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ABSTRACT. We determine all borders of the nth Fibonacci string,
fa, n > 3. In particular, we give two proofs that the longest
border of f,, is fa_a. One proof is independent of the Defect
Theorem.

1 Introduction

A Fibonacci string f, is a string on abinary alphabet A = {a, b} defined
by

fo = b; f1 = a, fn = fn_1fn_2,v n2 2. (1)

Equivalently, the strings f, may be defined as the orbit of e under the
morphism & : A* — A* defined by

h:a—ab b—a. (2)

An interesting facet of the structure of Fibonacci strings was shown by
de Luca [8].

*Supported by the Natural Sciences and Engineering Research Council of Canada
tSupported by grant no. 11181 of the Academy of Finland

JCMCC 20 (1996), pp. 81-87



Proposition 1.1 (de Luca). For all n > 3,
fn = audn
where for each n, ay, is a palindrome and

d. = ab ifn is even
"7 lba ifnisodd °

Since fr contains the cube (aba)3, for each n > 7, f,, contains at least this
cube. Buit one of us has shown that no Fibonacci string contains a fourth
power [6].

The well-known Fibonacci numbers can be defined as the lengths of the
Fibonacci strings: F,, = |f4]. The usual definition of these numbers is then
immediate:

Fo=Fo 1+ F, 2,VYn2>2. (3)

It is well-known that F;, € Q(¢") where ¢ is the ”golden ratio” satisfying the
quadratic equation ¢? = ¢ + 1. It is less widely known that the Fibonacci
numbers are the basis of a number system [2, 9].

Theorem 1.1 (Zeckendorf). Every positive integer n can be represented
as a sum of distinct Fibonacci numbers

Fo=F¢ +Fe_,+---+ R, (4)

where k. > k,_y > -.->1.
The representation (4) is unique if ki > k; + 2, for all i.

A border of a string x is a substring which is both a prefix and a suffix
of x. The longest border of a string x is often called the border of x.
Arguably the empty string and x itself are borders of x but we exclude these
trivial cases although it can be convenient to include the empty string as a
border when initializing variables in an algorithm.

More formally,

Definition 1.1: If for some integer b, 0 < b < n, a given string x of length
n has a proper prefix b = x[1..3] that is equal to a suffix x[n — b + 1..n],
then b is said to be a border of x. If x has a border then its longest
border is denoted by b*(x).

According to Definition 1 a string is never its own border. Clearly any
border b of a string x is both a prefix and a suffix of b*(x). In notation:
b < b*(x) and b*(x) > b. We let |x| denotes the length of the string x.
We will show that if n > 3 then b*(f;) = fu—2.
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For example the string fg = abaababaabaab has two borders: ab and
abaab. Similarly, the string a® has borders a,a?,...,a""}, of which, for
i = [(n+1)/2], the borders a*,a’t!,... ,a""! overlap.

It has been shown that the longest border of an arbitrary string can
be computed in ©(n) time[4]. The notion of a border is central to the
pattern matching algorithms of Knuth-Morris-Pratt and Boyer-Moore. For
an excellent survey see [1].

From Definition 1 we note the relationship between the periods of arbi-
trary strings and their borders. Namely, the integer p is a period of a string
x if p = n — |b| where b is a border of x. If b is the longest border of x,
then p is traditionally called the period of x. Accordingly, by determining
all borders of f; we determine all periods of fy,.

2 The Defect Theorem and b*(fy)

The set of all strings with entries in an alphabet A is a free monoid or code
denoted by A*. Any subset X of A* has an associated code, F(X), which is
the intersection of all codes containing X. The Defect Theorem says that if
X is not a code itself, then |F(X)| < | X|. For a proof and discussion of the
history of the Defect Theorem see [5]. Two strings X,y € A* are conjugate
if there exist a, 8 € A* such that

x=oaf (8)
y = Pa. (6)
One consequence of the Defect Theorem is that two strings x, y are con-

jugate if and only if there is a third string z such that xz = zy. (See
Proposition 1.3.4 of [7].)

Theorem 2.1. If n > 3 then b*(fa) = fa—3.

First Proof: Clearly, fo_2 is a border of f, since fn = fn—3fn-sfa-3.
Therefore, fa_2 < b*(f,) and b*(f,) > fa—2. Equivalently, there are binary
strings x,y with 0'< |x| = |y| < |fa—1| such that

fa-2x = yfa—3.

The Defect theorem implies that x and y are conjugate. (See Proposition
1.3.4 of [7].) Let @ and B be elements of A* such that

x=af (7
y = fa (®)
fa-2= ﬁ(aﬁ)‘ (9)

for some t > 0.
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The proof falls into two cases:

Case 1. |x| < |fa-s|.

In this case, x is a prefix of f,—3 and f,—3 <X f,—3, which implies x =y
since fy-ax = yfa—3. Therefore, af = fa. It now follows by Proposition
1.3.2 of [7] that « and B and hence f,,_3 are powers of a single primitive
string, say p. Since fu_3 < fuo—2 and y© < f,_3", (7) implies that f,_g is
also a power of p But then we have fy. is a powerof p forall k >n—3, a
contradiction.

Case 2. |z| > |fa—s].

If as in-(7) f,,_3 is of the form B(ap)* for some ¢ > 1 then we can proceed
as in Case 1 since fo_3 <X fo—3fn—3. (Note that f,_3 = f,_3f,—4 and
fu—4 <X fu_3.) Therefore, the only remaining case is when f,_3 = 8. In
this case, fu_1 < Bafsince x = aff and (Ba)" =X f,—1" where |Ba| < |fa-1|.
It now follows that there exists a string q and ¢ > 1 such that f,_; = qt.
As in Case 1 this implies that every fy is a power of q which is impossible.

