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Abstract

Given a graph G = (V, E) and a vertex subset D C V , a subset
S C V is said to realize ”parity assignment” D if for each vertex
v € V with closed neighborhood N[v] we have that | N[v]n S | is
odd if and only if v € D. Graph G is called all parity realizable if
every parity assignment D is realizable. This paper presents some
examples and provides a constructive characterization of all parity
realizable trees.

1 Introduction

For a graph G = (V, E) the open neighborhood of vertex v € V(G) is the
set of vertices adjacent to v, N(v) = {w € V(G) : vw € E(G)}, and the
closed neighborhood is N[v] = N(v) U {v}.

Theorem 1 (Sutner[8]) For every graph G there ezists a subset S C V(G)
such that | N[v]JN S| is odd for everyv € V.

We first describe Sutner’s theorem as a result in domination theory. The
standard domination problem for a graph G = (V, E) is to find a (minimum
cardinality) set S C V(G) such that each vertex is either in S or adjacent
to at least one vertex in S, that is, each v € V(G) has | N[v]nS | > 1. (See,
for example, [3] which is an entire issue of Discrete M athematics devoted
to domination theory.) More generally, as in Jacobson and Peters [4] S is a
k-dominating set if | N[v]NS | > & for all v € V. Even more generally, for
V(G) = {v1,v2,...,v,} to each v; assign a set R; of nonnegative integers,
and we can ask if there exists a set S C V(G) such that | N[v;]NS | € R;
for 1 < 7 < n. For standard domination every R; = {1,2,...,n} and clearly
there always exists a dominating set, for example V itself; for k-domination
every R; = {k,k+1,...,n} and there exists a k-dominating set if and only
if the minimum degree is at least £ — 1; for Sutner’s odd parity problem
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every R; = {1,3,5,..}, and the not so obvious result is that a suitable S
can always be found.

Letting N be the closed neighborhood matrix (the binary n-by-n matrix
with Nj; = 1 if either i = j or v;v; € E(G) and N;; = 0 otherwise), and
letting 1 be the all 1’s n-tuple, the equation N - X = 1 mod 2 can be solved
in polynomial time. Each solution vector X is the characteristic function
of a set S for Sutner’s odd parity problem. Recently Dawes [2] showed how
. to find in linear time a minimum cardinality set S for Sutner’s problem
when the graph is a tree. (While Sutner [8] observed that the problem of
determining the minimum cardinality of an all-odd parity solution is NP-
Hard for arbitrary graphs.) In [1] we presented a linear time algorithm for
a minimum cardinality solution for the more general class of series-parallel
graphs and for an arbitrary parity assignment. For an arbitrary parity
assignment each R; is allowed to be either {1,3,5,7,...} or {0,2,4,6,...}.

ol S

T2

Figure 1: Tree T1 is APR, but T2 is not.

In (1], a graph G was defined to be all parity realizable (APR) if for any
subset D C V(G) with R; = {1,3,5, ...} for v; € D and R; = {0,2,4,6,...}
for v; € D there exists a subset S C V(G) such that | N[y;] N S | € R; for
1 <'i £ n. Such a set S will be called a D-parity set, and specifically an
all-even parity set is a Q-parity set and all-odd parity set is a V(G)-parity
set. Letting N1 and N2 be the closed neighborhood matrices for trees 71
and T2, respectively, of Figure 1, one can verify that N1 has rank five over
Z3 so N1-X = B always has a unique binary solution vector X for any
binary n-tuple B, and T'1 is APR. That this is not the case for T2 is easily
deduced from the following.

Theorem 2 [1] A graph G is APR if and only if the only all-even parity
set is S = 0 (that is, the only solution with every R; = {0,2,4,,6,...} is the
empty set S =0 so that | N[v;]NS| =0 for1<i<n).

Corollary 1 If every vertez in G has odd degree then G is non-APR.
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Proof. It suffices to note that $ = V(G) would a non-empty all-even parity
set.

