Counting The Subgroups Of An Infinite Group

Michael Grady

Department of Mathematics and Computer Science
Georgia State University
Atlanta, GA 30303-3083 U.S.A.

ABSTRACT. Dey’s formula can be used to count the subgroups
of finitely generated groups and to establish congruence prop-
erties of subgroup counting functions. We develop an algebraic
technique based on this formula for counting the subgroups of
given index in Hecke groups, and show how to streamline it for
efficient computation modulo 2.

Introduction

Dey’s formula (1) exhibits the fundamental enumerative relation between
the subgroups and permutation representations of a finitely generated group
and is a fascinating example of the ubiquitous “exponential formula” for
labeled counting. This relation was discovered by Marshall Hall in connec-
tion with free groups [6], and later generalized to the case of free products
by Ian Dey [2]. Kurt Wohlfahrt has given an insightful proof of its validity
for all finitely generated groups in [13]. This reference is highly recom-
mended, especially in conjunction with Wilf’s lucid and relevant discussion
of labeled counting [12, pp. 64-97].

A number of powerful and general theorems describe the behavior of
subgroup counting functions for finite groups, those of Lagrange and Sylow
being the most prominent. Are there analogous results for infinite groups?
While no results of such consequence have yet surfaced, several interesting
arithmetic patterns have been found. For instance, the number of subgroups
of index n in the classical modular group is odd if and only if n is of the
form 2% — 3 or 2(2% — 3), [11]. To cite another example, the subgroup
counting function for any free product containing the factor C, * C, in its
free product decomposition will be periodic modulo p, [5]. Further examples
may be found in references [3],[4],(7] and [8].
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In this paper we extend an algebraic technique, first suggested by New-
man and the present author in [4], for counting the subgroups of given index
in Hecke groups, and show how to streamline it for efficient computation
modulo 2. Various parity patterns will be noted and two open problems
stated.

Dey’s Formula

For any finitely generated group G, let M denote the subgroup counting
function and M,, the number of subgroups in G having index n. Let R
denote the representation counting function and R,, the number of permu-
tation representations of G on n symbols. Equivalently, this is the number
of homomorphisms of G into the symmetric group S,.. Dey’s formula reveals
a remarkable connection between these two counting functions: M; =1 and
for indices greater than 1 we have

X RaiM;
M. (n—l)' z(n—i)!' (1)

In what follows, it will be advantageous to write (1) in terms of generating
functions. Let g(z) denote the ordinary generating function for the number
of subgroups in G having index n:

g(.’L‘) = Z Myx",

n>1

and let f(z) denote the exponential generating function for the number of
permutation representations of G on n symbols:

f(z) = Z%z with Rp = 1.

n>0
Then

_zf
7 ()
To illustrate the utility of (2) for obtaining congruence information, we
now show that the number of subgroups of any given finite index in a free
group is always odd. The number of permutation representations of C.,
the infinite cyclic group, on n symbols is n! since the generator may be
mapped to any element of S,. So a free group of rank ¢ has R,, = n!*, and

f(z) = Zn"‘l "‘= for t =1,
n>0 -

f@ =) n'2?=1+z (mod 2) for ¢t > 2.
n>0
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giving .

g(z)= 17 (mod2),
by equation (2). Thus, all M,, are odd. Here, we are using the convention
that whenever a function appears in a congruential expression, the con-
gruence is meant to apply to the coefficients in the power series expansion
of that function. This usage clearly requires that all such coefficients be
integral.

Counting Subgroups of Hecke Groups Modulo 2

Hecke groups are free products of the form C; * Cp, where Cs is the cyclic
group of order 2 and C, a cyclic group of prime order p. These groups,
denoted H,, are important in the field of analytic number theory [10, pp.
138-163]. The number of permutation representations of H, on n symbols
is simply m3(n)7p(n), where 72(n) is the number of representations of Cs
and 7,(n) the number of representations of Cp, on n symbols. Since these
numbers are easy to compute recursively, counting subgroups via Dey’s for-
mula (1) is a straightforward multiprecision computation [4, p. 432]. This
method works reasonably well when 7 is small, but would be hopelessly in-
adequate for computing the parity of the first million values of the subgroup
counting function for a group like Hgss37 (Where Mjoo0000, for example, has
approximately three million digits). We now describe an approach that will
handle such a computation quite easily.

The numbers 73(n) and 7,(n) are given by the exponential generating
2 =
functions e+ and e*+% respectively. (This can be shown as Wilf does
in [12, p. 76], or alternatively, by solving (2) for f and noting that a cyclic
group of prime order p has one subgroup of index 1 and one of index p).
Thus,
(n) 1 1 1
W Tl T -p) T P —2p)l
where the sum is finite and the general term is
1 n
-, 0< g < =]
g'p?(n - pg)! [pJ
Multiplying by 72(n) and summing over n gives

fe Z Tz(n) Z (;:‘2(7;))' .

n>0

where the general term is

1'2(77') ™
'p" 2 Gmpa n—pg)l

n2pq
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Letting w denote the function e**°T, and D the derivative operator, we
have

xP zP z%°
f(:z:)=w+-;D”w+§52-D2"w+§I;§D3’w+... 3

If Q denotes the operator e7 D" then (3) has the interesting formulation:
f(z) = Q(w). Factoring out w yields

f(z) =w(1 + C + C2p 3'P3 C3p )= w‘](x)) (4)

where C,, = %D"w is a monic polynomial of degree n with positive integer
coefficients, which shall be called the nth tau-2 polynomial.
We now give a formula for these polynomials.

