Borders Of Fibonacci Strings

L.J. Cummings*
University of Waterloo

D. Moore

Curtin University of Technology

J. Karhumäki[†] Turku University

ABSTRACT. We determine all borders of the $n\underline{th}$ Fibonacci string, f_n , $n \geq 3$. In particular, we give two proofs that the longest border of f_n is f_{n-2} . One proof is independent of the Defect Theorem.

1 Introduction

A Fibonacci string f_n is a string on abinary alphabet $A = \{a, b\}$ defined by

$$f_0 = b; f_1 = a; f_n = f_{n-1}f_{n-2}, \forall n \ge 2.$$
 (1)

Equivalently, the strings f_n may be defined as the orbit of a under the morphism $h: A^* \to A^*$ defined by

$$h: a \to ab \qquad b \to a.$$
 (2)

An interesting facet of the structure of Fibonacci strings was shown by de Luca [8].

^{*}Supported by the Natural Sciences and Engineering Research Council of Canada

[†]Supported by grant no. 11181 of the Academy of Finland

Proposition 1.1 (de Luca). For all $n \geq 3$,

$$f_n = \alpha_n d_n$$

where for each n, α_n is a palindrome and

$$\mathbf{d_n} = \begin{cases} ab & \text{if } n \text{ is even} \\ ba & \text{if } n \text{ is odd} \end{cases}.$$

Since f_7 contains the cube $(aba)^3$, for each $n \ge 7$, f_n contains at least this cube. But one of us has shown that no Fibonacci string contains a fourth power [6].

The well-known Fibonacci numbers can be defined as the lengths of the Fibonacci strings: $F_n = |\mathbf{f_n}|$. The usual definition of these numbers is then immediate:

$$F_n = F_{n-1} + F_{n-2}, \forall \ n \ge 2. \tag{3}$$

It is well-known that $F_n \in \Omega(\phi^n)$ where ϕ is the "golden ratio" satisfying the quadratic equation $\phi^2 = \phi + 1$. It is less widely known that the Fibonacci numbers are the basis of a number system [2, 9].

Theorem 1.1 (Zeckendorf). Every positive integer n can be represented as a sum of distinct Fibonacci numbers

$$F_n = F_{k_r} + F_{k_{r-1}} + \dots + F_1, \tag{4}$$

where $k_r \geq k_{r-1} \geq \cdots \geq 1$.

The representation (4) is unique if $k_{i+1} \ge k_i + 2$, for all i.

A border of a string x is a substring which is both a prefix and a suffix of x. The longest border of a string x is often called *the* border of x. Arguably the empty string and x itself are borders of x but we exclude these trivial cases although it can be convenient to include the empty string as a border when initializing variables in an algorithm.

More formally,

Definition 1.1: If for some integer b, 0 < b < n, a given string x of length n has a proper prefix b = x[1..b] that is equal to a suffix x[n-b+1..n], then b is said to be a border of x. If x has a border then its longest border is denoted by $b^*(x)$.

According to Definition 1 a string is never its own border. Clearly any border b of a string x is both a prefix and a suffix of $b^*(x)$. In notation: $b \leq b^*(x)$ and $b^*(x) \succeq b$. We let |x| denotes the length of the string x. We will show that if $n \geq 3$ then $b^*(f_n) = f_{n-2}$.

For example the string $f_6 = abaababaabaab$ has two borders: ab and abaab. Similarly, the string a^n has borders a, a^2, \ldots, a^{n-1} , of which, for $i = \lceil (n+1)/2 \rceil$, the borders $a^i, a^{i+1}, \ldots, a^{n-1}$ overlap.

It has been shown that the longest border of an arbitrary string can be computed in $\Theta(n)$ time[4]. The notion of a border is central to the pattern matching algorithms of Knuth-Morris-Pratt and Boyer-Moore. For an excellent survey see [1].

From Definition 1 we note the relationship between the periods of arbitrary strings and their borders. Namely, the integer p is a period of a string x if p = n - |b| where b is a border of x. If b is the longest border of x, then p is traditionally called the period of x. Accordingly, by determining all borders of f_n we determine all periods of f_n .