By Corollary 1 tree T2 is not APR. The next theorem generalizes the
result for tree T'1.

Theorem 3 Iftree T has ezactly one vertez of even degree, then T is APR.

Proof. Assume tree T is a smallest possible counterexample with the
degree deg(v) even and deg(u) odd for all u € V(T') with u # v. Let S be
a non-empty all-even parity set. Such a set S with | N[w]N S | even for
every w € V(T) exists by Theorem 2.

First, suppose v & S. Let v’ be a vertex in S closest to v with v/, w, ..., v
being the v/ —v path in T (possibly having w = v). Then the subtree formed
by the component T—v'w containing v’ would be a smaller counterexample.
Thus v € S. Consider T as being rooted at v. Because v € S, deg(v) is
even, and | N[vJN S | is even, it follows that some child of v, say v, is
not in S. Because | N[v;] NS | is even, some child of v; is in S, say v, is
such a vertex. The component T — vyvs containing v, would be a smaller
counterexample, completing the proof.

Oo—O0—0C—-°0
P4 T3

Figure 2: Path P4 is APR; tree T3 is not.

Proposition 1 [1,8] Path P, is APR if and only if n # 3k +2, k> 0.
With reference to Figure 2, note that path P4 and tree T3 have exactly

two vertices of even degree, but Py is APR and T3 is not. (The darkened
vertices form a non-empty all-even parity set of T3.)

2 Some Examples
In this section, we consider some special classes of trees, namely, paths,

spiders, caterpillars, and complete k-ary trees, and obtain characterizations
of APR trees (or equivalently of non-APR trees) in each class.
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2.1 Paths

A path P, on n vertices may be denoted by the sequence (vy,vs,...,v,)
of vertices along the path. For paths P; = (u1,u2,...,u4;) and P; =
(v1,%2,...,7;) by Pi.z.P; we denote the path (uy,...,u;, z,v1,..., ;).

Proposition 2 The set P* of all non-APR paths is defined as follows.
1) P, € P*.
. 2) If P; and Pj, not necessarily distinct, are in P* then so is P;.x.P;.

Proof. First, let S be a non-empty all-even parity set for P;. If an end
point, say u,, satisfies u; ¢€ S, then let h be the smallest value such that
up € S. Then, we have | N[up_1] NS |= 1, a contradiction. Thus,
{u1,ui} C S. Clearly P, is in P*. The statement 2) follows, from Theorem
2, by noting that if S; and S; are non-empty all-even parity sets of P; and
P;, respectively, then S; U S; contains {u;, v} and is a non-empty all-even
parity set of P;.z.P;.

To see that no other path is in P*, let P, be a path other than P, with
S being its non-empty all-even parity set. Since n > 2, S # V(P,). Let
v € S be an internal vertex of P,. Then P, — v consists of two paths, say
P; and Pj, each of which is non-APR with SNV(P;) and SNV(P;) being
respective non-empty all-even parity sets, thus P, = P;.v.P;, completing
the proof.

By noting that P, € P* if and only if n = 3k + 2, k > 0, it follows that
a path P, is APR if and only if n # 2 mod 3. We observe that two-thirds
of all paths are APR.

2.2 Spiders

A spider T;p = (v, Pni1, Pn2,..., Pax), k > 2, is a tree obtained from paths
Py, Paz,. .., Pak, where Pp; = (i1, ti2, . . -, i(ni)), by adding vertex v and
the edges (v, u;1) fori = 1,2,..., k. The APR spiders may be characterized
in terms of the sequence (nl,n2,...,nk) of path lengths.

Proposition 3 Let T,, = (v, Pn1, Pn2,...,Pak), k > 2, be a spider, and
lett;=|{j:nj=imod 3} |,0<1i<2 ThenT,, is non-APR if and only
if either 1) 12 > 2, or 2)t2 =0 and ty is odd.