Theorem 1. The nth tau-2 polynomial is given by the formula
2. (n
Cn=)_ (k) Ta(k)z"*. (5)

Proof:

Crnt1= lD""'l'w = -lD(D"'w) = lD(wC ) = l[(l + z)wCy, + wCl}]

17w w w M w " nh
where the prime denotes the first derivative. This yields the recurrence
with initial values Cp =1, C; =14 z. Let
Cn(z)
P(:E, t) = Z Ttn
n>0

be the exponential generating function for the 7-2 polynomials. Then equa-
tion (5) implies

Z n+1(z)tn (l+ )Z C"(z)t"-}-z n(z)tn

n>0 n>0 s n>0
which immediately yields the following differential equation:

dP dP
——(1+ )P+d_:z:.



2
Since the function P(z, t) = e** ¥ ¢** satisfies this equation and the initial
conditions, it must be the required generating function. But the coefficient

n 2
of & in the product of e*tF and et is

Cn = i (:) To(k)z™%.

k=0

This completes the proof.

The 7-2 polynomials simplify enormously mod 2°. That makes them
very useful for parity computations. We state this explicitly in the next
theorem.

Thsozl;em 2. Let s be a positive integer. Then C,, = Et’:;a Y)ra(k)znk
mod 2°.

Proof: 73(n) = 0 mod 2° if n > 4s-3 [1, p. 334, so the result is immediate.
By equation (4) we have

zf 2 , zq'(x)
;e T m

so we may restrict our attention to the series g(z). A typical computation
would proceed as follows. To find the parity of M, for n < kp, use an
appropriately truncated version of q(.'z:z, take its reciprocal, (which will also
be a series in the 7-2 polynomials), clear denominators and do computations
mod 2?, where 2° is a higher power of 2 than appears in the denominators.

For example, the series giving the subgroup counting function exactly for
the first 4p — 1 terms is

2p 2p
z+z+27B, + %sz - %B,Cp
Z3P z3P 3P 3P
+ yBsp — p—zB2pCp + FBng - WB;:C%, (6)

where Byp = Cip — zCip—_;. Since 2 is the highest power of 2 appearing
in the denominator, the 7-2 polynomials may be computed mod 4. Mul-
tiplying by 2p? clears the denominators, and the resulting polynomial is
then reduced modulo 4. This computation will yield correct parity values
for n < 8p — 5, due to the simplification mod 4. Table 1 gives the parity
of the subgroup counting function for several Hecke groups. A number of
patterns are evident and two of these are stated in the final section. We
mention here the following result.

Theorem 3. The first four odd values of the subgroup counting function
for Hy, will occur at indices 1, 2, 2p — 1 and 4p — 2.
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Proof: It follows from Theorem 1 that C, = z" +z™~! (mod 2) for odd
n and C, = z™ for even n, giving

Bn,=z""! mod 2.

Truncating equation (6) to permit mod 2 computation gives

2p
z+z% +2PB, + %ng +z*B,C,

=z + 22 4 2PzP~! 4 2P %P 1 2?2P(2P 4 £P7Y)
=z+2z2+ 2% 4272, (mod 2),

proving the theorem.

Open Problems

1. Parity patterns. The author has computed the parity of the sub-
group counting function for Hecke groups Hp, p < 100, for all indices
less than 16p. For primes less than or equal to 17 the data was ex-
tended to include indices less than 1000. These computations support
the following conjectures.

Conjecture 1: If n is odd, then M,, and M, have the same parity.
Conjecture 2: My, is even for all positive k.

2. A remarkable property of the function Q(w). Let Q~! denote

the operator ¢S50 Q '(w™!) is not the reciprocal of Q(w), an
assertion which is easily confirmed by computing each series to a few
terms. However, for parity computations it behaves as if it were this
reciprocal. Computations for the groups listed in problem 1, and in
the same ranges, support the following conjecture.

Conjecture 3.: The series z[Q(w)])'[Q~!(w™!)] has integral coeffi-
cients and is congruent to “—"f— mod 2.

Since both Q(w) and Q~!(w™!) are efficiently computed, this would
bypass the need to find the reciprocal of f in the usual way.

Table 1. The subgroup counting function for Hy is odd at these indices
only, for n < 16p.

Small primes:

Hj: 1 2 5 10 13 26 29
Hy;: 1 2 13 26 37 61 74
Hyp: 1 2 21 42 61 122 141
Hiz: 1 2 25 50 121



Fermat primes:

Hs: 1 2 9 18 41
H17: 1 2 33 66

Hosz: 1 2 513 1026
Hegssaz: 1 2 131073 262146

Mersenne primes:

Hyo, 1 2 253 506 757 1261 1514
Hgigr 1 2 16381 32762 49141 81901 98282
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