Intersections of 2-(v,4,1) Directed Designs

E.S. Mahmoodian and Nasrin Soltankhah
Department of Mathematical Sciences
Sharif University of Technology
P.O. Box 11365-9415
Tehran, I.R. Iran
emahmood@irearn.bitnet
soltan@irearn.bitnet

ABSTRACT. The intersection problem for a pair of transitive triple systems (or 2-(v, 3, 1) directed designs) is solved by Lindner and Wallis and independently by H.L. Fu in 1982–1983. In this paper we determine the intersection problem for a pair of 2-(v, 4, 1) directed designs.

1 Introduction

Let $0 < t \le k \le v$ and $\lambda > 0$ be integers, and V be a set of v elements. Each ordered k-tuple of distinct elements of V is called a block. In this note by an n-tuple of V, we mean an orderd n-subset of V. With these meanings of 'block' and 'n-tuple', which we shall use throughout this paper, we make the following definition. A t-(v, k, λ) directed design (or simply a t-(v, v, v) b) is a pair (v, v), where v is a v-set, and v is a collection of blocks, such that each v-tuple of v appears in precisely v blocks. Note that a v-tuple is said to appear in a v-tuple, if its components are contained in that block as a set, and they appear with the same order. For example the v-tuple v

The problem of determining the possible number of common blocks between two designs with the same parameters is studied extensively. For a recent survey on this problem see Billington [1]. Lindner and Wallis [8] and independently H.L. Fu [5] settled the spectrum of possible intersection sizes for 2-(v,3,1)DDs (transitive triple systems) for all admissible v. Also the spectrum of possible intersection sizes for ordinary designs S(2,3,v) and S(2,4,v) is settled by Lindner and Rosa [7] and by Colbourn, Hoffman

and Lindner [4] respectively. In this paper, we solve the intersection problem for 2-(v,4,1)DDs. The existence problem of $2-(v,4,\lambda)DDs$ has been solved in [9]. The necessary and sufficient condition for the existence of a 2-(v,4,1)DD is $v \equiv 1 \pmod{3}$.

The number of blocks in a 2-(v, 4, 1)DD is equal to $b_v = \frac{v(v-1)}{6}$. Let $J_D(v) = \{0, 1, \ldots, b_v - 2, b_v\}$, and let $I_D(v)$ denote the set of all possible integers m, such that there exist two 2-(v, 4, 1)DDs with exactly m common blocks. It is clear that $I_D(v) \subseteq J_D(v)$. We prove the following:

Main Theorem. For each $v \equiv 1 \pmod{3}$, $v \neq 7$, $I_D(v) = J_D(v)$ and $I_D(7) = \{0, 1, 7\}$.

For the rest of this section we state some definitions which are needed in the sequel.

Let $K = \{k_1, \ldots, k_l\}$ be a set of numbers. A 2- (v, K, λ) design is a v-set V and a collection of k_i -subsets also called blocks, such that every 2-subset of V appears exactly λ times in the blocks. These designs are also called pairwise balanced designs (PBD).

We define a group divisible design as in Hanani [6]. Let V be a v-set such that $V = \cup_{i=1}^t G_i$, $G_i \cap G_j = \emptyset$, $|G_i| \in M$ for all i. G_i 's are called groups. A group divisible design, $GD(k, \lambda, M; v)$, is a collection of k-subsets of a v-set V also called blocks such that each block intersects each group in at most one element and a pair of elements of V from different groups occurs in exactly λ blocks.

A directed group divisible design $DGD(k, \lambda, M; v)$ (or simply a DGD) is a group divisible design GD in which every block is ordered and each ordered pair formed from elements of different groups occurs in the same number of blocks. If $M = \{m\}$ then we simply write $DGD(k, \lambda, m; v)$.

A (v, k, t) directed trade (or simply a (v, k, t)DT) of volume s consists of two disjoint collections T' and T'', each of s blocks, such that each t-tuple occurs in the same number of blocks T' as of T''. Such a DT is usually denoted by T = T' - T''.

