For this purpose, the following result from [3] will be useful.

Lemma A Let H be a graph containing an edge adjacent to every other edge
of H. If H is G-decomposable for some graph G, then G is connected.

Theorem 4 i(P,) = oo.

Proof Let p; and p, be distinct primes. For the graphs G, =p,P4 and
G, shown in Figure 3, with k = p,, we show that GCD(G, G) = Py. -

x10 A%
u

=
<O

Figure 3

Since p; and p, are distinct primes, gcd(3py, 3py) = 3. The divisors
of size 3 in G, are P4,P3 UKy, and 3K,. However, by Lemma A, the
graph G, is neither (P3 U K3)-decomposable nor 3K,-decomposable since
the edge uy; is adjacent to all other edges of G,. Now Gg is
P4-decomposable into the path x;, 4,y v and the k-1 paths x;, u,y;, ¥}
(2<i<k). Therefore, the path P4 is the only divisor of size 3 of the graph
G,. Hence, GCD(Gy, G3) = P4. Since p; and p, may be chosen to be
arbitrarily large, i(Pg) =c. Q

In order to facilitate showing the existance of other graphs having
infinite index, we present two lemmas. We write B,(G) for the edge
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independence number of a graph G. Clearly, if G is a subgraph of H, then
B, (G) s B ().

Lemma 5§ Let G and H be graphs without isolated vertices such that
G|H and q(H) /1 q(G) =k. Let e, e,, ..., ¢, be r edgesof H and define

H' =H - (e}, ey,...,¢, ). If r<k,then B{(G)<B(H).

Proof Inany G-decomposition of H, the edges e, e,, ..., e, are

contained in at most r copies of G. Hence G is a subgraph of H’ and the
result follows. Q

Lemma 6 Let G and H be graphs without isolated vertices such that H
is G-decomposable. Let x and y be adjacent vertices of H and define H” =
H-x-y. If G has s components, then H” contains s —1 components of
G as a subgraph.

Proof Ina G-decomosition of H, assume that G, is the copy of G
containing the edge e=xy and F, is the component of G, containing e.
Since no edge of the remaining components of G, is incident with x or y,
the graph H” contains s — 1 components of G asasubgraph. QO

Theorem 7 i(Ps5) = oo,

Proof Let p, and p, be distinct primes, where p, =2k + 1 for some
positive integer k. Let G =p,P5 and let G, be the graph shown in Figure
4. We show that GCD(G,, G3) = Ps.

Observe that the size of a greatest common divisor of G, and G, is
at most gcd(4p,, 4py) = 4. The graph G, is Pg-decomposable into p,
paths, namely u;, x,v;, y, ;. for i=1,2, .., 2k - 1, together with
the paths  ugg, x, vog, y, 41 and z,x,y,w,,w,. Since G; is
Ps-decomposable, P is a greatest common divisor of G, and G,.

Assume that H is a greatest common divisor of G, and G,
different from Ps. Since H |G, and H hassize 4, it follows that H is one
of PyUK,, 2P3, P3U 2K,, and 4K,. Let G'=G, ~w,w, and G” =
Gy -x—y. Since B,(G’) =2, it follows by Lemma 5 that B,(H) <2.
Therefore, H cannotbe P, U K,, P53 U 2K,, or 4K,. Also, since no
component of G” contains more than one edge, it follows by Lemma 6 that
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H cannot be 2P;. Hence GCD(G,,G,)=Ps. Since p; and p, canbe
chosen arbitrarily large, i(P5) =«. Q

Figure 4

The index of a path P, for n 26 is not known and it appears to be
difficult to determine. Next, we show that C,4 has infinite index.

Theorem 8 i(Cy) = oo.

Proof Let p; and py be distinct primes. Let Gy =p)Cy andlet G, be
the graph shown in Figure 5, where the vertices of G, are labeled as indicated
with k =p, — 1. In other words, G, is obtained by identifying a vertex of
degree 2k in Kz,zk with the vertex u of the cycle C: v,u,w,z,v and
identifying the other vertex of degree 2k with the vertex v of C.

