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ABSTRACT. A simple graph G with a perfect matching is said to
be k-eztendable if for every set M of k independent edges, there
exists a perfect matching in G containing all the edgesof M. In
an earlier paper, we characterized (n — 2)-extendable graphs on
2n > 10 vertices. In this paper we complete the characterization
by resolving the remaining small cases of 2n = 6 and 8. In
addition, the subclass of k-extendable graphs that are “critical”
and “minimal” are determined.

1 Introduction

This paper is a continuation of Ananchuen and Caccetta [3]; we assume
familiarity with that paper. Throughout this paper G is a simple graph on
2n vertices having a perfect matching. For 1 <k < n—1, G is k-eztendable
if for every matching M in G of size k there exists a perfect matching in
G containing all the edges of M. We say that G is minimally (critically)
k-eztendable or simply k-minimal (k-critical) if it is k-extendable but G —uv
(G + uv) is not k-extendable for every edge uv of G (uv ¢ E(G)).

Observe that a cycle Cay, of order 2n > 6 is 1-minimal but not 1-critical.
The complete graph K2, and the complete bipartite graph Kn,» with bipar-
titioning sets of order n are each k-extendable for 1 < k < n — 1. Further,
these graphs are k-critical. However, Ko, and Ky n are k-minimal if and
only if k= n—1 (see Ananchuen and Caccetta [2]). In fact, Ky,,» and K3,
are the only (n — 1)-extendable graphs for n > 2. The situation is not so
simple for other values of k. In [3], we characterized (n — 2)-extendable
graphs for n > 5. Our result is:
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Theorem 1.1. Let G be a graph on 2n > 10 vertices. Then G is (n — 2)-
extendable if and only if G:
(i) iS Kn'n or Kzn, or

(ii) is a bipartite graph with a perfect matching and minimum degree
n—-1,or

(iii) has minimum degree 2n — 3 and independence number at most 2, or
(iv) has minimum degree 2n — 2.

a
In addition, for (n — 2)-minimally extendable graphs we proved:
Theorem 1.2. Let G be an (n — 2)-extendable graph on 2n > 10 vertices.
Then G is minimal if and only if G:
(i) is an (n — 1)-regular bipartite graph, or
(ii) is a (2n — 3)-regular graph, or
(iii) contains one vertex of degree 2n — 1 and 2n — 1 vertices of degree
2n -3, or '
(iv) contains 2n — 2 vertices of degree 2n — 3 and 2 vertices of degree
2n — 2, u and v say, such that Ng(u) \ {v} = Ng(v) \ {u}.
a

In this paper we complete the characterization of (n — 2)-extendable
graphs by resolving the only outstanding cases 2n = 6 and 8. This is done
in Section 3. The minimality is considered in Section 4.

For k-critical graphs we proved, in [1], the following result:
Theorem 1.3.

(2) For 2n > 4, G is (n — 1)-critical if and only if G & Knn or Koy,
(b) For 2n > 10, G is (n — 2)-critical if and only if G = Ko nor K.

(W]

In Section 4, we use our characterization of (n — 2)-extendable graphs to
complete the characterization of (n — 2)-critical graphs. For completeness,
in the next section, we state a number of results which are needed in our
work.



2 Preliminaries

Theorem 2.1 [6]. Let G be a graph on 2n vertices, 1 <k <n—1. Then
(a) G is (k — 1)-extendable;
(b) G is (k + 1)-connected.

a
Theorem 2.2 [6]. Let G be a graph on 2n verticesand 1 Sk <n-1. If
8(G) > n+k, then G is k-extendable. o

Theorem 2.3 [7]. Suppose G is & k-extendable bipartite graph. Let e
be an edge of G such that G + e is still bipartite. Then G + e is also
k-extendable. a

Theorem 2.4 [1]. Let G be a k-extendable graph on 2n vertices with
6(G) =k+t 1<t <k<n—1 If dg(u) = 6(G), then the subgraph
" G[Ng(u)] has at most t — 1 independent edges. a

Theorem 2.5 [4]. If G is a k-extendable graph on 2n vertices, 1 < k <
n—1, thenk+1 < 8(G) < noré(G)22k+1. (]