Let D be a t- (v, k, λ) DD and T = T' - T'' be a (v, k, t)DT. If D contains the collection of blocks of T'', then by substituting the blocks of T' for the blocks of T'' in the design, we obtain a new t- (v, k, λ) DD which is denoted by D + T. This method of "trade off" is used frequently in this paper.

2 Some small cases

In this section we discuss some small cases needed for general constructions. $I_D(4) = J_D(4)$

Let D_1 and D_2 be two 2-(4,4,1)DD on the set $\{0,1,2,3\}$, given below. $D_1: 0123,3210$; $D_2: 1023,3201$. We have $|D_1 \cap D_1| = 2$, $|D_1 \cap D_2| = 0$.

$$\{0,1,7\}\subseteq I_D(7)$$

Let D_1 be a 2-(7,4,1)DD with the base block (6 0 3 5) mod 7, and D_2 with the base block (5 3 0 6) mod 7, and let α be a permutation given by $\alpha = (01425)$ on the set $\{0,1,\ldots,6\}$. We have $|D_1 \cap D_1| = 7$, $|D_1 \cap D_2| = 0$, and $|D_1 \cap D_2 \alpha| = 1$.

Let D_1 be the following 2-(10,4,1)DD, on the set $\{0,1,\ldots,9\}$.

Now we list some small (10, 4, 2)DTs:

Directed Trade	Blocks removed	Blocks added
T	8610 7901	8601 7910
T_{ullet}	7901 6972	9701 6792
T_1	2156 3517	2516 3157
T_2	2938 7683	2983 7638
T_3	1324 4207	1342 2407
T_{A}	8745 9654	8754 9645

Let $D_2 = D_1 + T$ and $D_3 = D_1 + T_*$. We have $|D_1 \cap D_2| = 13$, $|D_2 \cap D_3| = 12$, and for i = 1, 2, 3, 4

$$|(D_2 + \sum_{j=1}^{i} T_j) \cap D_1| = 15 - (2i + 2);$$

$$|(D_2 + \sum_{i=1}^{i} T_j) \cap D_3| = 15 - (2i + 3).$$

For the following permutations on the elements of each block of D_3 we have

Permutation α	Intersection number of D_1 and $D_3\alpha$
(0123456789)	0
(03985267)	1
(047)	2
(0423)(15)(67)(89)	3

This results in
$$I_D(10) = J_D(10)$$
.
 $I_D(13) = J_D(13)$

Let D_1 be the following 2-(13, 4, 1)DD on the set $\{0, 1, \ldots, 9, a, b, c\}$.

123a	456a	789a		147b	258b	369 b
<i>b</i> 321	<i>b</i> 654	<i>b</i> 987		c741	<i>c</i> 852	<i>c</i> 963
159c	267c	348c		3570	2490	1680
0951	0762	0843		a753	a942	a861
			abc0			
			0cba			

Now we list some small (13,4,2)DTs:

Directed Trade	Blocks removed	Blocks added
\overline{T}	789a b987	879a b978
T_{ullet}	789a a942	78a9 9a42
T_1	123a b321	213a b312
T_2	456a b654	465a b564
T_3	147b c741	417b c714
T_4	258b c852	285b c582
T_{5}	369 <i>b c</i> 963	396b c693
T_6	159c 0951	519c 0915
T_7	267c 0762	627c 0726
T_8	348c 0843	438c 0834
T_{9}	3570 a753	3750 a573
T_{10}	1680 a861	6180 a816
T_{11}	abc0 0cba	bac0 0cab
$\boldsymbol{T_{12}}$	2490 a942	4290 a924

Let $D_2 = D_1 + T$, $D_3 = D_1 + T_*$. We have $|D_1 \cap D_2| = 24$, $|D_2 \cap D_3| = 23$, and

$$|(D_2 + \sum_{j=1}^{i} T_j) \cap D_1| = 26 - (2i+2) \quad i = 1, \dots, 12;$$

$$|(D_2 + \sum_{j=1}^{i} T_j) \cap D_3| = 26 - (2i + 3) \quad i = 1, \dots, 11.$$

This results in $I_D(13) = J_D(13)$.