The size of a greatest common divisor of G, and G, is at most
ged(4py, 4py) = 4. We show that GCD(G,Gy) =Cy. For i=1,2, ..k,
define H; to be the 4-cycle u,x;, v,y;u and let Hp 4 be the 4-cycle u,
v,z,w,u. Then G, is decomposable into the 4-cycles H; (1<i<k +1).
Now since G; is C4-decomposable, it follows that C, is a greatest common
divisorof G, and G,.
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Figure §

Assume that H is a greatest common divisor of G, ad G,
different from Cy4. Since HlGl and H has size 4, it follows that H is one
of P,uK,, 2P3, P3 L 2K,, and 4K,. Let G’ = G,-wz and G” =
G, - u-v. Since B1(G") = 2, we have Bj(H) <2 by Lemma 5.
Consequently, H cannot be PyuK, Pyu 2K,, or 4K,. Since no

component of G” contains more than one edge, it follows by Lemma 6 that
H cannot be 2P,. Hence GCD(G,, G,) = Cy4. Since p; and Py can be
chosen arbitrarily large, i(Cp=-. Q

The index of the cycle Cs5 and other larger odd cycles will be

considered in the next section. We conclude this section by showing that the
index of the graph K 4 — ¢, obtained by removing an arbitrary edge from K 40 1S
infinite.

Theorem 9 (K 4—€)=c°.

Proof Define G=K g—¢ andlet p, and py be distinct primes.
Furthermore, let G, = p1G,and let G, be the graph of size 5p, shown in
Figure 6. Thus, both G, and G, are G-decomposable.

Since p; and p, are distinct primes, G is a greatest common divisor
of G, and G,. Assume that H is a greatest common divisor of G, and
G, different from G. Since H |G,, it follows that H is disconnected. Since
G, is decomposable into Py copies of H and degu= 2p, + 1, it follows
that A(H) 2 3. Since A(G,) = 3, we have that A(H) = 3. Hence, the only
possibilities for H are the graphs H,,H,,and Hj of Figure 7.
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Figure 6
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Figure 7

Let G’ =Gy ~ (upvp, Ugvs, -oe s Uy, vy ) and G"=Gy-u-v.

Since no component of G” contains more than one edge, H cannotbe H, by
Lemma 6. Since B,(G") = 2, it follows that B,(H) <2 by Lemma 5.
Consequently, H is neither H, nor Hj. Thus no such graph H exists, and
G is the unique greatest common divisor of G, and G,. Since p; and p,
can be chosen arbitrarily large, i(G) =<. Q

3. Graphs With Finite Greatest Common Divisor Index

A graph F is edge—transitive if the edge automorphism group of F
is transitive, i.e., every edge of F can be mapped into any other edge of F by
some edge automorphism. Hence the graph F —e obtained by deleting an
arbitrary edge e from F is well-defined. Each complete graph of order at least
2 is edge-transitive, so K p—¢€ is well-defined for p = 2. In particular,
K3 -e=Psy.

The following theorem will be useful in showing the existence of
graphs of finite index. The (vertex) independence number of a graph G will be
denoted by B(G).
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Theorem 10 Let F be an edge-transitive graph of order p and size q
with B(F)<p/2. If G is an F-decomposable graph of sufficiently large size,
then G is F-e) U K,—decomposable as well. In particular, if G is an

F-decomposable graph of size mq, where
m22((}) -q+1), )
then G isalso (F-e)uKk ,—decomposable.

Proof Let G bean F-decomposable graph with decomposition D into m
copies of F,where m satisfies inequality (1). For subgraphs F’ and F” in
D, we define {F’, F”} to be a minor pairif F’ and F” have fewer than p2
vertices in common; otherwise, (F”, F”’} is a major pair.

Suppose that {F’, F”) is a major pair and W = V(F") N V(F"). Since
[w| 2 p/2, the set W is neither independent in F’ nor in F”. Hence, there
isanedge ¢” of F’ both of whose incident vertices belong to F”, and an edge
e” of F” both of whose incident vertices belong to F’. Now, let F’ be a
fixed subgraph in D. Since there is at least one edge e” of F” joining two
vertices of F’ (and so these vertices are not adjacent in F”), there are at most
(‘2') - g such graphs F”.

Next we construct a graph H of order m whose vertices are the
subgraphs in 9D. We join two vertices F’ and F”’ of H by an edge if
{(F’, F"} is a minor pair. From what we observed earlier, the minimum degree
S(H) of H isatleast m—1-(5) +q.

By inequality (1),
2H) 2 2m-2[¢)-q+1] 2 m

or 8(H) 2m/2. By a theorem of Dirac [5], H is hamiltonian. Let Fy,
Fy,..., F,,F, be ahamiltonian cycle of H. Consequently, the m pairs
(Fi, Fipq), 1<i<m, where F, .1 =F, are minor pairs. For i=1,2,...,
m,let U;=V(F)-V(F; ). Since |U;| 2pp, the st U, is not
independen%in F;. Hence there exists an edge e; of F; that is incident with
no vertex of F; ,. Therefore, the graph obtained by adding to F i+l — €y the
edge e; and its incident vertices is isomorphic to (F —¢) U K, andso G is
F-e)u Ky—decomposable. O

We now present two corollaries of Theorem 10.
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Corollary 11 For every integer p 23, i(K p) =1

Proof Since B(K p) = 1, it follows by Theorem 10 that (K p) < 1. Since
i(G) 21 for every graph G, i(Kp) =1 Q

Corollary 12  There exist graphs of arbitrarily large but finite index. In
particular, for every integer k22, '

k<i(Coppy) S4k2-2% - 1.