2 The Defect Theorem and b*(f_n)

The set of all strings with entries in an alphabet A is a free monoid or code denoted by A^* . Any subset X of A^* has an associated code, $\mathcal{F}(X)$, which is the intersection of all codes containing X. The Defect Theorem says that if X is not a code itself, then $|\mathcal{F}(X)| < |X|$. For a proof and discussion of the history of the Defect Theorem see [5]. Two strings $x, y \in A^*$ are conjugate if there exist $\alpha, \beta \in A^*$ such that

$$\mathbf{x} = \alpha \boldsymbol{\beta} \tag{5}$$

$$y = \beta \alpha. \tag{6}$$

One consequence of the Defect Theorem is that two strings x, y are conjugate if and only if there is a third string z such that xz = zy. (See Proposition 1.3.4 of [7].)

Theorem 2.1. If $n \geq 3$ then $b^*(f_n) = f_{n-2}$.

First Proof: Clearly, f_{n-2} is a border of f_n since $f_n = f_{n-2}f_{n-3}f_{n-2}$. Therefore, $f_{n-2} \leq b^*(f_n)$ and $b^*(f_n) \succeq f_{n-2}$. Equivalently, there are binary strings x, y with $0 < |x| = |y| < |f_{n-1}|$ such that

$$f_{n-2}x=yf_{n-2}.$$

The Defect theorem implies that x and y are conjugate. (See Proposition 1.3.4 of [7].) Let α and β be elements of A^* such that

$$\mathbf{x} = \alpha \beta \tag{7}$$

$$\mathbf{v} = \beta \alpha \tag{8}$$

$$\mathbf{f_{n-2}} = \beta(\alpha\beta)^t \tag{9}$$

for some $t \geq 0$.

The proof falls into two cases:

Case 1. $|x| \le |f_{n-3}|$.

In this case, x is a prefix of f_{n-3} and $f_{n-3} \leq f_{n-2}$, which implies x = y since $f_{n-2}x = yf_{n-2}$. Therefore, $\alpha\beta = \beta\alpha$. It now follows by Proposition 1.3.2 of [7] that α and β and hence f_{n-2} are powers of a single primitive string, say p. Since $f_{n-3} \leq f_{n-2}$ and $y^r \leq f_{n-3}^r$, (7) implies that f_{n-3} is also a power of p. But then we have f_k is a power of p for all $k \geq n-3$, a contradiction.

Case 2. $|x| > |f_{n-3}|$.

If as in (7) f_{n-2} is of the form $\beta(\alpha\beta)^t$ for some $t \geq 1$ then we can proceed as in Case 1 since $f_{n-2} \leq f_{n-3}f_{n-2}$. (Note that $f_{n-2} = f_{n-3}f_{n-4}$ and $f_{n-4} \leq f_{n-2}$.) Therefore, the only remaining case is when $f_{n-2} = \beta$. In this case, $f_{n-1} \leq \beta\alpha\beta$ since $x = \alpha\beta$ and $(\beta\alpha)^r \leq f_{n-1}^r$ where $|\beta\alpha| < |f_{n-1}|$. It now follows that there exists a string q and $t \geq 1$ such that $f_{n-1} = q^t$. As in Case 1 this implies that every f_k is a power of q which is impossible.

3 Expansions and Borders

As noted before, for each $n \geq 3$ it is clear that f_{n-2} is a border of f_n since

$$f_{n} = f_{n-2}f_{n-3}f_{n-2}. (10)$$

Proposition 1.1 can be applied immediately to equation (10) to conclude that, since n-3 and n-2 are of differing parity, the prefix $\mathbf{f_{n-2}f_{n-3}}$ cannot be a border of $\mathbf{f_n}$. We apply a similar argument after each uniform expansion of (10) by the rules

$$\begin{array}{rcl}
\mathbf{f_k} & \rightarrow & \mathbf{f_{k-2}f_{k-3}f_{k-2}} \\
\mathbf{f_2} & \rightarrow & \mathbf{f_1f_0} \\
\mathbf{f_1} & \rightarrow & \mathbf{f_1} \\
\mathbf{f_0} & \rightarrow & \mathbf{f_0}.
\end{array} \tag{11}$$