3 Recursive Constructions

We introduce two constructions, which will be applied in constructing designs with required intersection sizes.

Construction 1. If there exists a group divisible design (G, \mathcal{B}) of order v with block size 4 and groups each of size congruent to 0 (mod 3), then there exists a $2 \cdot (2v + 1, 4, 1)DD$.

Proof. Let (G, \mathcal{B}) be a group divisible design on the element set V. We form a 2-(2v+1, 4, 1)DD on the element set $V \times Z_2 \cup \{\infty\}$ as follows. For each block $b \in \mathcal{B}$, say $b = \{x, y, z, w\}$, we form a DGD(4, 1, 2; 8) on $b \times Z_2$, such that its groups are $\{x\} \times Z_2, \{y\} \times Z_2, \{z\} \times Z_2, \{w\} \times Z_2$. This DGD exists, as we will see later on. Now for each group g of G, we substitute a 2-(2|g|+1,4,1)DD on $(g \times Z_2) \cup \{\infty\}$.

Construction 2. If there exists a group divisible design (G, \mathcal{B}) of order v with block size 4 and groups of size 2 and 5, then there exists a 2-(2v, 4, 1)DD.

Proof. Let (G, \mathcal{B}) be such a GD on the element set V. We form a 2-(2v, 4, 1)DD on the element set $V \times Z_2$. For each block $b \in \mathcal{B}$, say $b = \{x, y, z, w\}$ we place a DGD(4, 1, 2; 8) on $b \times Z_2$, such that its groups are $\{x\} \times Z_2$, $\{y\} \times Z_2$, $\{z\} \times Z_2$, $\{w\} \times Z_2$. For each group $g \in G$ we place a 2-(10, 4, 1)DD if |g| = 5, and we place a 2-(4, 4, 1)DD if |g| = 2 on $g \times Z_2$.

In applying constructions 1 and 2 we need some GDs and DGDs. We may use a $GD(4, 1, \{3, 6\}; v)$, a $GD(4, 1, \{2, 5\}; v)$, and a DGD(4, 1, 2; 8).

A $GD(4,1,\{3,6\};v)$ exists for all $v \equiv 0 \pmod{3}$, $v \neq 9,18$. For $v \equiv 0,3 \pmod{12}$, they may be obtained by omitting an element from a 2-(v+1,4,1) design. For $v \equiv 6,9 \pmod{12}$ they may be obtained by taking an element of the block of size 7 in a 2- $(v+1,\{4,7^*\},1)$ design with only one block of size 7 [2], and omitting this element from all the blocks which contain it.

A $GD(4, 1, \{2, 5^*\}; v)$ with one group of size 5 exists for all $v \equiv 5 \pmod{6}$, $v \neq 11, 17$ by [2], and a GD(4, 1, 2; v) exists for all $v \equiv 2 \pmod{6}$, $v \neq 8$ by [3]. Then it can be deduced that a $GD(4, 1, \{2, 5\}; v)$ exists for all $v \equiv 2, 5 \pmod{6}$, $v \neq 8, 11, 17$.

We can construct a DGD(4, 1, 2; 8) on the set $\{0, 1, \ldots, 7\}$ as follows: groups: 12, 34, 56, 07.

blocks: 5103, 4016, 3175, 6714, 2360, 5247, 0425, 7632.

