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ABSTRACT. We show that the edges of a planar 3-connected
graph with n vertices can be covered by at most [(n + 1)/2]
cycles. This proves a special case of a conjecture of Bondy that
the edges of a 2-connected graph can be covered by at most
(2n — 1)/3 cycles.

1 Introduction

In [3] Lai and Lai prove that the edges of every plane triangulation with n
vertices can be covered by at most (2n — 1)/3 cycles. This proves a special
case of a conjecture of Bondy [2] that the edges of every 2-connected graph
with n vertices can be covered by at most (2n — 1)/3 cycles. The plane
triangulations are a subclass of the class of planar 3-connected graphs. We
shall show that the edges of any planar 3-connected graph with n vertices
can be covered by [(n+1)/2] cycles, and that for even n this bound is sharp.

2 Definitions and Notation

All of our graphs are without loops and multiple edges. A cyclein a graph G
is a simple closed curve made up of edges of G. We shall use the well-known
theorem of Menger [4] that if z and y are two vertices of an n-connected
graph then there are n paths from z to y meeting only at z and y.

In this paper we shall use edge shrinking and vertex splitting. We shall
say that a graph G is obtained from a planar graph H by shrinking edge
e if a graph isomorphic to G is obtained by contracting e to a point and
coalescing double edges that bound any resulting 2-sided faces. If H and
G are 3-connected and G is obtained from H by shrinking edge e we call e
a shrinkable edge. The inverse of edge shrinking is vertez splitting. This is
illustrated in Figure 1. When we split a vertex v, one or two edges meeting
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v may also be split (See Figure 1). This gives rise to three types of vertex
splittings depending on how many edges are split. The edges that are split
will be called the splitting edges.
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We shall use the following theorem of Steinitz [5]:

Theorem. The planar 3-connected graphs can be generated from T, the
complete graph on four vertices, by vertex splitting.

It follows that any planar 3-connected graph other than T has a shrink-
able edge.

A graph G is called a refinement of a graph H provided a graph iso-
morphic to G can be obtained by adding vertices to edges of H (the set of
vertices added is allowed to be empty).

An n-wheel is a graph consisting of a cycle with n-edges together with a
vertex that is joined to each vertex of the cycle.
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3 Cycle Coverings

Lemma 1. If G is a planar 3-connected graph that is not T and e is an
edge of G, then there is a shrinkable edge of G independent of (ie. not
sharing a vertex with) e.

Proof: The proof is very similar to the proof of a theorem by the author
in [1]. We shall sketch the proof and the reader can consult [1] for details.

We begin by dualizing. We shall show that given an edge e of the dual
G* of G, there is a removable edge of G* not sharing a common face with e.
Let F and F’ be the two faces of G containing e. If all paths from vertices
of F, other than the vertices of e, return to F before meeting F’ — e then
the vertices of e disconnect G. Thus we may find a path P joining F'—e and
F' — e, giving us a subgraph of G (namely F U F’ U P) that is a refinement
H; of T in G*.

Now we construct a sequence of subgraphs H; such that each H; is ob-
tained from H;_; by adding paths of edges that are in G — H;_,, and such
that each H; is a refinement of a planar 3-connected graph. The paths to
be added are chosen in the following manner. If H;_; has a 2-valent vertex
z, let P be a maximal path in H;_; containing z such that all but the end
vertices of P are 2-valent. If all paths in G — H;_; from 2-valent vertices
of P return to P before meeting any other vertex of H;_1, then G is not
3-connected, thus we can find a path from a 2-valent vertex of P to some
other vertex of H;_; not on P. We add this path to H;_; creating H;,
which is also a refinement of a planar 3-connected graph. We continue in
this way until we reach an H; without 2-valent vertices. If H; = G then
the last path added is the removable edge we seek. If H; is not G, then we
choose a vertex v of H; that meets an edge e of G — H; and consider all
paths in G — H; that begin with e. If there is such a path that ends at a
vertex not joined to v, then we add that path creating H;,,, and continue
as above. If all such paths from all such vertices v end at vertices joined
to v, we add one such path Q. We then consider all paths in G — (H; U Q)
starting at a 2-valent vertex of @ (such a vertex must exist or G has a
double edge). By the above reasoning one such path R must end at some
vertex other than an end vertex of Q. Now we note that since all paths that
we could add to H; connect one vertex of an edge of H; to the other vertex
of that edge, QU R can be regarded as the union of three paths emanating
from a 2-valent vertex of @ and ending at the vertices of a triangular face
F” of H;. We add these three paths creating H;;,. If H;;1 = G then each
of the three edges of F are removable. One of these edges is not on F or
F”. Since we have shown that there is a removable edge not on any face
containing e, duality gives us that there is a shrinkable edge not sharing a
vertex with e. a
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Theorem. If G is a planar 3-connected graph with n vertices then the
edges of G can be covered by at most [(n+ 1)/2] cycles.