Proof. Let Tsp be non-APR with S being a non-empty all-even parity set.
Ifvis not in S, then S; = SNV(Py),1 < i <k, is an all-even parity
set of P,;. Further, by Proposition 1, S; can be non-empty if and only
if ni = 2mod 3. Moreover, the parity of v being even requires that the
number of non-empty S;’s must necessarily be even, hence ¢, > 2.
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If v is in S, then consider the vertex u;; along the path Pyn;. If uj1 € S
and ni > 1, then the parity of u;; is even requires that u;2 not be in S.
Now (T,p — ui2) contains a subpath P of P,; which is non-APR, hence
ni— 2 =2mod 3 or ni = 1 mod 3. Since the number of such paths must
necessarily be odd so that parity of v is even, we have that t; is odd. If
;) is not in S, then ni > 1 (since the parity of u;; is even) and (Typ — ;1)
contains a subpath P of P,; which is non-APR. Hence ni — 1 = 2 mod 3 or
ni = 0 mod 3. This implies that ¢t; = 0.

Conversely, if t3 > 2, and if P,; and P,y are paths, nl and n2 each
equals 2 mod 3, with S; and S, being non-empty all-even parity sets of
P,; and P,3, respectively, then S; U Sz is an all-even parity set of Typ.
If t = 0 and ¢, is odd, then let S; denote the non-empty all-even parity
set of (v, ui1, Uiz, . .., Uins)) if ni = 1 mod 3, and of (uiz.ui3, ..., Ui(ai)) if
ni = 0 mod 3. Then it is easy to see that the union of these S;’s is a non-
empty all-even parity set of Typ. The conclusion then follows from Theorem
2.

Equivalently, a spider is APR if and only if £ = 1, 0r ¢ = 0 and ¢; is
even. Thus, for large k, most spiders are not APR.

2.3 Caterpillars

A caterpillar T, is a tree in which the internal vertices induce a path. The
path is called the spine of the caterpillar (as in [5,6,7]). Let (u1,u2,...,u)
be the spine of T, and let (n1,n2,...,nx) denote the sequence where n;
denotes the number of end vertices adjacent to vertex u; of the spine. We
observe that the only caterpillars with all vertices of odd degrees are those
of the forms illustrated by T3 and T»;,j > 0, in Figure 3.

J
~ S ™~
odd even odd odd odd even

Ty Ta e j nonnegative.

Figure 3: Caterpillars with all vertices of odd degree.

For caterpillars 7.; and 7., with spines (uy,uz,...,ur1) and
(vi,v2,...,0k2) by Te1.2.Tca we denote a caterpillar with spine
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(u1,u2,..., k1, Z,v1,v2,...,vk2) in which the number of end vertices adja-
cent to vertex z can be arbitrary and the number of end vertices adjacent
to each u; and each vg is the same as in T,) and T2, respectively.

Proposition 4 The set T, of all non-APR caterpillars is defined by:
1) each tree of type Ty or T3 j,j > 0, is in T, and
2) if Tey and Teo are in T, then so is T,y .2.T,.

Proof. Since every caterpillar T, of type T} or Tz ;, j > 0, has all vertices
of odd degree, by Corollary 1, it follows that 7, is non-APR. Next, let T%;
and T¢2 be non-APR with non-empty all-even parity sets being S; and S»,
respectively. Note that if T¢; is of type T) then the center vertex is in Sj,
and in general the end points of the spine of T,; can be seen to be in ;.
Thus, S; US; is a non-empty all-even parity set of T¢;.z.T¢2. The conclusion
then follows from Theorem 2.