Lemma 2.6 [3]. Let G be a graph on 2n > 8 vertices with a perfect
matching and 6(G) = n— 1. Then G is (n — 2)-extendable if and only if G
is bipartite. a

Lemma 2.7 [3]. Let G be a graph on 2n > 8 vertices with §(G) = 2n —3.
Then G is (n — 2)-extendable if and only if independence number of G is
at most 2. 0

Theorem 2.8 [2].
(a) Koy is k-minimal,1 <k<n-1,ifandonly if k=n-1.
(b) Knp is k-minimal,1 <k<n-1,ifandonlyif k=n-1.
(]

Lemma 2.9 [3]. If G is an (n —2)-minimal graph on 2n 2> 6 vertices, then
8(G) = n—1, n or 2n — 3. Furthermore, for 2n 2 10, 6(G) # n. a

Lemma 2.10 [3]. If G is a (2n — 3)-regular (n — 2)-extendable graph on
2n > 8 vertices, then G is minimal. a

Theorem 2.11 [3]. G is an (n—2)-minimal graph on 2n > 8 vertices with
6(G) =n -1 if and only if G is an (n — 1)-regular bipartite graph. a
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Theorem 2.12 [3]. Let G be an (n — 2)-extendable graph on 2n > 8
vertices with §(G) = 2n —3 and A(G) =2n —1. Then G is minimal if and
only if G has only one vertex of degree 2n—1 and 2n —1 vertices of degree
2n—3. O

Theorem 2.13 [3]. Let G be an (n — 2)-extendable graph on 2n > 8
vertices with §(G) = 2n — 3 and A(G) = 2n —2. Then G is minimal if and
only if G has 2n — 2 vertices of degree 2n — 3 and 2 vertices, u and v say,
of degree 2n — 2 such that Ng(u) \ {v} = Ng(v) \ {u}. a

Theorem 2.14 [1). If G # Ka, is a k-critical graph on 2n vertices,
1<k<n-1, then

n, forn < 2k
n+2|53t), forn >2k.

6(G) < {

a

Theorem 2.15 [1]. A graph G on 2n vertices is 1-critical if and only if
G 2 Kuy or Ko a

8 Characterization of (n — 2)-extendable graphs on 2n vertices

Let G(2n, k, §) denote the class of k-extendable graphs on 2n vertices with
minimum degree §. Theorem 1.1 gives G(2n,n — 2,§) for 2n > 10. In
this section, we consider the classes G(8, 2, §) and G(6, 1,5). We begin with
G(8,2,6).

Let G € G(8,2,6). Then, by Theorem 2.5, § € {3,4,5,6,7}. According
to Lemma 2.6, the only members of G(8,2,3) are bipartite graphs with a
perfect matching and minimum degree 3. In fact,

G(8,2,3) = {K4,4 — M| M, is a matching of size ¢, 1 < ¢ < 4}.