Proof: Our proof is by induction on the number of vertices of G. The
induction starts with T', the complete graph on four vertices, for which the
theorem is obvious. Suppose now that G has n > 4 vertices. We choose a
shrinkable edge a’a” and shrink it to the vertex a producing a graph G’.
Next by Lemma 1 we may choose a shrinkable edge b'” independent of an

. edge meeting a in G’, and thus missing ¢ in G’ (provided G’ is not T, a case
we shall treat separately). We shrink b'b” to a vertex b producing graph
G".

By induction G” can be covered by at most [(n — 1)/2] cycles. We shall
show that we can split vertices a and b to produce G, extend certain cycles
that passed through a and b, and find a new cycle that contains the edges
of G that are not covered by the existing and extended cycles from G”.

We begin by looking at the ways that we may extend cycles that pass
through a. We shall first treat the case where both splitting are of type
I. Figure2a shows the three ways that cycles may cover the two splitting
edges meeting a. Figure 2b shows ways that we may extend these cycles.
In each case there are edges that are not covered by the extended cycles.
We shall call these the uncovered edges. For a given way of extending the
cycles there is a corresponding set of uncovered edges (shown in Figure 2¢
as heavy edges). A given covering of the splitting edges together with a
set of uncovered edges will be called an uncovered edge configuration (or
UEC). In Figure 2c the label under the uncovered edges is the label for the
corresponding UEC.

koo 00
kD00 0909
Food 999

Figure 2a Figure 2b Figure 2c
{the cycles) (the cycle (the uncovered
extensions) edges)
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We now add two vertices to G, producing a graph H. One new vertex,
u, we will join to vertices z, y, (see Figure 2), and a point p between o’
and a” on edge a’e” (the “point” p now becomes the vertex p). Let the
other two vertices of the triangular faces containing b’ and b” be z and w.
The second new vertex, v, we join to z, w, and a point g between b’ and
b" on edge b'b” (similarly, g becomes a vertex). It is easily verified that
H is 3-connected. It follows that in H there are three paths P, P; and
Ps joining u and v and meeting only at u and v. We shall be interested
only in the portions Q;, Q2 and Qs, respectively, joining the vertex set
Vi = {d’,a", z,y} to the vertex set Vo = {b’,b”, z,w}. It should be noted
that some vertices of V; can be the same as vertices in V2, in which case
some of the Q;’s would just be those vertices. Although the sets V; and
V, can have nonempty intersection we note that our choosing b'6” to miss
a prevents either of the triangles determined by vertices in V; from being
the same faces as any triangles determined by the set V3. Let K; be the
subgraph of G consisting of the vertices in V; and the edges a'a”, o'z, a'y,
a"z and a”y. Let K3 be the similarly constructed subgraph using vertices
of V,.

For each UEC we wish to construct a cycle consisting of two of the Q;’s,
a path through K; covering the uncovered edges of that subgraph, and a
path through K2 covering the uncovered edges of that subgraph.

First we shall consider the case where K; and K» have no vertices in
common. We observe that if two of the Q;’s meet K; at z and y, then
for each type of UEC there is a path joining the two Q;’s which covers the
uncovered edges of K. If two Q;’s meet two consecutive vertices on the
boundary cycle of K, for example vertices z and a”, then for some but
not all of the UEC’s there is such a covering path. Note, however, that
for each UEC that does not admit such a path, one can change to another
cycle extension and get a UEC that admits a covering path. For example,
if two Q;’s meet x and a” then no such path will cover the uncovered edges
in UEC C3, but we can change the cycle extension to get the UEC C2, and
we see that now there is a path through K;, joining the @;’s, and covering
the uncovered edges.

