A note on the strong 2-cover conjecture for graphs without K_5 minors

Hong-Jian Lai*
West Virginia University
Morgantown, WV 26506

Hongyuan Lai Wayne State University Detroit, MI 48202

ABSTRACT. In [J. of Combinatorial Theory (B), 40(1986), 229–230], Fleischner proved that if G is a 2-edge-connected planar graph and if $C_0 = \{C_1, \dots, C_k\}$ is a collection of edge-disjoint cycles of G, then G has a cycle double cover C that contains C_0 . In this note, we show that this holds also for graphs that do not have a subgraph contractible to K_5 .

Our terminology follows that of Bondy and Murty [1]. For the definitions of cycle covers and cycle decompositions, see [6]. The strong 2-Cover Conjecture asserts that given a cycle C in a 2-edge-connected graph C, there exists a cycle 2-cover C with $C \in C$. In [3], Fleischner proved the following:

Theorem A (Fleischner [3]). Let G be a 2-edge-connected planar graph and let $C_0 = \{C_1, \dots, C_k\}$ be a set of edge-disjoint cycles of G. Then there exists a cycle 2-cover C of G such that C_0 is a subfamily of C.

In this note we shall generalize Theorem A to the following:

Theorem 1. Let G be a 2-edge-connected graph that does not have a subgraph contractible to K_5 , and let $C_0 = \{C_1, \dots, C_k\}$ be a set of edge-disjoint cycles of G. Then there exists a cycle 2-cover C of G such that C_0 is a subfamily of C.

^{*}Partially supported by ONR grant N00014-91-J-1699

Our proof of Theorem 1 is based on the following result, which generalizes a theorem in [5].

Theorem 2. Let G be a 2-edge-connected graph that does not have a subgraph contractible to K_5 , and let G' be an eulerian supergraph of G obtained from G by duplicating every edge of G at most once. Then there exists a cycle decomposition $\mathcal D$ of G' such that each element of $\mathcal D$ corresponds to a cycle of G.

Proof of Theorem 1: We follow the idea of Fleischner [2]. Let $X = \bigcup_{C \in C_0} E(C)$, and let G' be the eulerian supergraph of G obtained from G by duplicating every edge in E(G) - X exactly once. By Theorem 2, G' has a cycle decomposition D such that each $C \in D$ can be viewed as a cycle in G. Thus D and C_0 together will form a cycle 2-cover of G that has C_0 as a subfamily.

In order to prove Theorem 2, we need more terms. Let G be a graph. For a vertex $v \in V(G)$, let P(v) denote a partition of the set of edges incident with v in G. An element of P(v) is called a forbidden part at v. Let $P = \bigcup_{v \in V(G)} P(v)$, and call P a set of forbidden parts of G. A graph G with an associated set of forbidden parts P is denoted by G.

A cycle decomposition \mathcal{D} of (G, \mathbf{P}) is good with respect to \mathbf{P} if for every cycle $C \in \mathcal{D}$ and for any $P \in \mathbf{P}$, $|E(C) \cap P| \leq 1$. An edge cut of (G, \mathbf{P}) is bad if there is some part $P \in \mathbf{P}$ such that $2|P \cap T| > |T|$. The following theorem was first proved by Fleischner and Frank [4] for planar graphs and was recently generalized by Zhang [7] to its current form:

Theorem B (Zhang [7]). Let G be an eulerian graph containing no subgraph contractible to K_5 and let P be a set of parts of G without bad cuts. Then (G, P) has a good cycle decomposition with respect to P. \square

Proof of Theorem 2: Let X = E(G') - E(G). For each $v \in V(G) = V(G')$, let E_v denote the edges incident with v in G'. We define P(v) as follows: if $e \notin X$ and $e \in E_v$, then $\{e\}$ is a part in P(v); if $e \in E_v \cap X$, then e must be a duplicate of an edge e' incident with v in G, and we define $\{e, e'\}$ to be a part in P(v). Having defined P(v) in the above way for every vertex $v \in V(G)$, we obtain a set of forbidden parts P of G'. With this definition of P, one can easily see that a cycle decomposition D of G', P is good with respect to P if and only if every cycle $C \in D$ corresponds to a cycle in G. We shall first show that G', F has no bad cuts.

By contradiction, we assume that there is a bad cut T and so there is some forbidden part $P \in \mathbf{P}$ such that $2|P \cap T| > |T|$. Since G' is eulerian, |T| is even. Since G is connected, $|T| \ge 2$. By the definition of \mathbf{P} , $|P| \le 2$ and so we have $4 \ge 2|P \cap T| > |T| \ge 2$. It follows that $|P \cap T| = 2 = |T|$. However, this forces that T consists of an edge $e' \in G$ and an edge $e \in X$

which is a duplicate of e', and so G has a cut-edge e', contrary to the assumption that G is 2-edge-connected.

Thus (G', \mathbf{P}) has no bad cuts. Since G has no subgraph contractible to K_5 , G' has no such subgraph either. Thus by Theorem B, G' must have a good cycle decomposition \mathcal{D} with respect to \mathbf{P} . By the definition of \mathbf{P} , each element of this \mathcal{D} corresponds to a cycle in G. This proves Theorem 2. \square

To conclude this note, we indicate that the Petersen graph P_{10} , which can indeed be contracted to a K_5 , does not have this property when $|\mathcal{C}_0| = 2$. In fact, let C_1, C_2 be the two 5-cycles obtained from P_{10} by deleting a perfect matching of P_{10} . Let $C_0 = \{C_1, C_2\}$. Then any cycle 2-cover of P_{10} that contains C_0 as a subfamily would yield a cycle cover of P_{10} of length at most 20, which was proved impossible in [2].

References

- [1] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications, American Elsevier, New York, 1976.
- [2] J.C. Bermond, B. Jackson and F. Jaeger, Shortest coverings of graphs with cycles. J. Combinatorial Theory, Ser. B 35 (1983), 297-308.
- [3] H. Fleischner, Proof of the strong 2-cover conjecture for planar graphs. J. Combinatorial Theory, Ser. B 40 (1986), 229-230.
- [4] H. Fleischner and A. Frank, On cycle decomposition of eulerian graphs.
 J. Combinatorial Theory, Ser. B 50 (1990), 245-253.
- [5] M. Guan and H. Fleischner, On the minimum weighted cycle covering problem for planar graphs. Ars Combinatoria 20 (1985) 61-68.
- [6] F. Jaeger, A survey of the double cycle cover conjecture. Annals of Discrete Mathematics 27 (1985), 1-12.
- [7] C.-Q. Zhang, On compatible cycle decomposition of eulerian graph, submitted.