Also, by Lemma 2.7, all members of G(8,2,5) have independence number
at most 2. There are 30 non-isomorphic graphs in G(8,2,5) as listed in
Table 3.1. We obtained this list by considering the degree sequence of
G € G(8,2,5); it is convenient to consider the complement G which, by
Lemma 2.7, is triangle free. Note that P;, C; and W, in the Table 3.1
denote the path, cycle and wheel of order ¢, respectively.
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degree sequence G G
of G
5,5,5,5,5,5,5,5 | Cs Ks - {a hamiltonian cycle}
2C, 2Ks V2K,
5,5,6,6,6,6,6,6 | 2PsU K2 [(KiVUK2)V (K1 U K>)] V2K,
P U2K, P,vC, e
5,5,5,5,6,6,6,6 | P3UP; (K1U K2) V (K5 - {a hamiltonian
path})
2P, P,V Py
C3 U2K, 2K,V Cy
P;U Ko (Ks -{a hamiltonian path}) V2K,
5,5,5,5,5,5,6,6 | PsUCjs (K1UK2)VCs
PyUCy Py V2K,
Cs UK, (K¢ -{a hamiltonian cycle})V2K,
Ps Ks - {a hamiltonian path}
5,6,6,6,6,6,6,7 | PsU2K2U K, (K1UKo) v Wp
5,6,6,6,6,7,7,7 | P3U K2 U3K; (K1U K3) V (K5 - an edge e)
5,5,6,6,6,6,7,7 | 2P3 U2K; [(K1UK2)V (KU K»)|V K2
P,UKyU2K, | P4V (K4 - an edge e)
5,5,5,6,6,6,6,7 PsUP,UK, (KiVK2) v (PsV K,)
PsUK,UK; | (Ks- {a hamiltonian path})VPs
5.6,6,,7.7.7,7 | PsUBK; (K,UK2)V Kz
5,5,6,6,7,7,7,7 P,U4K, PsVvV Ky
5,5,5,6,6,7,7,7 | PsU3K; (Ks - {a hamiltonian path})VKs
5,5,5.5,6,6,7,7 | CaU Kz U2K; | 2Kz V (K4 - an edge €)
Ps U2K, (Kg - {a hamiltonian path})VK>
5,5,5,5,5,6,6,7 | PsUCsUK; (K1UK3)V(2K2 V K,)
Cs UKo UK, CsV Ps
PUK,; (K7 - {a hamiltonian path})VK,
5,5,5,5,7,7,7,7 | CsU4K, 2K2V K4
5,5,5,5,6,7,7,7 | Cs U3K, CsV K3
5,5,5,5,5,5,7,7 | Ce U2K, (Ke - {a hamiltonian cycle})VK>
5,5,5,5,5,5,5,7 | CrUK; (K7 -{a hamiltonian cycle})VK,

Table 3.1

As (Theorem 2.2) every graph G with §(G) > 6 on 8 vertices is 2-
extendable, we need only consider the class G(8,2,4). We now establish
that G(8,2,4) contains exactly 7 non-isomorphic graphs. We begin with
the following lemma.
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Lemma 3.1. Let G € G(8,2,4) \ K44 and let u be a vertex of G with
degree 4. Then G[Ng(u)] = K, U K.

Proof: Let H = G[Ng(u)]. By Theorem 2.4, H contains at most one
independent edge. First we suppose that E(H) = ¢. If vjv; € G[Ng(u)),
then G — v; — vz is a graph on 6 vertices containing an independent set
of order 4 and thus G cannot have a perfect matching containing the edge
vivz. This contradicts the fact that G is 2-extendable. Hence, G[Ng(u)]
has no edges. But then G & K}, a contradiction. Consequently, E(H) # ¢.

Let V(H) = Ng(u) = {z,¥, 2,v}, Ng(u) = {a, b, ¢} and suppose without
any loss of generality that zy € E(H). Then, since H cannot have two
independent edges, zv ¢ E(G). Since G is 2-extendable, the edge zy is
contained in a perfect matching F in G. Clearly F must contain an edge
of G[Ng(u)}, ab say. Now if {z, 2,9} is an independent set of vertices of
G, then G cannot have a perfect matching containing the edges uy and ab,
contradicting the extendability of G. Therefore, z must be joined to at least
one of z or v. Similarly, {y, z,v} cannot be an independent set of vertices
of G and thus y must be joined to at least one of z or v. Since H contains
at most one independent edge, the only possibility is for H & K; U Ka.
This completes the proof of the lemma. a
Remark 3.1: Consider the proof of Lemma 3.1 above. It follows that if
Gl{z,y,2}] = Ka, then dg(v) < 4. Since §(G) = 4, dg(v) = 4. Further,
N¢(v) = {u} UNg(u). Thus G contains the graph G* displayed in Figure
3.1 as a spanning subgraph. Moreover, if za € E(G) with dg(z) = 4, then
dg(a) =4.

G*

Figure 8.1

In the following we often refer to the graph G*.

Corollary 3.2. Let G € G(8,2,4) \ K44 be a 4-regular graph. Then G is
the graph displayed in Figure 3.2.
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Figure 3.2

Proof: Since G* is a spanning subgraph of G and G is 4-regular, the only
possibility is that G is obtained from G* by joining the vertices of the
{z,y,2} and {a,b,c} with a perfect matching. Hence, G is the graph of
Figure 3.2 as required. a

Corollary 3.3. Let G € G(8,2,4) \ Ks4. Then A(G) < 6. Further, if
A(G) = 6, then there are exactly two vertices of degree 4.__.. .

