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ABSTRACT. The intersection problem for a pair of transitive
triple systems (or 2-(v, 3, 1) directed designs) is solved by Lind-
ner and Wallis and independently by H.L. Fu in 1982-1983. In
this paper we determine the intersection problem for a pair of
2-(v,4,1) directed designs.

1 Introduction

Let 0 <t < k < v and A > 0 be integers, and V be a set of v elements.
Each ordered k-tuple of distinct elements of V is called a block. In this
note by an n-tuple of V, we mean an ordred n-subset of V. With these
meanings of ‘block’ and ‘n-tuple’, which we shall use throughout this paper,
we make the following definition. A ¢-(v,k, A) directed design (or simply a
t-(v, k, \)DD) is a pair (V, B), where V is a v-set, and B is a collection of
blocks, such that each ¢t-tuple of V appears in precisely A blocks. Note that
a t-tuple is said to appear in a k-tuple, if its components are contained in
that block as a set, and they appear with the same order. For example the
4-tuple abed contains the ordered pairs ab, ac, ad, be, bd, and cd.

The problem of determining the possible number of common blocks be-
tween two designs with the same parameters is studied extensively. For
a recent survey on this problem see Billington [1]. Lindner and Wallis [8]
and independently H.L. Fu [5] settled the spectrum of possible intersection
sizes for 2-(v, 3,1)DDs (transitive triple systems) for all admissible v. Also
the spectrum of possible intersection sizes for ordinary designs S(2,3,v)
and S(2,4, v) is settled by Lindner and Rosa [7] and by Colbourn, Hoffman

JCMCC 20 (1996), pp. 225-236



and Lindner [4] respectively. In this paper, we solve the intersection prob-
lem for 2-(v,4,1)DDs. The existence problem of 2-(v,4,A)DDs has been
solved in [9]. The necessary and sufficient condition for the existence of a
2-(v,4,1)DD is v =1 (mod 3).

The number of blocks in a 2-(v,4,1)DD is equal to b, = l('is'—l)-. Let
Jp(v) = {0,1,...,b, — 2,b,}, and let Ip(v) denote the set of all possible
integers m, such that there exist two 2-(v, 4, 1)DDs with exactly m common
blocks. It is clear that Ip(v) C Jp(v). We prove the following:

Main Theorem. For each v =1 (mod 3), v # 7, Ip(v) = Jp(v) and
Ip(7)={0,1,7}.

For the rest of this section we state some definitions which are needed in
the sequel.

Let K = {ki,... ,ki} be a set of numbers. A 2-(v, K, X) design is a v-set
V and a collection of k;-subsets also called blocks, such that every 2-subset
of V appears exactly A times in the blocks. These designs are also called
pairwise balanced designs (PBD).

We define a group divisible design as in Hanani [6). Let V be a v-set such
that V = U{_,G;, GiNG; =0, |G;] € M for all i. G;’s are called groups.
A group divisible design, GD(k,\, M;v), is a collection of k-subsets of a
v-set V also called blocks such that each block intersects each group in at
most one element and a pair of elements of V' from different groups occurs
in exactly A blocks.

A directed group divisible design DGD(k,\, M;v) (or simply a DGD) is a
group divisible design GD in which every block is ordered and each ordered
pair formed from elements of different groups occurs in the same number
of blocks. If M = {m} then we simply write DGD(k, A, m; v).

A (v, k,t) directed trade (or simply a (v, k, t)DT) of volume s consists of
two disjoint collections TV and T, each of s blocks, such that each ¢-tuple
occurs in the same number of blocks T” as of T”. Such a DT is usually
denoted by T =T' - T".

Let D be a t-(v,k,A\)DD and T = T' — T"” be a (v, k, t)DT. If D contains
the collection of blocks of T, then by substituting the blocks of 7" for the
blocks of T” in the design, we obtain a new t-(v, k, A)DD which is denoted
by D + T. This method of “trade off” is used frequently in this paper.