To see that no other caterpillar is a member of T, consider T, in T
which is not of type T} or T j, j > 0. Let S be a non-empty all-even parity
set of T¢, then clearly S # V(T.). Let the spine of T, be (uy,us,..., ux).
We observe that an end vertex v of T, is in S if and only if the vertex u;,
1 < i < k, on the spine adjacent to v is in S. Further, as noted, u; and
uz both must be in S. Because S # Vr_, for some i,1 < i < k, u; is not in
S. Then T, — u; consists of two caterpillars T¢; and T2, and possibly some
isolated vertices. Further S; = SN V/(T.;) is a non-empty all-even parity
set of Tpj, j = 1,2. Hence, by Theorem 2, each Ti; is non-APR. Thus,
T. = T.1.u;.T,2, completing the proof.

With a T, we.can associate a parity sequence (pi,p2, ..., pr) where p;
is even or odd depending on whether the number of end vertices adjacent
to vertex u; on its spine is even or odd. There are 2¥ parity sequences of
length k. The number Aj of these parity sequences which correspond to
non-APR caterpillars satisfies the following recurrences: A; = A; = 1,
and Ay = 2A;_2 + 2A4x_3 + ...+ 2A4A,. It is straightforward to show
that 4; = (2% £1)/3. ‘

2.4 K-ary Trees

A k-ary tree, k > 2, is a rooted tree in which the root vertex has k children
and every other vertex is either a leaf vertex or has k children.

Proposition 5 Every k-ary iree with k even is APR.

Proof. The proposition follows from Theorem 3 by noting that if k is even
then a k-ary tree has exactly one vertex of even degree, namely, the root.
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The level L(v) of a vertex v in a rooted tree is defined as follows. If v
is the root vertex then L(v) = 1, otherwise L(v) = L(parent(v)) + 1.
The depth of a rooted tree is the maximum level of its leaf vertices. Note
that the depth of a k-ary tree is at least 2. A k-ary tree of depth d is called
complete if 1) every leaf vertex exists at level d — 1 or d, and 2) if d > 2,
then for each vertex, except possibly one, at level d — 2 it is the case that
all its children are leaf vertices, or each of its children has k children.

(a) Exactly one vertex (b) The number of leaf vertices
of even degree. at level 3 is at least k.

Figure 4: Complete k-ary tree with odd k and depth 3.

Proposition 6 A complete k-ary tree T with k > 2 is APR if and only if
it contains ezactly one verter of even degree.

Proof. If k is even then the conclusion follows from Proposition 5. Assume
k is odd (k > 3). The only complete k-ary tree with exactly one vertex of
even degree is as shown in Figure 4a, which is APR by Theorem 3.

If d = 2, then every vertex in T has odd degree, hence T is not APR.
Ifd = 3 and the number of leaf vertices at depth 3 is > k, then T is
not APR as can be seen in Figure 4b where the darkened vertices form an
all-even parity set.

If d > 4, then observe that for a complete k-ary tree T there exists two
vertices z and y both at level d — 1 or d — 2 with parent(z) = parent(y),
and each of  and y has k children which are leaves of T'. It is easy to
see that z, y and all their children comprise an all-even parity set of T,
completing the proof.

3 APR Trees

We conclude with a constructive characterization of APR trees. Note that
a graph G is APR if and only if for each subset D C V(G) there is a unique
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D-parity set S. Equivalently, no two of the 2" distinct subsets of V(G) are
D-parity sets for the same D. By Theorem 2, this is equivalent to having
the empty set § as the unique all-even parity set. For each Y C V(G) let
ODS(Y) = {ve V(G):| N[v]NnY | is odd}, so that Y is an ODS(Y)-
parity set.

The proof of Theorem 2 in [1] can be easily strengthened to prove the
next theorem.

Theorem 4 If S C V(G) is a D-parity set then the number of D-parity
sels is the same as the number of all-even parily sets.

Let (T, ;) denote a tree T; with a designated vertex z; € V(T}). If T}
is APR we let X; denote the unique vertex set with ODS(X;) = {z;}, so
that | N[v]N X; | is odd if and only if v = ;.