Proof: Since G* is a spanning subgraph of G and dg(u) = dg(v) = 4,
A(G) < 6. Suppose G contains at least three vertices of degree 4. Without
any loss of generality we may suppose that dg(z) = 4 and za € E(G).
Then, by Remark 3.1, dg(a) = 4 and thus G cannot contain a vertex of
degree 6. Hence, if A(G) = 6, then G has exactly two vertices of degree 4,
as required. ]

Lemma 3.4.

(i) G € G(8,2,4) with A(G) = 5 if and only if G is one of the graphs
(up to isomorphism) displayed in Figure 3.3.

Figure 3.3

(i) G € G(8,2,4) with A(G) = 6 if and only if G is one of the graphs
(up to isomorphism) displayed in Figure 3.4.
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Figure 3.4

Proof: It is not too difficult to verify that the graphs in figures 3.3 and
3.4 are 2-extendable. Now let G € G(8,2,4). It is sufficient to consider the
bipartite subgraph G** of G* with bipartitioning sets {z, y, z} and {a, b,c}.
Using Lemma 3.1, Remark 3.1 and the minimum degree of G, it is not
too difficult to show that {z,y, 2} and {a, b,c} must have the same degree
sequence in G**.

Suppose A(G) = 6. By Corollary 3.3, u and v are only two vertices of
degree 4. Hence, each vertex of {z,y, z, a,b, c} must have degree at least 2
in G**. 1t easily follows that the only non-isomorphic graphs in G(8,2,4)
with A(G) = 6 are the graphs displayed in Figure 3.4.

Next, we suppose that A(G) = 5. Then each vertex of {z,9,2,a,b,c}
must have degree at least 1 in G**. Without any loss of generality, we may
assume that dg(z) = 5 and {a,b} C Ng(z). Lemma 3.1 together with the
fact that A(G) = 5 implies that dg(a) = dg(b) = 5. Hence, G must have
at least 4 vertices of degree 5. Therefore, G must be one of the graphs
displayed in Figure 3.3, as required. 0o

Lemma 3.4 and Corollary 3.2 together yield the following theorem:

Theorem 8.5. The class G(8,2,4) consists of K44 and the six graphs in
figures 3.2, 3.3 and 3.4. a

Now we turn our attention to a characterization of (n — 2)-extendable
graphs on 2n = 6 vertices. Theorem 2.5 ensures that a 1-extendable graph
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G on 6 vertices has minimum degree 2, 3, 4, or 5. It turns out that the class
G(6,1) = U3_,G(6,1,6) has 24 members. This can be established directly
through a tedious and detailed case analysis. A simpler alternative is to
take advantage of the complete catalogue of graphs on 6 vertices (see Harary
[5] pp 218-224). Of the 60 graphs that satisfy the degree requirement, only
24 of them are 1-extendable; this can be established by routine checking.
We summarize the result in the following theorem.

Theorem 3.8. There are exactly 24 non-isomorphic 1-extendable graphs
on 6 vertices, namely the graphs displayed in Figure 3.5.

G, G, G, G,
G, Gs G, G,
GD GIO Gll GI!

Figure 3.5 .
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4 Minimal and critical graphs

We begin with (n — 2)-critical graphs. We have observed that an (n ~ 2)-
extendable graph has order at least 6. Theorem 1.3(b) characterizes (n—2)-
critical graphs of order 2n > 10. Theorem 2.15 ensures that the only (n—2)-
critical graphs on 2n = 6 vertices are K34 and Kp,. The remaining case
is when 2n = 8. Consider the graphs displayed in Figure 4.1. It is not too
difficult to show that each G, is 2-critical.

We will show that besides K34 and K3 the above are the only 2-critical
graphs on 8 vertices.

Theorem 4.1. G is a 2-critical graph on 8 vertices if and only if G is K44
or Ks or one of the graphs (up to isomorphism) displayed in Figure 4.1.
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G3

Figure 4.1

Proof: The sufficiency is obvious. For the necessity part, suppose G is a
2-critical graph on 8 vertices. By Lemma 2.14, §(G) =3, 4 or 7.