Consider all DGD(4, 1, 2; 8)s with the same groups. Let $I_G(8)$ be the set of all possible integers m, such that there exist two such DGDs with exactly m common blocks.

$$I_{\mathbf{G}}(8) = \{0, 1, 2, 3, 4, 5, 6, 8\}$$

Consider the DGD(4, 1, 2; 8) constructed above, and let D_1 be its blocks. Now we list some small directed trades:

Directed Trade	Blocks removed	Blocks added
\overline{T}	5103 4016	5013 4106
T_{ullet}	4016 0425	0416 4025
T_1	3175 6714	3715 6174
T_{2}	2360 7632	2630 7362
T_3	5247 0425	2547 0452

Let $D_2 = D_1 + T$ and $D_3 = D_1 + T_*$. We have $|D_1 \cap D_2| = 6$, $|D_2 \cap D_3| = 5$, and

$$|(D_2 + \sum_{j=1}^{i} T_j) \cap D_3| = 8 - (2i + 3) \quad i = 1, 2;$$

$$|(D_2 + \sum_{j=1}^{i} T_j) \cap D_1| = 8 - (2i + 2) \quad i = 1, 2, 3.$$

This results in $I_G(8) = \{0, 1, 2, 3, 4, 5, 6, 8\}.$

Lemma 1. Let (G, \mathcal{B}) be a group divisible design of order v with b blocks, each of size 4, and r+s groups, r of size 3 and s of size 6. For $1 \le i \le b$, let $a_i \in I_G(8)$. For $1 \le i \le r$, let $c_i \in I_D(7)$; for $1 \le i \le s$, let $d_i \in I_D(13)$. Then there exist two $2 \cdot (2v+1, 4, 1)$ DDs intersecting in precisely

$$\sum_{i=1}^{b} a_i + \sum_{i=1}^{r} c_i + \sum_{i=1}^{s} d_i$$

blocks.

Proof. Using construction 1, take two copies of the same group divisible design (G, \mathcal{B}) and construct on them two $2 \cdot (2v + 1, 4, 1)$ DDs. Corresponding to each of the blocks B_1, \ldots, B_b , place on $B_i \times Z_2$ in the two systems DGD(4, 1, 2; 8)s having the same groups, and a_i blocks in common. Corresponding to groups G_i of size 3, place $2 \cdot (7, 4, 1)$ DDs with c_i blocks in common, and for groups H_i of size 6, place $2 \cdot (13, 4, 1)$ DDs with d_i blocks in common.

For the 2v construction we also have a similar lemma.

Lemma 2. Let (G, \mathcal{B}) be a group divisible design of order v with b blocks, each of size 4, and r+s groups, r of size 2 and s of size 5. For $1 \le i \le b$, let $a_i \in I_G(8)$. For $1 \le i \le r$, let $c_i \in I_D(4)$; for $1 \le i \le s$, let $d_i \in I_D(10)$. Then there exist two $2 \cdot (2v, 4, 1)$ DDs intersecting in precisely

$$\sum_{i=1}^{b} a_i + \sum_{i=1}^{r} c_i + \sum_{i=1}^{s} d_i$$

blocks.

4 Applying recursions

In this section, we prove the following main theorems.

Theorem 1. For $v \equiv 1$ or 7 (mod 12), $v \neq 7, 19, 37$, $I_D(v) = J_D(v)$.

Proof. There are four possibilities for v: v = 2(12k)+1, v = 2(12k+3)+1, v = 2(12k+6)+1 or v = 2(12k+9)+1. Now we may apply construction

1. All the required DGDs and GDs exist. By Lemma 1 and the fact that $\{0, 1, 7\} \subseteq I_D(7)$, $I_D(13) = J_D(13)$ and $I_G(8) = \{0, 1, 2, 3, 4, 5, 6, 8\}$, we deduce $I_D(v) = J_D(v)$ for $v \equiv 1$ or 7 (mod 12), $v \neq 7, 19, 37$.

Theorem 2. For $v \equiv 4$ or 10 (mod 12), $v \neq 16, 22, 34$ $I_D(v) = J_D(v)$.