2 Some small cases

In this section we discuss some small cases needed for general constructions.
Ip(4) = Ip(4)

Let Dy and D, be two 2-(4,4,1)DD on the set {0, 1,2, 3}, given below.
D;: 0123,3210; D,: 1023,3201. We have |Dy N Dy| =2, |D; N Dy| =
0. O
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{09 1, 7} c ID(7)

Let D, be a 2-(7,4,1)DD with the base block (6 0 3 5) mod 7, and D;
with the base block (5 3 0 6) mod 7, and let a be a permutation given by
a = (01425) on the set {0,1,...,6}. We have |[DyNDy| =7, |DiND;| =0,
and |D; N Dea| =1. a
In(10) = Jp(10)

Let D, be the following 2-(10,4,1)DD, on the set {0,1,...,9}.

1324 2156 3517 4189 8610 7901 2938
4207 0582 6972 0436 5309 7683 9654 8745.

Now we list some small (10,4, 2)DTs:
Directed Trade Blocks removed Blocks added

T 8610 7901 8601 7910
T. 7601 6972 9701 6792
T 2156 3517 2516 3157
T2 2938 7683 2983 7638
T3 1324 4207 1342 2407
T, 8745 9654 8754 9645

Let Dy = Dy+T and D3 = D;+T,. We have |D10D2| =13, |D2I’1D3| =12,
and for i=1,2,3,4

i
|(D2+ ) T;) N Dy| =15 — (2i +2);
j=1

]
|(D2+ ) _T;) N D3| = 15 — (2i + 3).
j=1

For the following permutations on the elements of each block of D3 we have

Permutation Intersection number of D, and D3a
(0123456789) 0
(03985267) 1
(047) 2
(0423)(15)(67)(89) 3
This results in Ip(10) = Jp(10). a

In(13) =Jp(13)
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Let D, be the following 2-(13,4,1)DD on the set {0,1,...,9,q,b,c}.

123a 456a 789a 1476 258b 369b
5321 b654 5987 c741 852 963

159¢ 267c 348c 3570 2480 1680
0951 0762 0843 a753 a%942 a861
abcd
Ocba

Now we list some small (13,4,2)DTs:
Directed Trade Blocks removed Blocks added

T 789a 5987 879a 5978
T. 789a a942 78a9 9a42
Ty 123a 5321 213a b312
it 456a b654 465a b564
Ts 147b c741 4176 714
T, 258b c852 285b 582
Ts 369b c963 396b c693
Ts 159¢ 0951 519¢ 0915
Ty 267¢ 0762 627c 0726
T8 348c 0843 438¢c 0834
Ty 3570 a753 3750 a573
Tro 1680 a861 6180 816
Tu abc0 Ocba bacd Ocab
Ty 2490 a942 4290 o924

Let Do = D1 +T, D3 = Dy +T,. We have |D1NDy| =24, |D2nN D3| = 23,
and

3
(D24 ) T;)NDy|=26-(2i+2) i=1,...,12
Jj=1

13
|(D2+) T;)NDs| =26-(2i+3) i=1,...,1L

=1

This results in Ip(13) = Jp(13). ]

3 Recursive Constructions

We introduce two constructions, which will be applied in constructing de-
signs with required intersection sizes.

Construction 1. If there exists a group divisible design (G, B) of order

v with block size 4 and groups each of size congruent to 0 (mod 3), then
there exists a 2-(2v + 1,4,1)DD.
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Proof. Let (G, B) be a group divisible design on the element set V. We
form a 2-(2v + 1,4,1)DD on the element set V x Z; U {o0} as follows. For
each block b € B, say b= {z,y, z,w}, we form a DGD(4,1,2;8) on b x Zz,
such that its groups are {z} x Z3, {y} X 23, {2} % 22, {w} x Z2. This DGD
exists, as we will see later on. Now for each group g of G, we substitute a
" 2-(2|g| + 1,4,1)DD on (g x Z2) U {co}. O
Construction 2. If there exists a group divisible design (G, B) of order
v with block size 4 and groups of size 2 and 5, then there exists a 2-
(2v,4,1)DD. |
Proof. Let (G, B) be such a GD on the element set V. We form a 2-
(2v,4,1)DD on the element set V x Z;. For each block b € B, say b =
{z,y,z,w} we place a DGD(4,1,2;8) on b x Z3, such that its groups are
{z} x Z2, {y} x Za, {2} X Z2, {w} x Zz. For each group g € G we placea
2-(10,4,1)DD if |g| = 5, and we place a 2-(4,4,1)DD if |g] =2 on g x Z2.0

In applying constructions 1 and 2 we need some GDs and DGDs. We
may use a GD(4,1,{3,6};v), a GD(4,1, {2,5};v), and a DGD(4,1,2;8).