We now see that if two Q;’s meet K; at z and y, and do not meet K,
at b’ and b”, that these two paths may be extended to cycles covering
the uncovered edges either directly or by means of a change in the cycle
extensions at K. If the two Q;’s do meet K> at b and b” then we take the
Q; meeting z and the third path meeting K; and observe that these two
paths meet consecutive vertices on the bounding cycles of both K; and K3
and thus we can extend the paths to cycles covering the uncovered edges.

Next we have the case where we don’t have paths meeting both = and y,
and by symmetry we don’t have paths meeting both z and w. In this case
it is easy to see that we can find two paths that meet consecutive vertices
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on the bounding cycles of both K; and K>, and thus the covering cycle can
be found.

If G’ =T, then G must be one of the two planar 3-connected graphs with
five vertices (Figure 12). The theorem is easily verified in these two cases.

We need now to consider what happens if K; and K, have nonempty
intersection, for this might cause our choice of paths through K; and Kj to
create a cycle that intersects itself (and thus it would not be a cycle). By
the choice of b, we have that {a’,a”}N{V’,b"} is empty. Cycle modifications
are simply choices of whether the modified path passes through a’, or a”
(or ' or b”) and thus if a cycle modification caused a cycle to intersect
itself, it would have intersected itself before the two vertices were split.
We do, however, have to treat several cases in the construction of the new
cycle. There are nine ways that K; and K can intersect. These are shown
in Figures 3-11. In Figure 3 the new circuit is indicated by dotted lines.
Every covering by the original circuits admits an extension that covers e;
and e; in K; (See Figure). After the circuits have been extended for K
we may then choose an extension in K> (based on the circuits created by
the extension for K;).

Figure 3 Figure 4

In Figure 4 we choose the new circuit as shown, and as in the argument
for Figure 3, the extensions exist to cover the other edges. In Figure 5
we choose the circuit indicated in Figure 5A. If there is no extension that
covers e; and ez then we choose the circuit indicated in Figure 5B and the
necessary extension will exist. We can then find an extension for K.

In Figures 6 and 7, the vertex z must be one of the Q;’s. For K the
path z and any other path will serve for the two connecting paths, thus
there will be a pair of connecting paths one of which is x, and the paths
through K; and K5 will not cause the new circuit to intersect itself. In
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figures 8, 9 and 10, z and y must be two of the paths. If we choose these
for the connecting paths then again the new cycle will not intersect itself.

5A 5B
Figure 5
' X
z
y
y .
v w
Figure 6 Figure 7

The configuration in Figure 11 presents a problem. There are no choices
for the paths that will work. In this case we observe that the graph L
consisting of the cycle C made up of edges e;, e2 and e3 together with the
vertices and edges enclosed by C will be a planar 3-connected graph. By
Lemma 1 we can choose a removable edge in L independent of e3. We use
that as our second removable edge. If this choice also creates a configuration
as in Figure 11, we repeat this process. The new graph L will be a proper
subgraph of the graph L in the first application of this argument, thus the
process eventually ends.
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Figure 10 Figure 11
Figure 12

Similar but much simpler arguments hold if there are splittings of type II
or III involved. If a splitting of type II is involved we take three paths that
meet the vertices of the triangle that is produced. This is accomplished by
joining the vertex z to each vertex of the triangle. If a splitting of type III
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is involved we choose three paths from @’a” in the following way. Let a’a"’
be an edge meeting e. We join the new vertex z to the three vertices o,
a” and a”. Then we take our three paths from z to w. One of these paths
will pass through a”’. We delete the edge from z to o’ and substitute
a’a™. Now we have three paths from a’e’” to the other configuration with
one of the paths containing a”. The argument now is similar to the above
argument.

In each case the addition of one cycle gives us a covering of the edges
and we have used at most [(n + 1)/2] cycles. a

We note that the (2k+1)-wheel requires k+1 cycles to cover the (2k+1)-
valent vertex, thus for even n the bound is sharp. Using the 2k-wheels one
sees that the bound is within one of being sharp for odd n. The second
graph in Figure 12 shows that the bound is sharp for n = 5.
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