Proof. In this case, either v is v = 2(6k+2) or v = 2(6k+5). We may apply construction 2. By Lemma 2 and the fact that $I_D(4) = J_D(4)$, $I_D(10) = J_D(10)$ and $I_G(8) = \{0, 1, 2, 3, 4, 5, 6, 8\}$, we deduce $I_D(v) = J_D(v)$ for $v \equiv 4$ or 10 (mod 12), $v \neq 16, 22, 34$.

5 Remaining small cases

Six small orders {7,16,19,22,34,37} remain. In this section we handle these small cases.

$$I_{\mathbf{D}}(7) = \{0,1,7\}$$

For v = 7 we show that there exist only two non-isomorphic directed designs of this order. Using this result we obtain the intersection numbers. The existence of exactly two non-isomorphic 2-(7,4,1)DD is shown in the following three steps.

(i) For a given 2-(7,4,1)DD on the set of elements $\{0,1,\ldots,6\}$, we may consider a matrix of size 7×4 , whose rows are the blocks of this design. Let x be an element and x_i be the number of appearances of x in the i-th column $(1 \le i \le 4)$ of the matrix. We count the number of all ordered pairs such as xy and yx respectively, for a constant x. We have

$$3x_1 + 2x_2 + x_3 = 6$$
 and $x_2 + 2x_3 + 3x_4 = 6$

respectively. From these equations it follows that $0 \le x_1 \le 2$ and $0 \le x_4 \le 2$. Since the 2-(7,4,2) design obtained from a 2-(7,4,1)DD is symmetric every two blocks have two elements in common. Thus $x_1 = 2$ or $x_4 = 2$ is impossible. Thus $0 \le x_1 \le 1$ and $0 \le x_4 \le 1$. We solve these two equations for $x_1 = 0$ and for $x_1 = 1$.

- (1): $x_1=0$, $x_2=2$, $x_3=2$, $x_4=0$
- (2): $x_1 = 0$, $x_2 = 3$, $x_3 = 0$, $x_4 = 1$
- (3): $x_1 = 1$, $x_2 = 0$, $x_3 = 3$, $x_4 = 0$
- $(4): \quad x_1=1, \quad x_2=1, \quad x_3=1, \quad x_4=1$

Clearly for each fixed column (i) we have

$$\sum_{0 \le x \le 6} x_i = 7$$

Let a_j be the number of elements with frequencies as in solution (j) above, (j = 1, 2, 3, 4). Then for the first and fourth columns we have.

$$0 \times a_1 + 0 \times a_2 + a_3 + a_4 = 7$$

 $0 \times a_1 + 1 \times a_2 + 0 \times a_3 + 1 \times a_4 = 7$

By solving these equations along with $a_1 + a_2 + a_3 + a_4 = 7$, we obtain $a_1 = a_2 = a_3 = 0$ and $a_4 = 7$. Thus for each element x, $0 \le x \le 6$ we have

$$x_1 = x_2 = x_3 = x_4 = 1.$$

- (ii) By the above result and by an easy argument one may show that, if there exists a block of the form xyzw, then no two adjacent elements in this block, say xy, can be adjacent in any other block.
- (iii) Now if 1234 is a block in a 2-(7,4,1)DD, and if the second element of the second block is 1, then in column 1 of this block we must have 3 or 4.

If it is 3, then a unique 2-(7,4,1)DD, may be constructed as follows:

 D_1 : 1234 3156 2610 0541 5302 6425 4063

If that element is 4, then a unique 2-(7,4,1)DD, may be constructed as follows:

 D_2 : 1234 4156 5310 2061 6403 0542 3625

For any permutation $\alpha \in S_7$ we have $|D_1\alpha \cap D_2| = 0$ or 1. Thus D_1 and D_2 are non-isomorphic. And for any permutation α we have $|D_1\alpha \cap D_1| = 0$, 1 or 7 and $|D_2\alpha \cap D_2| = 0$, 1 or 7. Therefore we deduce $I_D(7) = \{0,1,7\}$. \square Note. One may produce two non-isomorphic cyclic 2-(7,4,1)DDs with base blocks (5 3 0 6) and (6 0 3 5) mod 7 respectively. These designs are isomorphic to D_1 and D_2 respectively.