For example, at level 2 of the expansion $f_{n-2}f_{n-3}f_{n-2}$ becomes

$$f_{n-4}f_{n-5}f_{n-4}f_{n-5}f_{n-6}f_{n-5}f_{n-4}f_{n-5}f_{n-4}.$$
 (12)

The expansion terminates when only f_0 's and f_1 's remain. At level k of the expansion with (11) we have

$$f_{n-2k}f_{n-2k-1}f_{n-2k}\cdots f_{n-2k}f_{n-2k-1}f_{n-2k}.$$
 (13)

By symmetry, each such expansion is a palindrome over an alphabet of appropriate f_n . Therefore, each prefix consisting of, say, k consecutive f_i 's

is of the same length as the corresponding suffix of k consecutive $\mathbf{f_j}$'s. In the level 2 expansion (12), no prefix of $\mathbf{f_j}$'s ending in $\mathbf{f_{n-5}}$ can be a border of $\mathbf{f_n}$. By induction, we see that at each step of the expansion, each $\mathbf{f_k}$ is adjacent only to $\mathbf{f_{k+1}}$ or to $\mathbf{f_{k-1}}$ on either the left or the right. When, say, $\mathbf{f_{k-1}f_k}$ occurs in the expansion, it must be preceded by either $\mathbf{f_k}$ or $\mathbf{f_{k-2}}$. In the second case, necessarily $\mathbf{f_{k-1}f_{k-2}f_{k-1}f_k}$ must occur. This follows because the definition (11) precludes four consecutive $\mathbf{f_i}$'s with strictly increasing (or strictly decreasing) indices.

For each f_{n-j} in some level of the expansion (11) there is a potential border

$$f_{n-2k}f_{n-2k-1}f_{n-2k}\cdots f_{n-j} = f_{n-j}\cdots f_{n-2k}f_{n-2k-1}f_{n-2k}.$$
 (14)

Since f_{n-2} is a border of f_n , to show f_{n-2} is the longest border we need only rule out potential borders (14) which end to the right of the f_k which make up f_{n-2} .

If n-j is even and n is odd then n-2k is odd and (14) cannot be a border since $\mathbf{f_{n-j}}$ must end in ab while $\mathbf{f_{n-2k}}$ ends in ba by 1.1. Similiarly, if n-j is odd and n is even then n-2k is even and (14) cannot be a border since $\mathbf{f_{n-j}}$ must end in ba while $\mathbf{f_{n-2}}$ ends in ab. Consequently, at any level of expansion we need only consider those potential borders (14) for which n-j and n-2k have the same parity.

Lemma 3.1. If a prefix $f_{n-2k}f_{n-2k-1}f_{n-2k}\cdots f_{n-j}$ of f_n has the property that it ends in a square of the form $f_i^2 = f_i f_i$ for some *i* then it is not a border of f_n .

Proof: If n and i are not both odd or both even then the last element of f_i cannot match the last element of f_n by (1.1). Accordingly, we need only consider the cases when i or n are both odd or both even.

Consider the successive expansions (13). The list of final f_i 's from each level of the expansion is:

$$f_{n-2}, f_{n-4}, f_{n-6}, \cdots, f_{n-j}.$$
 (15)

If n is odd (even) then every odd (even) integer less than n appears in the list of indices in (15). Accordingly, given a prefix ending in a square $\mathbf{f_i}^2 = \mathbf{f_i}\mathbf{f_i}$, some level of expansion will also end in $\mathbf{f_i}$. But by (11) $\mathbf{f_i}$ must be preceded by $\mathbf{f_{i-1}}$ and by (1.1), $\mathbf{f_{i-1}}$ and $\mathbf{f_i}$ have differing final entries.

Theorem 3.1. For all $n \geq 3$,

$$\mathbf{b^*}(\mathbf{f_n}) = \mathbf{f_{n-2}}.$$

Proof: We argue that any potential border of the form

$$f_{\mathbf{n-2k}}f_{\mathbf{n-2k-1}}f_{\mathbf{n-2k}}\cdots f_{\mathbf{n-j}}$$

ends in exactly one of the following:

- $i) f_{n-j+1} f_{n-j}$
- ii) $f_{n-j-1}f_{n-j-2}f_{n-j-1}f_{n-j}$
- iii) $f_{n-j}f_{n-j-1}f_{n-j}$.