8 Expansions and Borders

As noted before, for each n > 3 it is clear that f,_3 is a border of f, since
fn = fn—zfn-sfn—ﬁ- (10)

Proposition 1.1 can be applied immediately to equation (10) to conclude
that, since 7 — 3 and n — 2 are of differing parity, the prefix fo_afa_3
cannot be a border of f,. We apply a similiar argument after each uniform
expansion of (10) by the rules

fi — fic_afi—sfi-a

fz — f1 fo

f1 - fl ( 1 )
fo - fo .

For example, at level 2 of the expansion f, _3f,_3f,_2 becomes
fn-afn—5fn_afn_6fn—6fn—sfa—afa—sfa—a. (12)

The expansion terminates when only fo’s and f;’s remain. At level k of
the expansion with (11) we have

fo_afa—ak—1fa—2k - - fa—2xfa—2k—-1fn-2x. (13)

By symmetry, each such expansion is a palindrome over an alphabet of
appropriate f,. Therefore, each prefix consisting of, say, k consecutive fj’s
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is of the same length as the corresponding suffix of k consecutive f;’s. In the
level 2 expansion (12), no prefix of f;’s ending in f,,_g can be a border of f;,.
By induction, we see that at each step of the expansion, each fy is adjacent
only to ficy1 or to fy—3 on either the left or the right.When, say, fi—1fi
occurs in the expansion, it must be preceded by either fi or fi—3. In the
second case, necessarily fi—1fi—afic—1fic must occur. This follows because
the definition (11) precludes four consecutive fi’s with strictly increasing
(or strictly decreasing) indices.

For each f,_j in some level of the expansion (11) there is a potential
border

fo—axfaak—1fa-a2k - fa—y = fa-j- - fo-axfo—ak-1fa-ax. (14)

Since f,_3 is a border of f,, to show f,,_3 is the longest border we need
only rule out potential borders (14) which end to the right of the fic which
make up 3.

If n — j is even and n is odd then n — 2k is odd and (14) cannot be a
border since f,—; must end in ab while fo_2x ends in ba by 1.1. Similiarly,
if n—7 is odd and n is even then n—2k is even and (14) cannot be a border
since f,—j must end in ba while f,_2 ends in ab. Consequently, at any level
of expansion we need only consider those potential borders (14) for which
n — j and n — 2k have the same parity.

Lemma 3.1. If a prefix £, _ayfo—ak—1fa-2xk - - - fn—j of fu has the property
that it ends in a square of the form £;2 = fif; for some i then it is not a
border of f,.

Proof: If n and i are not both odd or both even then the last element of
f; cannot match the last element of f;, by (1.1). Accordingly, we need only
consider the cases when ¢ or n are both odd or both even.

Consider the successive expansions (13). The list of final fi’s from each
level of the expansion is:

fn—zy fn—da fn—ea Tty fn—j- (15)

If n is odd (even) then every odd (even) integer less than n appears in
the list of indices in (15). Accordingly, given a prefix ending in a square
£;2 = fif;, some level of expansion will also end in f;. But by (11) f; must
be preceded by fi_; and by (1.1), fi_; and f; have differing final entries.

Theorem 3.1. For all n > 3,
b*(fa) = fa-2a.

Proof: We argue that any potential border of the form

fo—axkfa—ax—1fn—ak -+ fa—j
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ends in exactly one of the following:

i) fa—j+afay
ii) fn—]—lfn—.l —2fn—.l— 1fn—j

For, as previously noted, each fi is preceded only by fi+1 or fi_3. If
fa_y is preceded by f_ji1 = fa—ax+1 as in i) then (1.1) implies (14)
is not a border because the expansion at level k always terminates in
fn—akfn—ax-1fn—ak. As a consequence, we may always suppose that f,_; is
preceded by fu_j—1. In the same way, f,;-1 is always preceded by f,—; or
fo_j-2. If £, 1 is preceded by f,_j_3 as in ii) then (14) is not a border
because the expansion at level k always terminates in fu—g21fn—2x—1fa—aK.

Consider iii). Either f,_j_3 or fu_j;1 is the immediate predecessor of
this substring. But, if the potential border (14) is

fn—j—lfn—jfn—j—lfn—,l = (fn—j-—lfn—j )2: (16)

then Lemma 3.1 yields a contradiction.

In the same way, if the immediate predecessor of iii) is fu_j+1 then the
potential border (14) ends in

fn—j+1 fn—j fu—j—l fn—j = fn—J fn—j—lfn—j fn—j-l fu—j
fn—j(fn—j—lfn—j)zv (17)

again contradicting Lemma 3.1.

The above arguments rule out any border of the form f,_au of f,,where
u is a substring of length not more than F,, — F,,_,, since iterations of the
expansion (11) terminate when every fj has become f; = a or fg = b.

This completes the proof.
Theorem 8.2. For all n > 3, the borders of £, are

fn—39 fn-4» 0y fk (18)

where k = 2 if n is even and 1 otherwise.

Proof: By Theorem 3.1 f,,_2 is the longest border of f,. In the successive
expansions of (11) we see that each of the Fibonacci strings in (18) are
borders of f,. Further, no Fibonacci string of the form f, —(2k+1) can be a
border since, although each such is a prefix, it would then need to be a suffix
of f;, but f;,_ax is also a suffix of f,, for all appropriate k, and fa—(2K+1)
fu—ax have different endings by (1.1).
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