 $I_D(16)=J_D(16)$

Let D_1 be the following 2-(16, 4, 1)DD, on the set $\{0, 1, \ldots, 9, a, b, c, d, e, f\}$.

1248 2359 346a 457b 568c 679d 78ae ea21 fb32c431 d542 e653f764 89*bf* 19ac2abd3bce 4cdf cb95dca6 edb7 fec8 f d91 15*de* 26e f 137*f* 16*b*0 27c038d0ba84 8751 9862 a973 0661 0c720d8349e0 5af0 0e94 0fa5

Now we list some small (16,4,2)DTs:

Directed Trade	Blocks removed	Blocks added
	1248 ea21	2148 ea12
T_{ullet}	1248 ba84	1284 ba48
T_1	2359 fb32	3259 fb23
T_2	346a c431	436a c341
T_3	457b d542	547b d452
T_4	568c e653	658c e563
T_5	679d f764	769d f674
T_6	89bf cb95	8b9f c9b5
T_7	19ac dca6	19ca dac6
T_8	2abd edb7	2adb ebd7
T_9	3bce fec8	3bec fce8
T_{10}	4cdf fd91	4cfd df91
T_{11}	15de 8751	51de 8715
T_{12}	26ef 9862	62ef 9826
T_{13}	137f a973	173f a937
T_{14}	1660 0661	6160 0616
T_{15}	27c0 0c72	72c0 0c27
T_{16}	38d0 0d83	83d0 0d38
T_{17}	49e0 0e94	490e e094
T_{18}	$5af0 \ 0fa5$	a5f0 0f5a
T_{19}	78ae ba84	7a8e b8a4

Let $D_2 = D_1 + T$ and $D_3 = D_1 + T_*$. We have $|D_1 \cap D_2| = 38$, $|D_2 \cap D_3| = 37$, and

$$|(D_2 + \sum_{i=1}^{i} T_i) \cap D_3| = 40 - (2i + 3) \quad i = 1, \dots, 18;$$

$$|(D_2 + \sum_{j=1}^{i} T_j) \cap D_1| = 40 - (2i+2) \quad i = 1, \dots, 19.$$

This results in $I_D(16) = J_D(16)$.

 $\mathbf{I_D}(19) = \mathbf{J_D}(19)$

Let D_1 be a 2-(19,4,1)DD on the set $\{0,1,\ldots,18\}$, with base blocks (0 3 12 1), (12 0 4 18), (17 3 0 13) mod 19 ([9]). Now we list some small (19,4,2)DTs:

$$T:$$
 $T' = \{0\ 3\ 12\ 1,\ 17\ 3\ 0\ 13\};\ T'' = \{3\ 0\ 12\ 1,\ 17\ 0\ 3\ 13\}.$

$$T_{\bullet}$$
 $T'_{\bullet} = \{17\ 3\ 0\ 13,\ 11\ 18\ 3\ 17\};\ T''_{\bullet} = \{3\ 17\ 0\ 13,\ 11\ 18\ 17\ 3\}.$

$$T_i: T_i' = \{17+i \ 3+i \ 0+i \ 13+i, \ 0+i \ 3+i \ 12+i \ 1+i\};$$
$$T_i'' = \{17+i \ 0+i \ 3+i \ 13+i, \ 3+i \ 0+i \ 12+i \ 1+i\} \ i=1,\ldots,18.$$

$$T_{l+19}: T'_{l+19} = \{3+l\ 0+l\ 12+l\ 1+l,\ 12+l\ 0+l\ 4+l\ 18+l\}; T''_{l+19} = \{3+l\ 12+l\ 0+l\ 1+l,\ 0+l\ 12+l\ 4+l\ 18+l\}\ l=0,\ldots,17.$$