Figure 4.2
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Clearly, if §(G) = 7, then G = K. Suppose §(G) = 3. Then, by Lemma
2.6, G is bipartite and thus, by Theorem 2.3, G is not critical. So the
only remaining case is §(G) = 4. By Theorem 3.5, there are exactly seven
2-extendable graphs on 8 vertices with §(G) = 4. One of them is K, 4
and the rest are the graphs displayed in figures 4.1 and 4.2. Notice that
H; +uv = Hp, Hy + ab =2 Hs and H3 + cd = G3. Since Hs, Hs and G3 are
2-extendable, H,, H; and Hjs are not 2-critical. This completes the proof
of our theorem. a

We conclude the paper by a discussion of (n — 2)-minimal graphs, n = 3
and 4. Consider the graphs displayed in Figure 4.3. o

G G, G,
Gy Cs Gg

=
NN =05

G., Gs 69

Figure 4.3
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It is not too difficult to verify that each G; is 2-minimal. We will first
prove that these graphs are the only 2-minimal graphs on 8 vertices

Theorem 4.2. Let G be a 2-minimal graph on 8 vertices. Then G is one
of the graphs (up to isomorphism) displayed in Figure 4.3.

Proof: By Lemma 2.9, §(G) = 8, 4 or 5. If §(G) = 3, then, by Theorem
2.11, G is 3-regular bipartite graph. Hence G = G;. Suppose §(G) = 4.
Then, by Theorem 3.5, there are exactly seven members in G(8,2,4). Three
of them are G2, Gs and G4. The rest are K, 4 and the graphs Hj, H and
Hj in Figure 4.4. .

H,

Figure 4.4

By Theorem 2.8(b), Kj 4 is not 2-minimal. Consider the graphs H,, H,
and Hs. Observe that Hy —ab & G4, Ho —cd & Hy and H3 —ef & Hs.
Hence, Hy, H, and Hj are not 2-minimal. This proves the theorem for the
case §(G) =4.

The only remaining case is §(G) = 5. If G is a 5-regular 2-extendable
graph, then, by Lemma 2.10, G is 2-minimal. According to Table 3.1, there
are exactly two 5-regular 2-extendable graphs on 8 vertices, namely Gg and
Gs. So we need to consider the case when G is non-regular. We proceed
according to A(G) which is 6 or 7.

Suppose A(G) = 6. Then, by Theorem 2.13, G contains exactly two
vertices of degree 6, u and v say, such that Ng(u) \ {v} = Ng(v) \ {u}.
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Table 3.1 shows that there are four 2-extendable graphs with degree se-
quence 5, 5, 5, 5, 5, 5, 6, 6. But only two of them, G7((K; U K3) V Cj)
and Gs((K¢ - {a hamiltonian cycle})V2K)) satisfy the above mentioned
condition concerning neighbour sets. Finally, consider the case A(G) = 7.
By Theorem 2.12 and Table 3.1, there is exactly one such graph, namely
Gs. This completes the proof of our theorem. a

Now we turn our attention to the case 2n = 6. Consider the graphs

displayed in Figure 4.5.
Figure 4.5

It is easy to check that each of these graphs is 1-minimal. We now prove
that these are the only 1-minimal graphs on 6 vertices.

Theorem 4.3. There are exactly four non-isomorphic 1-minimal graphs
on 6 vertices, namely the graphs displayed in Figure 4.5.

Proof: By Theorem 3.6, there are exactly 24 non-isomorphic 1-extendable
graphs on 6 vertices. Four of them are the graphs in Figure 4.5, the other
twenty are the graphs H,,..., Hao in Figure 4.6. Notice that for each t,
i=1,...,20, H; — ab is 1-extendable. Hence, none of the graphs displayed
in Figure 4.6 are 1-minimal. This completes the proof of our theorem. O

Remark 4.1: By Theorem 2.9, Hig, His, Hi9 and Hag are not 1-minimal
since each of them has minimum degree at least 4.

Remark 4.2: Theorems 4.2 and 4.3 were stated without proof in [3]. The
proof that was available at that time was very tedious as the characteriza-
tion of (n — 2)-extendable graphs on 2n = 6, 8 was not available.
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