Definition 1 Assume Ty and T> are APR and for (T, z1) we have z, ¢
X1. (Note that for (T3, z2), =2 might or might not be in X,.) The tree
T = ThuTy, + =122 formed from the disjoint union of Ty and Tb
by adding edge z,z2 is said o be obtained from (T1,z,) and (T3, z2) by a
TYPE 1 operation.

Definition 2 Given (T1,z1), (T2,%2),..., (T2r, z2x) where T; is APR and
z; € X; forl1 < i< 2k, thetreeT** = TYUTU...UTy: + v +
1V + Tov + ...+ z2xv formed from the disjoint union of T;’s by adding
vertez v and edges vz;, for i = 1,2,...,2k, is said 1o be oblained from
(T1,21), (T2,22),...,(T2k,z2k) by @ TYPE 2 operation.

Proposition 7 If ) and T> are APR and T* is the tree obilained from
(T1,21) and (T2, z2) by a TYPE 1 operation, then T* is also APR.

Proof. Assume S C V(T™) is a non-empty all-even parity set. Let S; =
SNV(T) fori = 1,2. If SN {x1,z2} = @ we note that at least one
S; is non-empty, and if S; # 0 then S; is a non-empty all-even parity
set for T;, a contradiction because T; is APR. If | SN {z;,z2} | = 1 say
SN{z1,z2} = {z:}, then S; is a non-empty all-even parity set for the APR
tree T;, a contradiction. Finally, assume | SN {z;,z2} | = 2, then z; € S
and z; € X; and ODS(S;) = {z1} = ODS(X,), again a contradiction
because T; is APR.

Proposition 8 If T},T3,...,Tor are APR (with k > 1) and T** is the
tree obtained from 1), T, ...,Tor by a TYPE 2 operation, then T** is also
APR.

Proof. Assume S C V(T™*) is a non-empty all-even parity set. Let S; =



SNV (T;). v ¢S, then some S; # 0, and we would have a non-empty all-
even parity set S; for APR tree T;, a contradiction. If v € S then, because
| N[v]NS | is even, at least one z; ¢ S;. Now S; and X; are distinct subsets
of V(T;) with ODS(S;) = {z:} = ODS(X;), a contradiction because T;
is APR.

Theorem 5 Tree T is APR if and only if T is Ky or T can be oblained
from a set of APR trees by a TYPE 1 or TYPE 2 operation.

Proof. By two previous propositions every tree obtained by a TYPE 1 or
TYPE 2 operation is APR.

We now show that every APR tree on p > 1 vertices can be obtained
by a TYPE 1 or TYPE 2 operation. Note that star K ,, is APR if and
only if m is even, and K} 2 is obtainable from 2k copies of K, by a TYPE
2 operation. Assume T is an APR tree of diameter at least three, and let
z be a vertex of degree deg(z) = d + 1 which is adjacent to d end vertices.

Case 1: d is odd.

Letd = 2k+1, with N(z) = {w,v1,vs,...,v2k41} and deg(v;) = 1
for 1 < i < 2k+1. Because T is APR there is a unique vertex set Y C V(T')
such that ODS(Y) = {w,v1,va,...,v2141}. Figure 5 illustrates the two
cases corresponding to whether or not « is in Y which are considered next.

V1

v2

V2k+1

(@xisnotin Y. ®)xisin Y.

Figure 5: Tree T with deg(x) even and set Y with ODS(Y) = N(x).

First, suppose ¢ ¢ Y. Because z € Y and v; € ODS(Y), v; € Y for
1< i< 2k+1. Further, z ¢ ODS(Y) and z ¢ Y implies that w € Y. Let
Tw and T be the components of T'— wz containing w and z, respectively.
Let Y1 = YNV(Ty), then in T,, we have w € Y1 and ODS(Y1) = {w}.
If T, is not APR then, applying Theorem 2, let Y2 C V(T,,) with Y1 #Y2
and ODS(Y1) = ODS(Y2) = {w}, a contradiction; and if w ¢ Y2 then
Y2U {z,v1,vs,...,v2k+1} would be a non-empty all-even parity set of T,
again a contradiction. Thus, T, is APR and T can be obtained from T,
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and 2k + 1 copies of K; by a TYPE 2 operation.