Proof  Consider the cycle C,p, 4,k 22, of length 2k + 1. Let G, =
kCopeq and Gy =Ky, . Then Cyy,, is acommon divisor of G, and G,.
Necessarily every other common divisor of G, and G, having size at least

2k + 1 is disconnected and has order exceeding 2k + 1, which is impossible
since G, hasorder 2k + 1. Thus C,;,, is the unique greatest common

divisor of G, and G, and so i(Cyy, ) 2k.
Since B(Czk +1) =k, it follows, by Theorem 10, that i(Cy;, () is
finite and

(Cpp ) S4*-2%-1. O
For the cycle Cs, we can say a bit more.
Corollary 13 3 <i(C5) < 11.

Proof By Corollary 12, it follows that 2<§(Cs) <11. Let G, =3C5 and
G2=K5 V] C5. Since Gl and 62 are Cs—decomposable and have order 15,
the graph Cj is a greatest common divisor of G, and G,. Indeed, C5 is the
unique greatest common divisor of G; and G,. O

Whether the even cycles as well have finite index is not known. Next
we give a class of graphs, none of which is edge~transitive, that have finite
index, indeed index 1.

Theorem 14 For every integer p 26, i(K b~ e)=1.

Proof It suffices to show thatif G isa (K = e)-decomposable graph
containing at least two copies of X p—© then G too is F—decomposable,
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where F= (p-4)K, V2K, v K,, that is, F is the graph obtained be
deleting two independent edges from the component of order p in K Y K.
Thus, let D be a decomposition of G into the copies Fl,Fy, ... ,Fr(k22)
of K, —e. Necessarily, | V(F) n VIFYl <2 for 1<, j<k and i#j.
Hence, for every integer i (1 <i<k), there is an edge e; in F; neither of

whose incident vertices belongs to Fi1- Thus F;—e;= (p-4)K, U 2K,
- and so the graphs obtained by adding e; and its incident vertices to F; 1~ €irl
for i=1,2,...,k (where Fre1—€py1 =Fy —eq) produces an F—
decomposition of G. Q

4. Concluding Remarks

By Theorem 14, i(Kp —-e)=1 for p=6 and by Theorems 2 and 9,
i(K3—e)=c and i(K, —€) = . Hence only i(K5 —e€) remains to be
determined. We now show that i(K5 —e) = co.

Theorem 15 i(K5 —e) = oo.

Proof Let p, and p, be distinct primes. Define G,=p,(K5—e) and let
G, be the graph shown in Figure 8, where = py— L.

a b c
7\

Go:

X1 z] Xt Zt
n e

Figure 8



Certainly, K5 —e is a greatest common divisor of G; and G,.
Suppose that H is a greatest common divisor of G, and G, suchthat H £
K5—e. Thus H hassize 9. Since H|G,, it follows that A(H)<4, H is
disconnected, and the order of each component of H is at most 5. Since 62
is decomposable into p, copies of H and deg u = 3p, + 1, we must have
A(H)=4. Let H’ be acomponent of H containing a vertex w of degree 4
and let H”=H -V(H’). Since Gy—u—-v= P3 U tK3, it follows by Lemma
6 that each component of H” is a subgraph of K;. Since A(H’) =4, italso
follows that each copy of H’ contains u or v and hence uv is an edge of a
copy of H’.

Suppose that H has no vertex other than w having degree at least 3.
In a given H-decomposition of G,, let r be the number of copies of H in
which w occurs at u or v. Then in each of these copies, a vertex of H of
degree at most 2 occurs at the remaining vertex in {u, v}, and in py-r

copies of H, there are vertices of H of degree at most 2 at u and v. Thus,
counting the number of edges incident with u or v, we obtain

6p2+1S4r+2r+4(p2-r)=4p2+2rs6p2,

a contradiction. Hence H contains a vertex d of degree at least 3 and,
necessarily, de V(H') and d is adjacent to w.
Let G =G, -{a,b,c} -uv and G’ =({a, b, c,u,v})EKs -e.

Consider an arbitrary, but fixed H-decomposition of G, into the copies H 0
H,y, ... ,sz of H,where H;=H’ and H;=H" are subgraphs of H; and
where w; (respectively dye V(Hi) corresponds to the vertex w (respectively
d) of H foreach ie (1,2,...,p,).