Let $D_2 = D_1 + T$ and $D_3 = D_1 + T_{\bullet}$. We have $|D_1 \cap D_2| = 55$, $|D_2 \cap D_3| = 54$, and

$$|(D_2 + \sum_{j=1}^{i} T_j) \cap D_3| = 57 - (2i+3) \quad i = 1, \dots, 18;$$

$$|(D_2 + \sum_{j=1}^{i} T_j) \cap D_1| = 57 - (2i+2) \quad i = 1, \dots, 18;$$

$$|(D_2 + \sum_{j=1}^{l} T_{j+19}) \cap D_1| = 57 - (l+40) \quad l = 0, \dots, 17.$$

This results in $I_D(19) = J_D(19)$.

$$\mathbf{I_D(22)} = \mathbf{J_D(22)}$$

In [2] it is shown that there exists a 2-(22, $\{4,7^*\}$, 1) design. If we replace the block of size 7 by a 2-(7,4,1)DD and put a 2-(4,4,1)DD on each block of size 4, then we obtain a 2-(22,4,1)DD. From the fact that $\{0,1,7\}\subseteq I_D(7)$ and $I_D(4)=J_D(4)$, we deduce $J_D(22)-\{b-5,b-3\}\subseteq I_D(22)$, where b is the number of blocks of the design. For the remaining intersection numbers, we may use a recursive construction as follows.

We have $22 = 3 \times 7 + 1$. We construct a 2-(7,4,1)DD on the set $A = \{1, \ldots, 7\}$ and we take a Kirkman triple system of order 15 on the set $B = \{8, \ldots, 22\}$. Let P_1, \ldots, P_7 be parallel classes of this system. The 4-tuples of D_1 , the desired 2-(22,4,1)DD on the set $A \cup B$ are:

- (i) the 4-tuples of 2-(7,4,1)DD;
- (ii) the 4-tuples xyzi, $(i+1)zyx \mod 7$ such that $\{x,y,z\}$ is a triple in P_i , $i=1,\ldots,7$.

Note that with any prior order on the triples of P_i 's the resulting design is a 2-(22, 4, 1)DD.

Now we introduce some directed trades on D_1 . If $\{x, y, z\}$, $\{a, b, c\} \in P_1$ and $\{x', y', z\} \in P_2$, then D_1 may be constructed so that the following blocks belong to D_1 :

$$xyz1$$
, $abc1$, $2zyx$, $2cba$, $x'y'z2$, $3zy'x'$

Now take these small (22, 4, 2)DTs:

Let
$$D_2 = D_1 + T$$
. We have $|D_1 \cap D_2| = b - 3$, $|D_1 \cap (D_2 + T_1)| = b - 5$. Therefore $I_D(22) = J_D(22)$. \Box $I_D(34) = J_D(34)$

By an argument similar to above, using the 2-(34, {4,7*},1) design constructed in [2], it can be shown that $J_D(34) - \{b-5,b-3\} \subseteq I_D(34)$. For the remaining two values, we construct a 2-(34,4,1)DD as in [9]. Take a 2-(11,5,1)DD with the base block (3 5 1 4 9) mod 11. On each block b = xyzuw of this directed design we form a 2-(16,4,1) design on the set $b \times Z_3 \cup \{\infty\}$, such that it contains the quadruples $\{x\} \times Z_3 \cup \{\infty\}$, $\{y\} \times Z_3 \cup \{\infty\}$, $\{z\} \times Z_3 \cup \{\infty\}$, $\{u\} \times Z_3 \cup \{\infty\}$, $\{w\} \times Z_3 \cup \{\infty\}$ and we put an order on the quadruples of this design, such that its quadruples have the order induced by block b. By this method we may construct a 2-(34,4,1)DD, D_1 : such that the following blocks belong to D_1 ,

$$(3,1)(5,1)(1,2)(4,1), (5,1)(3,1)(6,1)(11,2), (3,2)(5,2)(1,3)(4,2), (5,2)(3,2)(6,2)(11,3), (6,1)(8,2)(4,1)(1,2).$$