For, as previously noted, each f_k is preceded only by f_{k+1} or f_{k-1} . If f_{n-j} is preceded by $f_{n-j+1} = f_{n-2k+1}$ as in i) then (1.1) implies (14) is not a border because the expansion at level k always terminates in $f_{n-2k}f_{n-2k-1}f_{n-2k}$. As a consequence, we may always suppose that f_{n-j} is preceded by f_{n-j-1} . In the same way, f_{n-j-1} is always preceded by f_{n-j} or f_{n-j-2} . If f_{n-j-1} is preceded by f_{n-j-2} as in ii) then (14) is not a border because the expansion at level k always terminates in $f_{n-2k}f_{n-2k-1}f_{n-2k}$.

Consider iii). Either f_{n-j-1} or f_{n-j+1} is the immediate predecessor of this substring. But, if the potential border (14) is

$$\mathbf{f}_{n-j-1}\mathbf{f}_{n-j}\mathbf{f}_{n-j-1}\mathbf{f}_{n-j} = (\mathbf{f}_{n-j-1}\mathbf{f}_{n-j})^2,$$
 (16)

then Lemma 3.1 yields a contradiction.

In the same way, if the immediate predecessor of iii) is f_{n-j+1} then the potential border (14) ends in

$$f_{n-j+1}f_{n-j}f_{n-j-1}f_{n-j} = f_{n-j}f_{n-j-1}f_{n-j}f_{n-j-1}f_{n-j}$$

= $f_{n-j}(f_{n-j-1}f_{n-j})^2$, (17)

again contradicting Lemma 3.1.

The above arguments rule out any border of the form $f_{n-2}u$ of f_n , where u is a substring of length not more than $F_n - F_{n-2}$, since iterations of the expansion (11) terminate when every f_1 has become $f_1 = a$ or $f_0 = b$.

This completes the proof.

Theorem 3.2. For all $n \geq 3$, the borders of f_n are

$$\mathbf{f_{n-2}}, \mathbf{f_{n-4}}, \cdots, \mathbf{f_k} \tag{18}$$

where k = 2 if n is even and 1 otherwise.

Proof: By Theorem 3.1 f_{n-2} is the longest border of f_n . In the successive expansions of (11) we see that each of the Fibonacci strings in (18) are borders of f_n . Further, no Fibonacci string of the form $f_{n-(2k+1)}$ can be a border since, although each such is a prefix, it would then need to be a suffix of f_n but f_{n-2k} is also a suffix of f_n for all appropriate k, and $f_{n-(2k+1)}$, f_{n-2k} have different endings by (1.1).

References

- [1] A. Aho, *Pattern Matching in Strings*, Handbook of Theoretical Computer Science, Elsevier, 1990, 255-300.
- [2] J. Berstel, Fibonacci words a survey, Book of L, Springer-Verlag, 1986, 13-27.
- [3] A. Ehrenfeucht and D. M. Silberger, *Periodicity and unbordered segments of words*, Discrete Mathematics, 26(1979), 101-109.
- [4] A.V. Aho, J.E. Hopcroft and J.D. Ullman, The Design and Analysis of Computer Algorithms, Addison-Wesley, 1974, 330-334.
- [5] J. Berstel, D. Perrin, J.F. Perrot, and A. Restivo, Sur le théorème du défault Journal of Algebra, 60(1979), 169-180.
- [6] J. Karhumäki, On cube-free ω-words generated by binary morphisms, Discrete Applied Mathematics, 5(1983), 279–297.
- [7] M. Lothaire, Combinatorics on Words Addison-Wesley, 1983.
- [8] A. de Luca, A combinatorial property of Fibonacci words, Information Processing Letters, 12(1981),193-195.
- [9] E. Zeckendorf, Reprèsentation des nombres naturels par une somme de nombres de Fibonacci ou de nombres de Lucas, Bull. Soc. Royale des Sciences de Liége, 1972, 179-182.