Suppose that H’ is 2-connected. Since the order of H’ is 5 and
each 2-connected subgraph of G, —u or G, —v has order at most 4,

it follows that (u,v) S V(H}) for each ie ({1, 2, ..., pPy). Thus
E(H) SE(Gy —u-v) for each i, and each edge of G, incident with u
or v liesin H; for some i. Since |E(62 —u-v)| < 3p,, it follows that
|E(H")| <2 and so IE(H’)I 2 7. Without loss of generality, say
ua € E(Hj). Since 8(H) 22, (av,ac} nE(H{) # D. Butif ave E(H)),
then a is an endvertex of the copy of H’ which contains av, which is a
contradiction. Hence {ua,av} SE(H{) and (uc,cv) S E(H) for some

i€ {1,2,..,p,). A similar argument shows that {ub, bv) < E(ij) for
some je {1,2,...,p,).
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If uve E(H)), then the facts that H’ is 2-connected and A(H’) =4
show that i=j=1 and all edges incident with » are in H{; hence H'= W,
the wheel of order 5. Since degu=degv = 3p, + 1, there is a subgraph H;
(respectively H)) with a vertex of degree 4 at u (respectively v). Since H’
is 2-connected of order S, the only possibility is k=1,say k=1=2. Then u
and v have degree 4 in Hj, so H; # W, a contradiction. Hence
uv e E(H;). _

' If i1, thatis,if {uc,cv) SEH) for i#1,then uve E(H)) and
the fact that H’ is 2-connected shows that no vertex has degree 4 in H, a
contradiction. Hence again i=j=1 sothat H’ contains Ky +K, as
spanning subgraph. Now for each i€ (2,3, ..., P,}, w; occurs at one of the
vertices X ¥jp 2 forsome je {1,2,...,¢}). Let d#w satisfy degy. d =4
and say, without loss of generality, that Wy occurs at x, and d, occurs at
Y5 Since H # K — e, at most one of the edges uz, and vz_,:_is in Hj, say
uz, € E(H;). Then uzy € E(HY) forany i and, since Ky +K, isa
subgraph of H’, uz, & E(H)) forany i (even if vz, ¢ E(H)), a contradiction.

Therefore, H’ is not 2-connected and thus contains a cutvertex which,
necessarily, is w. Since degy,-d23 and d#w, it follows that H’ consists

of an endvertex adjacent to w, together with a 2-connected subgraph Q where
Q=K -e or Q0=K,. Let Q;=Q be asubgraph of H; foreach ie (1,
2,...,py) and say 0,9y .- ’QP are contained in G while QP+1’QP+2’
,sz arenot. Foreach je {(1,2,...,¢},let Wj= {xj,yj.zj] and W=
.ktJ Wj. Now, foreach ie (1,2, ...,p], Q; contains at least one edge of

J=1
(Wj) for some je (1,2,...,¢} and no vertices in Wi k#j, while H]

contains at least two edges of (Wf,-). Also, if 1#i, then H] contains no edges
and Q, no vertices from (Wj). Hence p <¢ and there is a one-to-one
correspondence between the subgraphs Q‘-, ie (1,2,...,p},and those sets WJ

which contain vertices of these subgraphs. Without loss of generality, say
VQ)NW;#@D foreach ie (1,2,...,p).

Suppose that Q =K,. Then g(H"”)=2 and E(W;) S EQ,) for
each ie (1,2,...,p}. Note that each subgraph Q; that does not contain both
u and v lies entirely in G orin G’ - uv, while the copy Q, of 0

containing both u and v (and thus uv), lies entirely in G’ orin G + uv.
However, the fact that Q=K 4 shows that each subgraph Q; in G' must



contain uv. It follows that p =t, r =p, and, since no edges of (W) are
available, @, is a subgraph of G’. But then no edges disjoint from E(Q,) are
available for H/, a contradiction.

Consequently, 0 =K, —e, q(H”) = 3, and at most one edge of
(W) is not an edge of H}, i€ (1,2,...,p). Let uve E(H;). Then
E(H]") S E(W)) L {ab, bc) since no edge of H,’ is incident with u or v.
Hence at most ¢ -1 edges not incident with u or v are available for H}’,
i€ (1,2,...,py} - (r},sothat 2¢+1 edgesof the H; are incident with u
or v. But this means that at least one subgraph H; has three edges incident
with either u or v, but not both (since each subgraph H; contains u or v).

Thus A(H”)= 3, which is impossible since each component of H” isa
subgraph of K. O

We can now summarize the results concerning (K » -e), p23,as
follows.

Corollary 16 The index of Kp—e is

. o 3<p<s
«KP_Q={1 pz6

What characteristic a graph has that gives it a finite (or infinite) index
would be interesting to know. However, for the present at least, thls question
remains unanswered.
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