A GD(4,1,{3,6};v) exists for all v = 0 (mod 3), v # 9,18. For v =
0,3 (mod 12), they may be obtained by omitting an element from a 2-
(v+1,4,1) design. For v = 6,9 (mod 12) they may be obtained by taking
an element of the block of size 7 in a 2-(v + 1, {4,7*},1) design with only
one block of size 7 [2], and omitting this element from all the blocks which
contain it.

A GD(4,1, {2,5°}; v) with one group of size 5 exists for all v = 5 (mod 6),
v # 11,17 by [2], and a GD(4,1,2;v) exists for all v = 2 (mod 6), v # 8
by [3]. Then it can be deduced that a GD(4,1, {2,5};v) exists for all
v=2,5 (mod 6), v #8,11,17.

We can construct a DG D(4, 1,2;8) on the set {0,1,...,7} as follows:
groups: 12, 34, 56, 07.
blocks: 5103, 4016, 3175, 6714, 2360, 5247, 0425, 7632.

Consider all DGD(4, 1,2; 8)s with the same groups. Let Ig(8) be the set
of all possible integers m, such that there exist two such DGDs with exactly
m common blocks,

Ic(8) ={0,1,2,3,4,5,6,8}

Consider the DGD(4, 1,2; 8) constructed above, and let D, be its blocks.

Now we list some small directed trades:

Directed Trade Blocks removed Blocks added

T 5103 4016 5013 4106
T. 4016 0425 0416 4025
T 3175 6714 3715 6174
T 2360 7632 2630 7362
T3 5247 0425 2547 0452

229



Let D; = D1+T and D3 = D1 +T,. We have |D\ND;| =6, |D2ND3| =5,
and

i
I(D2+)_T;)NDs|=8—(2i+3) i=1,2;
=1

1
I(D2+) T5)NDy|=8-(2+2) i=1,23.
j=1
This results in I¢(8) = {0,1,2,3,4,5,6,8}. a
Lemma 1. Let (G, B) be a group divisible design of order v with b blocks,
each of size 4, and r + s groups, r of size 3 and s of size 6. For 1 < i < b,
let a; € Ig(8). For 1 <i<r, let ¢; € Ip(7); for 1 < i < s, let d; € Ip(13).
Then there exist two 2-(2v + 1,4, 1)DDs intersecting in precisely

b r s
YatSatdd
i=1 =1 =1
blocks. _
Proof. Using construction 1, take two copies of the same group divisible
design (G, B) and construct on them two 2-(2v + 1,4, 1)DDs. Correspond-
ing to each of the blocks Bjy,... , By, place on B; x Z in the two systems
DGD(4,1,2; 8)s having the same groups, and a; blocks in common. Cor-
responding to groups G; of size 3, place 2-(7,4,1)DDs with ¢; blocks in
common, and for groups H; of size 6, place 2-(13,4, 1)DDs with d; blocks
in common. a

For the 2v construction we also have a similar lemma.

Lemma 2. Let (G, B) be a group divisible design of order » with b blocks,
each of size 4, and r + s groups, r of size 2 and s of size 5. For 1 < i < b,
let a; € Ig(8). For 1 <i<r,let ¢; € Ip(4); for 1 < i < s, let d; € Ip(10).
Then there exist two 2-(2v,4, 1)DDs intersecting in precisely

b r 3
doa+d a+) d
i=1 i=1 =1

blocks.

4 Applying recursions
In this section, we prove the following main theorems.
Theorem 1. For v =1 or 7 (mod 12), v # 7,19, 37, Ip(v) = Jp(v).