Secondly, suppose z € Y. Let T; = T—wv;, and assume T} is not APR.
Let S be a non-empty all-even parity set of 7. If ¢ € S then S would
also be a non-empty all-even parity set of T', contradicting the fact that T
is APR. Thus z € S and if k£ > 1 then {vs,vs,...,v2k41} C S. Also, w
is an element of S. But now we have that in T, Y1 = (S -=z)U {v:1}
has ODS(Y1) = {w,v;,v2,...,v2k41}. Thus, we havein T, Y # Y1 and
ODS(Y) = ODS(Y1), a contradiction. Therefore T} is APR.

Also because z € Y and ODS(Y) = {w,v1,v2,...v2k41},€ach v; € Y
for 1 < i< 2+4+1land weY. Nowfor X; = Y — {2} we have
ODS(X,) ={z} in T\ with ¢ € X,. Thus, T can be obtained from T} and
T, with V(T32) = {v:1}, by a TYPE 1 operation.

Case 2: d is even.

Let d = 2k with N(z) = {w,v1,vs,...,v2} with deg(v;) = 1 for
1 < i< 2k. Again let Y be the unique subset of V(T) with ODS(Y) =
{w,v1,v2,...,v2x}. Let T,, and T, be the components of T' — wz, and
let Y1 = Y NV(T,). Note that T, is APR. We consider two cases
corresponding to whether or not z is in Y, as illusrated in Figure 6.

Vi

va

C v2k

(@xisnotinY

Figure 6: Tree T with deg(x) odd and set Y with ODS(Y) = N(x).

First, suppose £ € Y. Then v; € Y for 1 < i< 2k and w ¢ Y. Now
w @Y1 andin T, we have ODS(Y1) = {w}. If T,, is not APR then there
exits Y2 C V(T,), Y2 # Y1 with ODS(Y1) = ODS(Y2) = {w}. If
w € Y2 then in T' we have ODS(Y2) = ODS(Y 1), a contradiction; and if
w € Y2 then Y2U {z, v2,v2,...,v2:} would be a non-empty all-even parity
set for T, again a contradiction. Thus T, is APR, and T can be obtained
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from T;, and T, by a TYPE 1 operation.

Second, suppose £ € Y. Then each v; € Y and w € Y. Further, | N(w)N
Y1 |is odd, so in T we have N(w) = {z,y1,¥2,--.,¥2j+1,21,22,..-, 2t}
with gy € Y for 1 < i< 2j+1and z; €Y for1 < i<t Let Ty,
(respectively T;,;) be the component of T,, — w containing y; (respectively
2;). To see that T, is APR, assume to the contrary. Let Y* = Y NV(Ty,),
then y; € Y* and ODS(Y"*) = {u:}. Since T}, is assumed to be not APR
there is Y** C V(Ty,), Y* # Y**, with ODS(Y*) = ODS(Y**) = {%}.
If y; is also in Y** then ODS(Y*) = ODS(Y**) in T, a contradiction;
if y; is not in Y** then Y** U(Y — Y*) U {v;,v3,...,v2¢} is a non-empty
all-even parity set of T, a contradiction. Thus, Ty, is APR and likewise
one can show that each T}, is also APR with z; ¢ Z;, Z; C V(T;) and
ODS(Z; = {z}. Let Tp, = T — (V(T3,) UV(T:,) U...UV(T:,)), and
for 1 < i<t let T; be the subtree of T with V(T;) = V(T;-1) UV(T3,).
Then Tp can be obtained from APR trees T, Ty,, ..., Ty,,,, by a TYPE 2
operation, and each T; with ¢ > 1 can be obtained from APR trees T}; and
T;~, by a TYPE 1 operation, completing the proof.
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