Now take these small (34, 4, 2)DTs.

$$T: T' = \{(3,1)(5,1)(1,2)(4,1), (5,1)(3,1)(6,1)(11,2), (6,1)(8,2)(4,1)(1,2)\};$$

$$T'' = \{(5,1)(3,1)(4,1)(1,2), (3,1)(5,1)(6,1)(11,2), (6,1)(8,2)(1,2)(4,1)\}.$$

$$T_1: T_1' = \{(3,2)(5,2)(1,3)(4,2), (5,2)(3,2)(6,2)(11,3)\}; T_1'' = \{(5,2)(3,2)(1,3)(4,2), (3,2)(5,2)(6,2)(11,3)\}.$$

Let
$$D_2 = D_1 + T$$
. We have $|D_1 \cap D_2| = b - 3$, $|D_1 \cap (D_2 + T_1)| = b - 5$. Therefore $I_D(34) = J_D(34)$. \Box $I_D(37) = J_D(37)$

To construct 2-(37,4,1)DD's we use a general recursive construction described below.

Construction 3. If there exists a 2-(v, 4, 1) design, then there exists a 2-(3v - 2, 4, 1)DD.

Proof. Let D be a 2-(v, 4, 1) design on the set $\{1, \ldots, v-1\} \cup \{\infty\}$! If a block $b \in D$ contains ∞ , say $b = \{x, y, z, \infty\}$, then we replace b by a 2-(10, 4, 1)DD on the set $(\{x, y, z\} \times Z_3) \cup \{\infty\}$. If b does not contain ∞ , say $b = \{x, y, z, w\}$, then we replace b by a GD(4, 1, 3; 12) on the set $b \times Z_3$, such that its groups are $\{x\} \times Z_3$, $\{y\} \times Z_3$, $\{z\} \times Z_3$, $\{w\} \times Z_3$ and on each block of this GD(4, 1, 3; 12) we form a 2-(4, 4, 1)DD.

Since $37 = 3 \times 13 - 2$, we may use construction 3 for 2-(37, 4, 1)DD. Since $I_D(4) = J_D(4)$ and $I_D(10) = J_D(10)$, therefore we can deduce $I_D(37) = J_D(37)$.

References

- [1] E.J. Billington, The intersection problem for combinatorial designs, Congressus Numerantium (to appear).
- [2] A.E. Brouwer, Optimal packings of K_4 's into a K_n , J. Combin. Theory, Series A26 (1979), 278–297.
- [3] A.E. Brouwer, H. Hanani and A. Schrijver, Group divisible designs with block size four, *Discrete Math.* 20 (1977), 1-10.
- [4] C.J. Colbourn, D.G. Hoffman and C.C. Lindner, Intersections of S(2, 4, v) designs, Ars Combin. 33 (1992), 97-111.
- [5] H.L. Fu, Directed triple systems having a prescribed number of triples in common, *Tamkang J. Math.* 14 (1983), 85-90.
- [6] H. Hanani, Balanced incomplete block designs and related designs, Discrete Math. 11 (1975), 255-369.
- [7] C.C. Lindner and A. Rosa, Steiner triple systems having a prescribed number of triples in common, *Canad. J. Math.* 27 (1975), 1166-1175. Corrigendum: *Canad. J. Math.* 30 (1978), 890.
- [8] C.C. Lindner and W.D. Wallis, Embeddings and prescribed intersection of transitive triple systems, Annals of Discrete Math. 15 (1982), 265– 272.
- [9] D.J. Street and J.R. Seberry, All DBIBDs with block size four exist, Utilitas Math. 18 (1980), 27-34.