Proof. There are four possibilities for v: v = 2(12k)+1, v =2(12k + 3) + 1,
v=2(12k + 6) + 1 or v = 2(12k + 9) + 1. Now we may apply construction
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1. All the required DGDs and GDs exist. By Lemma 1 and the fact that
{0,1, 7} c ID(7), ID(13) = JD(13) and IG(S) = {0, 1,2, 3,4, 5, 6,8}, we
deduce Ip(v) = Jp(v) for v=1or 7 (mod 12), v # 7,19,37. (m]
Theorem 2. For v =4 or 10 (mod 12), v # 16,22,34 Ip(v) = Jp(v).
Proof. In this case, either v is v = 2(6k+2) or v = 2(6k+5). We may apply
" construction 2. By Lemma 2 and the fact that Ip(4) = Jp(4), Ip(10) =
Jp(10) and I5(8) = {0, 1,2, 3,4, 5, 6,8}, we deduce Ip(v) = Jp(v) forv =4
or 10 (mod 12), v # 16,22, 34. ]

5 Remaining small cases

Six small orders {7,16,19,22,34,37} remain. In this section we handle
these small cases.

For v = 7 we show that there exist only two non-isomorphic directed
designs of this order. Using this result we obtain the intersection numbers.
The existence of exactly two non-isomorphic 2-(7,4,1)DD is shown in the
following three steps.

(¥) For a given 2-(7,4,1)DD on the set of elements {0,1, ... ,6}, we may
consider a matrix of size 7 x 4, whose rows are the blocks of this design.
Let z be an element and z; be the number of appearances of x in the i-th
column (1 < { < 4) of the matrix. We count the number of all ordered
pairs such as zy and yz respectively, for a constant z. We have

3z + 2x3 +z3 = 6 and z3 + 223 + 34 =6

respectively. From these equations it follows that 0 < z; <2and 0 < z4 <
2. Since the 2-(7,4,2) design obtained from a 2-(7,4,1)DD is symmetric
every two blocks have two elements in common. Thus z; =2orzq4 =2 is
impossible. Thus 0 < z; <1and 0 < z4 < 1. We solve these two equations
for z; =0 and for z; = 1.

1): z1=0, z2=2, 23=2, z4=0

(2): 21=0, z2=3, z3=0, z4=1

(B): z=1 z2=0, z3=3, z4=0

(4): z1=1, z2=1, zz3=1, za=1
Clearly for each fixed column (i) we have

Ty = 7
0<z<6

Let a; be the number of elements with frequencies as in solution (5) above,
(j =1,2,3,4). Then for the first and fourth columns we have.

Oxa;+0xas+ast+as=7
Oxa;+1xaz+0xaz3+1xas="7
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By solving these equations along with a; 4 a2 + a3 + a4 = 7, we obtain
a; = a3 = ag = 0 and a4 = 7. Thus for each element z, 0 < = < 6 we have

TyI=Tp=23=x4=1.

(#) By the above result and by an easy argument one may show that,
if there exists a block of the form zyzw, then no two adjacent elements in
this block, say zy, can be adjacent in any other block.

(#4) Now if 1234 is a block in a 2-(7,4,1)DD, and if the second element
of the second block is 1, then in column 1 of this block we must have 3 or
4.

If it is 3, then a unique 2-(7,4, 1)DD, may be constructed as follows:

D,: 1234 3156 2610 0541 5302 6425 4063

If that element is 4, then a unique 2-(7,4, 1)DD, may be constructed as
follows:

D,: 1234 4156 5310 2061 6403 0542 3625

For any permutation a € Sy we have |[DiaN Dg| = 0 or 1. Thus D; and
D, are non-isomorphic. And for any permutation a we have |Dian Dy| =
0,10r 7and [ D2anNDz| = 0,1 or 7. Therefore we deduce Ip(7) = {0,1,7}.0

Note. One may produce two non-isomorphic cyclic 2-(7,4,1)DDs with
base blocks (5 3 0 6) and (6 0 3 5) mod 7 respectively. These designs are
isomorphic to D, and D, respectively.

In(16) = Jp(16)

Let D, be the following 2-(16,4,1)DD, on the set {0,1,... ,9,a,b,¢,d, ¢, f}.
1248 2359 346a 457b 568c 679d 78ae ea2l fb32 431
d542 653 f764 89bf 19ac 2abd 3bce 4cdf cb95 dcab
edb7? fec8 fd91 15de 26ef 137f 1660 27c0 3840 ba84

8751 9862 a973 0b61 O0c72 0483 49¢0 5af0 0e94 0faS

Now we list some small (16,4,2)DTs:
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Directed Trade Blocks removed Blocks added

