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ABSTRACT. In this paper we obtain further results on the Mul-
tiplier Conjecture for the case n = 2n, using our method.

First Multiplier Theorem. Let D be an abelian (v, k, \)-difference set,
and let p be a prime dividingn=k—A butnot v. Ifp> A thenpisa
numerical multiplier of D.

Multiplier Conjecture. The First Multiplier Theorem holds without the
assumption that p > A.

Second Multiplier Theorem. Let D be a (v, k, A)-difference set in an
abelian group G, and let vy be the ezponent of G. Let n; be a divisor of n
such that (ny,v) = 1, and n; > A. Suppose that t is an integer such that
for every prime divisor p of n;, there ezists a nonnegative integer j with
t = p’( mod v). Then t is a numerical multiplier of D.

Virtually all further multiplier theorems have arisen in an attempt to
weaken the condition p > A or n; > A.

In 1992 We [11] presented a method of studying the Multiplier Conjec-
ture, where one of the main theorems is the following:

Theorem 1. Let D be a (v, k, A)-difference set in an abelian group G, and
let vo be the exponent of G. Set n = k — A. Let n = dny(ny > 1) and
(n1,v) = 1. Suppose that t is an integer such that for every prime divisor
p of my, there exists a nonnegative integer j such that p’ = ¢( mod vp).
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Then t is a numerical multipler of D if and only if no nontrivial solution £
of the CH-equations of d for G satisfies

DODEY = nye 4+ 2G. (1)

The CH-equations of d for G are

Z Cg = dv (2)

9€G
g =4d?.1, (3)

where £ = }° g9 € ZG. Obviously £ = dg (Vg € G ) are solutions,
they are called trivial. The other solutions are called nontrivial.

The equation (1) is well-known. However, our method not only finds the
conditions such that the equations (2) and (3) have only trivial solutions,
but also further finds nontrivial solutions, and studies the conditions under
which no nontrivial solutions satisfies the equation (1). Hence we are abel
to weaken some assumptions under which ¢ is a numerical multiplier.

In this paper we prove the following theorem 2:

Theorem 2. Let n = 2n;. If 7?|v, then the Second Multiplier Theorem
holds without the assumption ny > A.

Proof: The case 2|n, is trivial (replace n; by n). Now assume that n, is
odd, thus v must be odd.

We [11] have found only possible nontrivial solutions of CH-equations of
2 for G which have the form:

€ =gr(-1+gu+92+g?),

where g, is any element of order 7, and g, is any element in G.
Now assume that 72jv. We denote the order of 2 modulo 7° by Ordy.(2)
. It is easy to see that Ordze(2) = 3-7°71, and 5&T ) = 2, where e > 1.
Let

G=<g, >X<g>%xx<g,>, 4)

where the order of g;, is p®,1 <i < s and p; =7, and g, = g;,”" . Let
w; be a primitive p{**-th root of unity,1 <i < s. Let gi+— x; (0 < i < v-—1
) be an isomorphism of G onto its complex character group @, where xp is
the principal character of G.

Since 72|, there are only two possible cases: a; > 2, or o = 1 and
p2=T.

Case 1. o) > 2. We have x;, (gu) = w1 ™"

1, and xu(gu) = 1.
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Set e =wl™ ™", and ¢ = w;. Let B denote the ring of algebraic integers
in Q(¢).

We have (x4 (£)) = (2). It is not difficult to show that (xi, (£)) # (2).

Since the ideal (2) is unramified in Q(¢) and zET)x = 2, we have
(2) = E, E,, where the E!s are distinct prime ideals of B.

It is not difficult to show that for x; €< x;, > and i # 0 we have

Oa(DO))0a(DED)) = 0 By ) Biy (1), (5)

where {Ei1 , E;,} = {El, Ez}

Since Gal(Q(¢)/Q) transitively acts on @ = {Ej, Ep}, thus there is a
homomorphism of Gal(Q(¢)/Q) into the symmetric group S,. We denote
the homomorphic image of o; by 6;. Then there are only two possible cases:
gt=1,org; = (12)

Suppose that &, = 1. If £ satisfies the equation (1), then we have

(e (D9))(xa, (D)) = (1) (ar, (€)) # (m1)(2).

This contradicts the equation (5).
Suppose that ¢, = (12). If £ satisfies the equation (1), then we have

(xu(DD)) (D)) = (n1)(cu(8)) = (r1)(2)-

This contradicts the equation (5).
Hence in case 1 £ does not satisfy (1).
Case 2. ay=1landpy =7.
Set gi,' = g;,7"*"". We have xu(gu) = w1, and x1,(gu) = 1.
It is similar to the case 1 that £ does not satisfy (1).
By theorem 1 ¢ is a numerical multiplier of D. a

Remark.

(1) Theorem 2 improves Newman, and McFarland’s results which re-
quired (v,7) = 1; Theorem 2 also improves Turyn’s result which
required that ¢ is a quadratic residue modulo 7 for 7|v.

(2) Suppose that there exists an abelian (v, k, A)-difference set with n =
2n, and n; is odd and (n,v) = 1, then we have the following results:

(i) let p be any prime divisor of v. Then Ord,(2) must be odd. It follows
that p = 1( mod 8) or p = —1( mod 8). If p = 1( mod 8), then
Ordy(2)| %=, where 2¢||p — 1.

(ii) If 7||v, and v has a prime divisor p = 1( mod 8) or p = —1( mod 8)
(p # 7)) such that Ord,(t) is even, then ¢ does not satisfy (1). Thus
t is a numerical multiplier of D.
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If ¢t is a quadratic nonresidue modulo 7, then under the assumptions of
(ii) no difference set exists by theorem 3 of [7].

Application.

Using theorem 2 we can show that there is no (1519, 507, 169)-difference
set D. Since the Sylow 7-subgroup and Sylow 31-subgroup of a group of
order 1519 must be normal subgroups, thus a group G of order 1519 must
be abelian. Here n = 2n; and n; = 132." By theorem 2, 13 is a numerical
multiplier of D since 72v. Since Ordya.3;(13) = 210 and Ordy.3:(13) = 30,
by Corollary 7.4 of [3] we get that there is no (1519, 507, 169)-difference
setinG=Z7z XZ31 0!'G=Z7XZ7XZ:;1.

Using Second Multiplier Theorem one can not rule out the existence of
above difference set since from it we only know that 8 is a multiplier of D,
however, Ordya.3,(8) = 35, and Ordy.31(8) = 5, these are odd.

Using Turyn’ result one can not rule out the existence of above difference
set since 13 is a quadratic nonresidue modulo 7.

Using Mann test or Lander’s theorem 4.4 one can not rule out the ex-
istence of above difference set since Ordy(2) = 3 and Ordz;(2) = 5 and
132%||n.

Using Lander’s theorem 4.5 one also can rule out the existence of above
difference set since 131% = —1( mod 72- 31) and 135 = —1( mod 7 - 31)
but 13|n.
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