T 1248 ea2l 2148 eal2
T. 1248 ba84 1284 bad8
T 2359 fb32 3259 fb23
T 346a o431 436a c341
Ts 457b d542 547b d452
Ts 568¢c €653 658¢c €563
Ts 679d f764 769d f674
Te 89bf cb95 8b9f c9b5
T 19ac dcab 19ca dach
T 2abd edb7 2adb ebd7
Ty 3bce fec8 3bec fce8
Tlo 4Cdf fd91 4cfd dfgl
T 15de 8751 51de 8715
T2 26ef 9862 62ef 9826
Tia 137f a973 173f a937
T4 1660 0561 6150 0b16
Tis 27¢0 0c72 720 027
Tie 38d0 0483 83d0 0d38
Tv7 49¢0 0e94 490e €094
Tis 5af0 0fad a5f0 0f5a
T 78ae ba84 7a8e b8ad

Let Dy = D1+T and D3 = Dy+T,. We have IDlﬂDgl = 38, IDzﬂDsl =37,
and

i
D2+ Y T;)NDs|=40—-(2i+3) i=1,...,18
Jj=1

(D24 Y T;)NDy|=40-(2i+2) i=1,...,19.
i=1
This results in ID(IS) = JD(16). a
Ip(19) =JIp(19) '
Let D; be a 2-(19,4,1)DD on the set {0,1,...,18}, with base blocks
(03121), (12 0 4 18), (17 3 0 13) mod 19 ([9]). Now we list some small
(19,4,2)DTs:
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T: T"={03121,173013}; T"={30121, 1703 13}.
T. T.={173013, 1118317}; T.' = {317 013, 11 18 17 3}.

Ti: Ti={174+i3+i0+i13+4i, 0+i3+i12+4i1+i};
T ={174+i0+i3+i13+4,3+i0+il12+il+i}i=1,...,18

Tiyr9: Tipo={3+10+1124+11+41, 124+10+14+118+1};
Tio={3+1124+104+11+1, 04112414 +118+1} 1=0,...,17.
Let Dy = D1+T and Ds = D1+T,. We have [DiNDg| = 55, |[DaN D3| = 54,
and

i
D2+ Y ;)N Dol =57 (2i+3) i=1,...,18
Jj=1

i
(D24 T)NDy|=57—(2i+2) i=1,...,18;
j=1

‘ .
(D2 + ) Tj10) N Dy| =57 — (1+40) 1=0,...,17.
i=1
This results in Ip(19) = Jp(19). a
Ip(22) =Jp(22)

In [2] it is shown that there exists a 2-(22, {4,7*}, 1) design. If we replace
the block of size 7 by a 2-(7,4,1)DD and put a 2-(4, 4, 1)DD on each block of
size 4, then we obtain a 2-(22,4,1)DD. From the fact that {0,1,7} C Ip(7)
and Ip(4) = Jp(4), we deduce Jp(22) — {b — 5,b — 3} C Ip(22), where
b is the number of blocks of the design. For the remaining intersection
numbers, we may use a recursive construction as follows.

We have 22 = 3 x 7+ 1. We construct a 2-(7,4,1)DD on the set A =
{1,...,7} and we take a Kirkman triple system of order 15 on the set
B = {8,...,22}. Let P,...,P; be parallel classes of this system. The
4-tuples of D, the desired 2-(22,4,1)DD on the set AU B are:

(i) the 4-tuples of 2-(7,4,1)DD;

(i) the 4-tuples zy=zi, (i + 1)zyz mod 7 such that {z,y, z} is a triple in
F,i=1,...,7.

Note that with any prior order on the triples of P;’s the resulting design is
a 2-(22,4,1)DD.

Now we introduce some directed trades on Dy. If {z,y, 2}, {a,b,c} € P,
and {z’,%',z} € P, then D; may be constructed so that the following
blocks belong to D;:

zyz1, abcl, 2zyz, 2cba, z'y'22, 3zy'z’
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Now take these small (22,4,2)DTs:

Directed Trade Blocks removed Blocks added
T zyzl 2z2yz z'y’'22 yzzl 22zy x'y'22
Ty abcl 2cba bacl 2cab

Let Dy = Dy +T. We have |D,NDg|=b-3, |DiNn(D2+Th)|=b-5.
Therefore 1p(22) = Jp(22). ]
Ip(384) =JIp(84)

By an argument similar to above, using the 2-(34, {4,7*},1) design con-
structed in [2], it can be shown that Jp(34) — {b — 5,b — 3} C Ip(34).
For the remaining two values, we construct a 2-(34,4,1)DD as in [9]. Take
a 2-(11,5,1)DD with the base block (3 5 1 4 9) mod 11. On each block
b = zyzuw of this directed design we form a 2-(16,4, 1) design on the set
bx Z3U{oo}, such that it contains the quadruples {z} x ZsU{co}, {¥} x ZsU
{oo}, {2} x ZzU {00}, {u} x Z3U {0}, {w} x Z3U{oo} and we put an order
on the quadruples of this design, such that its quadruples have the order
induced by block b. By this method we may construct a 2-(34,4,1)DD, D;:
such that the following blocks belong to Dy,

(3,1)(5,1)(1, 2)(4,1), (5,1)(3,1)(6,1)(11,2),
(3,2)(5,2)(1,3)(4,2), (5,2)(3,2)(6,2)(11,3), (6,1)(8,2)(4,1)(1,2).

Now take these small (34,4,2)DTs.

T: T'={31)(51)1,2)4,1), (51)3,1)(6,1)(11,2), (6,1)(8,2)(4,1)1,2)}
T = {(5,1)(3,1)(4,1)(1,2), (3,1)(5,1)(6,1)(11,2), (6,1)(8,2)(1,2)(4,1)}-

Ti: T ={(3,2)(52)1,3)(4,2), (52)(3,2)(6,2)(11,3)};
7‘1” = {(5! 2)(31 2)(11 3)(4: 2), @3, 2)(5| 2)(6,2)(11, 3)}'

Let Do = D; +T. We have |[D;NDy|=b-3, |DyN(D2+T1)|=b-5.
Therefore 1p(34) = Jp(34). a
In(37) = Ip(37)

To construct 2-(37,4,1)DD’s we use a general recursive construction de-
scribed below.
Construction 3. If there exists a 2-(v,4,1) design, then there exists a
2-(3v — 2,4,1)DD.
Proof. Let D be a 2-(v,4,1) design on the set {1,...,v —1} U {oo}. If
a block b € D contains oo, say b = {z,¥, 2,00}, then we replace b by a
2-(10,4,1)DD on the set ({z,y,2} x Z3) U {o0}. If b does not contain oo,
say b = {z,y, z, w}, then we replace b by a GD(4, 1, 3; 12) on the set b x Z3,
such that its groups are {z} x Zs, {y} x Z3, {2} x Z3, {w} x Z3 and on
each block of this GD(4, 1,3;12) we form a 2-(4,4,1)DD. o
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Since 37 = 3 x 13— 2, we may use construction 3 for 2-(37,4,1)DD. Since
Ip(4) = Jp(4) and Ip(10) = Jp(10), therefore we can deduce Ip(37) =
Jp(37). , u]

References

[1] E.J. Billington, The intersection problem for combinatorial designs,
Congressus Numerantium (to appear).

[2] A.E. Brouwer, Optimal packings of K;’s into a K, J. Combin. Theory,
Series A26 (1979), 278-297.

[3] A.E.Brouwer, H. Hanani and A. Schrijver, Group divisible designs with
block size four, Discrete Math. 20 (1977), 1-10.

[4] C.J. Colbourn, D.G. Hoffman and C.C. Lindner, Intersections of
S(2,4,v) designs, Ars Combin. 33 (1992), 97-111.

[5] H.L. Fu, Directed triple systems having a prescribed number of triples
in common, Tamkang J. Math. 14 (1983), 85-90.

[6] H. Hanani, Balanced incomplete block designs and related designs, Dis-
crete Math. 11 (1975), 255-369.

[7] C.C. Lindner and A. Rosa, Steiner triple systems having a prescribed
number of triples in common, Canad. J. Math. 27 (1975), 1166-1175.
Corrigendum: Canad. J. Math. 30 (1978), 890.

[8] C.C. Lindner and W.D. Wallis, Embeddings and prescribed intersection
of transitive triple systems, Annals of Discrete Math. 15 (1982), 265—
272.

[9] D.J. Street and J.R. Seberry, All DBIBDs with block size four exist,
Utilitas Math. 18 (1980), 27-34.

236



